spacer
spacer

PDBsum entry 1exi

Go to PDB code: 
protein dna_rna ligands metals links
Transcription/DNA PDB id
1exi
Jmol
Contents
Protein chain
275 a.a. *
DNA/RNA
Ligands
118 ×2
Metals
_ZN
Waters ×3
* Residue conservation analysis
PDB id:
1exi
Name: Transcription/DNA
Title: Crystal structure of transcription activator bmrr, from b. S bound to 21 base pair bmr operator and tpsb
Structure: DNA (5'- d( Ap Cp Cp Cp Tp Cp Cp Cp Cp Tp Tp Ap Gp Gp Gp Gp Ap Gp Gp 3'). Chain: m. Engineered: yes. Multidrug-efflux transporter regulator. Chain: a. Synonym: transcription activator bmrr. Engineered: yes
Source: Synthetic: yes. Bacillus subtilis. Organism_taxid: 1423. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Tetramer (from PDB file)
Resolution:
3.12Å     R-factor:   0.268     R-free:   0.317
Authors: E.E.Zheleznova-Heldwein,R.G.Brennan
Key ref:
E.E.Heldwein and R.G.Brennan (2001). Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature, 409, 378-382. PubMed id: 11201751 DOI: 10.1038/35053138
Date:
02-May-00     Release date:   24-Jan-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P39075  (BMRR_BACSU) -  Multidrug-efflux transporter 1 regulator
Seq:
Struc:
278 a.a.
275 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     transcription, DNA-dependent   2 terms 
  Biochemical function     DNA binding     1 term  

 

 
DOI no: 10.1038/35053138 Nature 409:378-382 (2001)
PubMed id: 11201751  
 
 
Crystal structure of the transcription activator BmrR bound to DNA and a drug.
E.E.Heldwein, R.G.Brennan.
 
  ABSTRACT  
 
The efflux of chemically diverse drugs by multidrug transporters that span the membrane is one mechanism of multidrug resistance in bacteria. The concentrations of many of these transporters are controlled by transcription regulators, such as BmrR in Bacillus subtilis, EmrR in Escherichia coli and QacR in Staphylococcus aureus. These proteins promote transporter gene expression when they bind toxic compounds. BmrR activates transcription of the multidrug transporter gene, bmr, in response to cellular invasion by certain lipophilic cationic compounds (drugs). BmrR belongs to the MerR family, which regulates response to stress such as exposure to toxic compounds or oxygen radicals in bacteria. MerR proteins have homologous amino-terminal DNA-binding domains but different carboxy-terminal domains, which enable them to bind specific 'coactivator' molecules. When bound to coactivator, MerR proteins upregulate transcription by reconfiguring the 19-base-pair spacer found between the -35 and -10 promoter elements to allow productive interaction with RNA polymerase. Here we report the 3.0 A resolution structure of BmrR in complex with the drug tetraphenylphosphonium (TPP) and a 22-base-pair oligodeoxynucleotide encompassing the bmr promoter. The structure reveals an unexpected mechanism for transcription activation that involves localized base-pair breaking, and base sliding and realignment of the -35 and -10 operator elements.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Crystal structure of the BmrR -drug -DNA complex. a, BmrR monomer. The DNA-binding domain, -helical linker and drug-binding domain are shown in yellow, red and green, respectively. b, BmrR dimer bound to DNA. One monomer is coloured as in a, whereas the other monomer is shown in cyan. DNA and TPP/TPSb are represented as balls and sticks (carbon, black; nitrogen, blue; oxygen, red; and phosphorus/antimony, green). c, Dimerization interface between the drug-binding domain of a BmrR monomer (green) and the DNA-binding domain of its dimeric mate (cyan). The TPP/TPSb molecule and selected drug-binding residues are are represented as ball and sticks.
Figure 2.
Figure 2: BmrR -DNA interactions. a, BmrR -DNA half-site interface. Atoms are represented as sticks (carbon, black; nitrogen, blue; oxygen, red; phosphorus, yellow). Hydrogen bonds are represented as yellow dashed lines. b, Representation of BmrR -DNA contacts. DNA is shown as a cylindrical projection where bases are depicted as rectangular boxes, deoxyribose rings as pentagons, and phosphates as circles. Hydrogen bonds are represented as blue, and van der Waals interactions as green arrows. Solid and dashed lines represent contacts from side chains and backbone amides, respectively. Side chains that contact bases in the major or minor grooves are labelled with 'M' and 'm', respectively.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2001, 409, 378-382) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20578795 P.R.Chen, P.Brugarolas, and C.He (2011).
Redox signaling in human pathogens.
  Antioxid Redox Signal, 14, 1107-1118.  
21153861 S.K.Checa, and F.C.Soncini (2011).
Bacterial gold sensing and resistance.
  Biometals, 24, 419-427.  
20580544 H.Wade (2010).
MD recognition by MDR gene regulators.
  Curr Opin Struct Biol, 20, 489-496.  
20807206 M.E.Pérez Audero, B.M.Podoroska, M.M.Ibáñez, A.Cauerhff, S.K.Checa, and F.C.Soncini (2010).
Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors.
  Mol Microbiol, 78, 853-865.  
20230832 M.Kumaraswami, K.J.Newberry, and R.G.Brennan (2010).
Conformational plasticity of the coiled-coil domain of BmrR is required for bmr operator binding: the structure of unliganded BmrR.
  J Mol Biol, 398, 264-275.
PDB code: 3iao
20442963 P.Chen, N.M.Andoy, J.J.Benítez, A.M.Keller, D.Panda, and F.Gao (2010).
Tackling metal regulation and transport at the single-molecule level.
  Nat Prod Rep, 27, 757-767.  
19822742 A.I.Arunkumar, G.C.Campanello, and D.P.Giedroc (2009).
Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state.
  Proc Natl Acad Sci U S A, 106, 18177-18182.
PDB codes: 2kjb 2kjc
19130905 M.D.Routh, C.C.Su, Q.Zhang, and E.W.Yu (2009).
Structures of AcrR and CmeR: insight into the mechanisms of transcriptional repression and multi-drug recognition in the TetR family of regulators.
  Biochim Biophys Acta, 1794, 844-851.  
19129225 M.Kumaraswami, J.T.Schuman, S.M.Seo, G.W.Kaatz, and R.G.Brennan (2009).
Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA.
  Nucleic Acids Res, 37, 1211-1224.
PDB code: 3eco
19651042 N.M.Andoy, S.K.Sarkar, Q.Wang, D.Panda, J.J.Benítez, A.Kalininskiy, and P.Chen (2009).
Single-molecule study of metalloregulator CueR-DNA interactions using engineered Holliday junctions.
  Biophys J, 97, 844-852.  
19096365 P.K.Madoori, H.Agustiandari, A.J.Driessen, and A.M.Thunnissen (2009).
Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.
  EMBO J, 28, 156-166.
PDB codes: 3f8b 3f8c 3f8f
19432796 U.M.Pinto, and S.C.Winans (2009).
Dimerization of the quorum-sensing transcription factor TraR enhances resistance to cytoplasmic proteolysis.
  Mol Microbiol, 73, 32-42.  
19678712 X.Z.Li, and H.Nikaido (2009).
Efflux-mediated drug resistance in bacteria: an update.
  Drugs, 69, 1555-1623.  
19732344 Y.Qin, C.Keenan, and S.K.Farrand (2009).
N- and C-terminal regions of the quorum-sensing activator TraR cooperate in interactions with the alpha and sigma-70 components of RNA polymerase.
  Mol Microbiol, 74, 330-346.  
19788177 Z.Ma, F.E.Jacobsen, and D.P.Giedroc (2009).
Coordination chemistry of bacterial metal transport and sensing.
  Chem Rev, 109, 4644-4681.  
18316718 A.A.Gorodetsky, L.E.Dietrich, P.E.Lee, B.Demple, D.K.Newman, and J.K.Barton (2008).
DNA binding shifts the redox potential of the transcription factor SoxR.
  Proc Natl Acad Sci U S A, 105, 3684-3689.  
18658145 K.J.Newberry, J.L.Huffman, M.C.Miller, N.Vazquez-Laslop, A.A.Neyfakh, and R.G.Brennan (2008).
Structures of BmrR-drug complexes reveal a rigid multidrug binding pocket and transcription activation through tyrosine expulsion.
  J Biol Chem, 283, 26795-26804.
PDB codes: 3d6y 3d6z 3d70 3d71
18331450 L.V.Wray, and S.H.Fisher (2008).
Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase.
  Mol Microbiol, 68, 277-285.  
18258210 P.R.Chen, and C.He (2008).
Selective recognition of metal ions by metalloregulatory proteins.
  Curr Opin Chem Biol, 12, 214-221.  
18334645 S.Watanabe, A.Kita, K.Kobayashi, and K.Miki (2008).
Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA.
  Proc Natl Acad Sci U S A, 105, 4121-4126.
PDB codes: 2zhg 2zhh
18295794 V.M.Korkhov, and C.G.Tate (2008).
Electron crystallography reveals plasticity within the drug binding site of the small multidrug transporter EmrE.
  J Mol Biol, 377, 1094-1103.  
16997962 A.A.Gusa, B.J.Froehlich, D.Desai, V.Stringer, and J.R.Scott (2007).
CovR activation of the dipeptide permease promoter (PdppA) in Group A Streptococcus.
  J Bacteriol, 189, 1407-1416.  
17653710 E.Radmacher, and L.Eggeling (2007).
The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis.
  Appl Microbiol Biotechnol, 76, 587-595.  
17233828 G.Navarro-Avilés, M.A.Jiménez, M.C.Pérez-Marín, C.González, M.Rico, F.J.Murillo, M.Elías-Arnanz, and S.Padmanabhan (2007).
Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor.
  Mol Microbiol, 63, 980-994.
PDB code: 2jml
17302809 J.L.Hobman (2007).
MerR family transcription activators: similar designs, different specificities.
  Mol Microbiol, 63, 1275-1278.  
17804667 J.Lubelski, W.N.Konings, and A.J.Driessen (2007).
Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria.
  Microbiol Mol Biol Rev, 71, 463-476.  
17085574 L.V.Wray, and S.H.Fisher (2007).
Functional analysis of the carboxy-terminal region of Bacillus subtilis TnrA, a MerR family protein.
  J Bacteriol, 189, 20-27.  
17950313 M.Li, R.Gu, C.C.Su, M.D.Routh, K.C.Harris, E.S.Jewell, G.McDermott, and E.W.Yu (2007).
Crystal structure of the transcriptional regulator AcrR from Escherichia coli.
  J Mol Biol, 374, 591-603.
PDB code: 2qop
17159924 O.Lomovskaya, H.I.Zgurskaya, M.Totrov, and W.J.Watkins (2007).
Waltzing transporters and 'the dance macabre' between humans and bacteria.
  Nat Rev Drug Discov, 6, 56-65.  
17686491 R.Gu, C.C.Su, F.Shi, M.Li, G.McDermott, Q.Zhang, and E.W.Yu (2007).
Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni.
  J Mol Biol, 372, 583-593.
PDB code: 2qco
17880214 S.K.Sarkar, N.M.Andoy, J.J.Benítez, P.R.Chen, J.S.Kong, C.He, and P.Chen (2007).
Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator.
  J Am Chem Soc, 129, 12461-12467.  
17143269 T.Liu, A.Ramesh, Z.Ma, S.K.Ward, L.Zhang, G.N.George, A.M.Talaat, J.C.Sacchettini, and D.P.Giedroc (2007).
CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator.
  Nat Chem Biol, 3, 60-68.
PDB code: 2hh7
17848563 T.W.Loo, M.C.Bartlett, and D.M.Clarke (2007).
Suppressor mutations in the transmembrane segments of P-glycoprotein promote maturation of processing mutants and disrupt a subset of drug-binding sites.
  J Biol Chem, 282, 32043-32052.  
16472303 A.J.Molina-Henares, T.Krell, M.Eugenia Guazzaroni, A.Segura, and J.L.Ramos (2006).
Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors.
  FEMS Microbiol Rev, 30, 157-186.  
16672221 D.Rotem, S.Steiner-Mordoch, and S.Schuldiner (2006).
Identification of tyrosine residues critical for the function of an ion-coupled multidrug transporter.
  J Biol Chem, 281, 18715-18722.  
16753059 E.A.Permina, A.E.Kazakov, O.V.Kalinina, and M.S.Gelfand (2006).
Comparative genomics of regulation of heavy metal resistance in Eubacteria.
  BMC Microbiol, 6, 49.  
16569840 G.W.Kaatz, C.E.DeMarco, and S.M.Seo (2006).
MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein.
  Antimicrob Agents Chemother, 50, 1276-1281.  
16547045 J.M.Zalieckas, L.V.Wray, and S.H.Fisher (2006).
Cross-regulation of the Bacillus subtilis glnRA and tnrA genes provides evidence for DNA binding site discrimination by GlnR and TnrA.
  J Bacteriol, 188, 2578-2585.  
16475182 J.Seetharaman, D.Kumaran, J.B.Bonanno, S.K.Burley, and S.Swaminathan (2006).
Crystal structure of a putative HTH-type transcriptional regulator yxaF from Bacillus subtilis.
  Proteins, 63, 1087-1091.
PDB code: 1sgm
16911042 M.Ventura, C.Canchaya, Z.Zhang, V.Bernini, G.F.Fitzgerald, and D.van Sinderen (2006).
How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators.
  FEMS Microbiol Rev, 30, 734-759.  
  17142916 S.Watanabe, A.Kita, K.Kobayashi, Y.Takahashi, and K.Miki (2006).
Crystallization and preliminary X-ray crystallographic studies of the oxidative-stress sensor SoxR and its complex with DNA.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1275-1277.  
15629942 A.C.Hunt, L.Servín-González, G.H.Kelemen, and M.J.Buttner (2005).
The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family.
  J Bacteriol, 187, 716-728.  
15980345 A.Koutsolioutsou, S.Peña-Llopis, and B.Demple (2005).
Constitutive soxR mutations contribute to multiple-antibiotic resistance in clinical Escherichia coli isolates.
  Antimicrob Agents Chemother, 49, 2746-2752.  
15501941 C.W.Sikora, and R.J.Turner (2005).
Investigation of ligand binding to the multidrug resistance protein EmrE by isothermal titration calorimetry.
  Biophys J, 88, 475-482.  
16158235 J.L.Hobman, J.Wilkie, and N.L.Brown (2005).
A design for life: prokaryotic metal-binding MerR family regulators.
  Biometals, 18, 429-436.  
15808743 L.Aravind, V.Anantharaman, S.Balaji, M.M.Babu, and L.M.Iyer (2005).
The many faces of the helix-turn-helix domain: transcription regulation and beyond.
  FEMS Microbiol Rev, 29, 231-262.  
16158234 M.A.Pennella, and D.P.Giedroc (2005).
Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators.
  Biometals, 18, 413-428.  
15767250 M.E.Guazzaroni, T.Krell, A.Felipe, R.Ruiz, C.Meng, X.Zhang, M.T.Gallegos, and J.L.Ramos (2005).
The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry.
  J Biol Chem, 280, 20887-20893.  
15800869 P.Chen, B.Greenberg, S.Taghavi, C.Romano, D.van der Lelie, and C.He (2005).
An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe.
  Angew Chem Int Ed Engl, 44, 2715-2719.  
15720552 P.Servant, D.Le Coq, and S.Aymerich (2005).
CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
  Mol Microbiol, 55, 1435-1451.  
16456713 T.W.Loo, and D.M.Clarke (2005).
Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux.
  J Membr Biol, 206, 173-185.  
15063844 A.Barnard, A.Wolfe, and S.Busby (2004).
Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes.
  Curr Opin Microbiol, 7, 102-108.  
15035009 D.F.Browning, and S.J.Busby (2004).
The regulation of bacterial transcription initiation.
  Nat Rev Microbiol, 2, 57-65.  
14726520 D.S.Murray, M.A.Schumacher, and R.G.Brennan (2004).
Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization.
  J Biol Chem, 279, 14365-14371.
PDB codes: 1rkw 1rpw
14985361 K.J.Newberry, and R.G.Brennan (2004).
The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus.
  J Biol Chem, 279, 20356-20362.
PDB codes: 1r8d 1r8e
15165248 L.Champier, V.Duarte, I.Michaud-Soret, and J.Covès (2004).
Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon.
  Mol Microbiol, 52, 1475-1485.  
14996817 L.Song, J.Caguiat, Z.Li, J.Shokes, R.A.Scott, L.Olliff, and A.O.Summers (2004).
Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site.
  J Bacteriol, 186, 1861-1868.  
15163666 M.C.Pérez-Marín, J.J.López-Rubio, F.J.Murillo, M.Elías-Arnanz, and S.Padmanabhan (2004).
The N terminus of Myxococcus xanthus CarA repressor is an autonomously folding domain that mediates physical and functional interactions with both operator DNA and antirepressor protein.
  J Biol Chem, 279, 33093-33103.  
15292172 M.Chander, and B.Demple (2004).
Functional analysis of SoxR residues affecting transduction of oxidative stress signals into gene expression.
  J Biol Chem, 279, 41603-41610.  
15126451 M.E.Guazzaroni, W.Terán, X.Zhang, M.T.Gallegos, and J.L.Ramos (2004).
TtgV bound to a complex operator site represses transcription of the promoter for the multidrug and solvent extrusion TtgGHI pump.
  J Bacteriol, 186, 2921-2927.  
15281131 V.Anantharaman, and L.Aravind (2004).
The SHS2 module is a common structural theme in functionally diverse protein groups, like Rpb7p, FtsA, GyrI, and MTH1598/TM1083 superfamilies.
  Proteins, 56, 795-807.  
12958362 A.Changela, K.Chen, Y.Xue, J.Holschen, C.E.Outten, T.V.O'Halloran, and A.Mondragón (2003).
Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR.
  Science, 301, 1383-1387.
PDB codes: 1q05 1q06 1q07 1q08 1q09 1q0a
13679366 A.Meinhart, J.Blobel, and P.Cramer (2003).
An extended winged helix domain in general transcription factor E/IIE alpha.
  J Biol Chem, 278, 48267-48274.
PDB code: 1q1h
14572535 I.T.Paulsen (2003).
Multidrug efflux pumps and resistance: regulation and evolution.
  Curr Opin Microbiol, 6, 446-451.  
12682015 J.D.Kahmann, H.J.Sass, M.G.Allan, H.Seto, C.J.Thompson, and S.Grzesiek (2003).
Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators.
  EMBO J, 22, 1824-1834.
PDB code: 1ny9
12446701 J.V.Stoyanov, and N.L.Brown (2003).
The Escherichia coli copper-responsive copA promoter is activated by gold.
  J Biol Chem, 278, 1407-1410.  
12526851 K.S.McKeegan, M.I.Borges-Walmsley, and A.R.Walmsley (2003).
The structure and function of drug pumps: an update.
  Trends Microbiol, 11, 21-29.  
12670967 M.Chander, L.Raducha-Grace, and B.Demple (2003).
Transcription-defective soxR mutants of Escherichia coli: isolation and in vivo characterization.
  J Bacteriol, 185, 2441-2450.  
12829265 N.L.Brown, J.V.Stoyanov, S.P.Kidd, and J.L.Hobman (2003).
The MerR family of transcriptional regulators.
  FEMS Microbiol Rev, 27, 145-163.  
12837797 R.Li, A.C.Manna, S.Dai, A.L.Cheung, and G.Zhang (2003).
Crystal structure of the SarS protein from Staphylococcus aureus.
  J Bacteriol, 185, 4219-4225.
PDB code: 1p4x
12471609 S.S.Ray, J.B.Bonanno, H.Chen, H.de Lencastre, S.Wu, A.Tomasz, and S.K.Burley (2003).
X-ray structure of an M. jannaschii DNA-binding protein: implications for antibiotic resistance in S. aureus.
  Proteins, 50, 170-173.
PDB code: 1ku9
12829275 T.Barkay, S.M.Miller, and A.O.Summers (2003).
Bacterial mercury resistance from atoms to ecosystems.
  FEMS Microbiol Rev, 27, 355-384.  
12622823 T.Doan, and S.Aymerich (2003).
Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate.
  Mol Microbiol, 47, 1709-1721.  
14522974 T.W.Loo, M.C.Bartlett, and D.M.Clarke (2003).
Methanethiosulfonate derivatives of rhodamine and verapamil activate human P-glycoprotein at different sites.
  J Biol Chem, 278, 50136-50141.  
14506010 W.Terán, A.Felipe, A.Segura, A.Rojas, J.L.Ramos, and M.T.Gallegos (2003).
Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR.
  Antimicrob Agents Chemother, 47, 3067-3072.  
12068801 A.A.Neyfakh (2002).
Mystery of multidrug transporters: the answer can be simple.
  Mol Microbiol, 44, 1123-1130.  
11748235 J.J.López-Rubio, M.Elías-Arnanz, S.Padmanabhan, and F.J.Murillo (2002).
A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus.
  J Biol Chem, 277, 7262-7270.  
11839496 J.L.Huffman, and R.G.Brennan (2002).
Prokaryotic transcription regulators: more than just the helix-turn-helix motif.
  Curr Opin Struct Biol, 12, 98.  
12180910 M.A.Schumacher, and R.G.Brennan (2002).
Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors.
  Mol Microbiol, 45, 885-893.  
12207695 M.Cao, T.Wang, R.Ye, and J.D.Helmann (2002).
Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons.
  Mol Microbiol, 45, 1267-1276.  
11914353 M.Cervantes, and F.J.Murillo (2002).
Role for vitamin B(12) in light induction of gene expression in the bacterium Myxococcus xanthus.
  J Bacteriol, 184, 2215-2224.  
12186881 M.H.Godsey, E.E.Zheleznova Heldwein, and R.G.Brennan (2002).
Structural biology of bacterial multidrug resistance gene regulators.
  J Biol Chem, 277, 40169-40172.  
11948793 M.J.Romanowski, S.A.Gibney, and S.K.Burley (2002).
Crystal structure of the Escherichia coli SbmC protein that protects cells from the DNA replication inhibitor microcin B17.
  Proteins, 47, 403-407.
PDB code: 1jyh
12456787 S.Grkovic, M.H.Brown, and R.A.Skurray (2002).
Regulation of bacterial drug export systems.
  Microbiol Mol Biol Rev, 66, 671.  
12139611 S.H.Fisher, J.L.Brandenburg, and L.V.Wray (2002).
Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA.
  Mol Microbiol, 45, 627-635.  
11959501 S.K.Burley, and K.Kamada (2002).
Transcription factor complexes.
  Curr Opin Struct Biol, 12, 225-230.  
12410844 W.Mao, M.S.Warren, D.S.Black, T.Satou, T.Murata, T.Nishino, N.Gotoh, and O.Lomovskaya (2002).
On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition.
  Mol Microbiol, 46, 889-901.  
11741530 C.W.Garvie, and C.Wolberger (2001).
Recognition of specific DNA sequences.
  Mol Cell, 8, 937-946.  
11719184 L.V.Wray, J.M.Zalieckas, and S.H.Fisher (2001).
Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA.
  Cell, 107, 427-435.  
11739955 M.A.Schumacher, M.C.Miller, S.Grkovic, M.H.Brown, R.A.Skurray, and R.G.Brennan (2001).
Structural mechanisms of QacR induction and multidrug recognition.
  Science, 294, 2158-2163.
PDB codes: 1jt6 1jtx 1jty 1jum 1jup 1jus
11581256 M.H.Godsey, N.N.Baranova, A.A.Neyfakh, and R.G.Brennan (2001).
Crystal structure of MtaN, a global multidrug transporter gene activator.
  J Biol Chem, 276, 47178-47184.
PDB code: 1jbg
11717268 S.Grkovic, M.H.Brown, M.A.Schumacher, R.G.Brennan, and R.A.Skurray (2001).
The staphylococcal QacR multidrug regulator binds a correctly spaced operator as a pair of dimers.
  J Bacteriol, 183, 7102-7109.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.