spacer
spacer

PDBsum entry 1enz

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
1enz
Jmol
Contents
Protein chain
268 a.a. *
Ligands
NAD
Waters ×48
* Residue conservation analysis
PDB id:
1enz
Name: Oxidoreductase
Title: Crystal structure and function of the isoniazid target of mycobacterium tuberculosis
Structure: Enoyl-acyl carrier protein (acp) reductase. Chain: a. Synonym: inha. Engineered: yes. Mutation: yes
Source: Mycobacterium tuberculosis. Organism_taxid: 1773. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Tetramer (from PQS)
Resolution:
2.70Å     R-factor:   0.193    
Authors: A.Dessen,A.Quemard,J.S.Blanchard,W.R.Jacobs Jr.,J.C.Sacchett Structural Genomics Consortium (Tbsgc)
Key ref: A.Dessen et al. (1995). Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science, 267, 1638-1641. PubMed id: 7886450 DOI: 10.1126/science.7886450
Date:
27-Jan-95     Release date:   29-Jan-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam  
P9WGR1  (INHA_MYCTU) -  Enoyl-[acyl-carrier-protein] reductase [NADH]
Seq:
Struc:
269 a.a.
268 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.1.3.1.9  - Enoyl-[acyl-carrier-protein] reductase (NADH).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: An acyl-[acyl-carrier protein] + NAD+ = a trans-2,3-dehydroacyl-[acyl- carrier protein] + NADH
acyl-[acyl-carrier protein]
+
NAD(+)
Bound ligand (Het Group name = NAD)
corresponds exactly
= trans-2,3-dehydroacyl-[acyl- carrier protein]
+ NADH
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cell wall   2 terms 
  Biological process     oxidation-reduction process   5 terms 
  Biochemical function     oxidoreductase activity     2 terms  

 

 
    reference    
 
 
DOI no: 10.1126/science.7886450 Science 267:1638-1641 (1995)
PubMed id: 7886450  
 
 
Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis.
A.Dessen, A.Quémard, J.S.Blanchard, W.R.Jacobs, J.C.Sacchettini.
 
  ABSTRACT  
 
Resistance to isoniazid in Mycobacterium tuberculosis can be mediated by substitution of alanine for serine 94 in the InhA protein, the drug's primary target. InhA was shown to catalyze the beta-nicotinamide adenine dinucleotide (NADH)-specific reduction of 2-trans-enoyl-acyl carrier protein, an essential step in fatty acid elongation. Kinetic analyses suggested that isoniazid resistance is due to a decreased affinity of the mutant protein for NADH. The three-dimensional structures of wild-type and mutant InhA, refined to 2.2 and 2.7 angstroms, respectively, revealed that drug resistance is directly related to a perturbation in the hydrogen-bonding network that stabilizes NADH binding.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21397998 Y.Izumizono, S.Arevalo, Y.Koseki, M.Kuroki, and S.Aoki (2011).
Identification of novel potential antibiotics for tuberculosis by in silico structure-based drug screening.
  Eur J Med Chem, 46, 1849-1856.  
20548782 A.H.Li, S.J.Waddell, J.Hinds, C.A.Malloff, M.Bains, R.E.Hancock, W.L.Lam, P.D.Butcher, and R.W.Stokes (2010).
Contrasting transcriptional responses of a virulent and an attenuated strain of Mycobacterium tuberculosis infecting macrophages.
  PLoS One, 5, e11066.  
21210972 K.S.Machado, A.T.Winck, D.D.Ruiz, and O.N.de Souza (2010).
Mining flexible-receptor docking experiments to select promising protein receptor snapshots.
  BMC Genomics, 11, S6.  
21143326 V.Molle, G.Gulten, C.Vilchèze, R.Veyron-Churlet, I.Zanella-Cléon, J.C.Sacchettini, W.R.Jacobs, and L.Kremer (2010).
Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis.
  Mol Microbiol, 78, 1591-1605.
PDB codes: 3oew 3oey 3of2
19492969 G.Riccardi, M.R.Pasca, and S.Buroni (2009).
Mycobacterium tuberculosis: drug resistance and future perspectives.
  Future Microbiol, 4, 597-614.  
19130456 J.S.Freundlich, F.Wang, C.Vilchèze, G.Gulten, R.Langley, G.A.Schiehser, D.P.Jacobus, W.R.Jacobs, and J.C.Sacchettini (2009).
Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis.
  ChemMedChem, 4, 241-248.
PDB codes: 3fne 3fnf 3fng 3fnh
18552191 A.Gurvitz, J.K.Hiltunen, and A.J.Kastaniotis (2008).
Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae.
  Appl Environ Microbiol, 74, 5078-5085.  
18651841 C.Vilchèze, Y.Av-Gay, R.Attarian, Z.Liu, M.H.Hazbón, R.Colangeli, B.Chen, W.Liu, D.Alland, J.C.Sacchettini, and W.R.Jacobs (2008).
Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis.
  Mol Microbiol, 69, 1316-1329.  
18079742 J.C.Sacchettini, E.J.Rubin, and J.S.Freundlich (2008).
Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis.
  Nat Rev Microbiol, 6, 41-52.  
18305197 J.Saito, M.Yamada, T.Watanabe, M.Iida, H.Kitagawa, S.Takahata, T.Ozawa, Y.Takeuchi, and F.Ohsawa (2008).
Crystal structure of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor.
  Protein Sci, 17, 691-699.
PDB codes: 2z6i 2z6j
18831539 K.Ranguelova, J.Suarez, R.S.Magliozzo, and R.P.Mason (2008).
Spin trapping investigation of peroxide- and isoniazid-induced radicals in Mycobacterium tuberculosis catalase-peroxidase.
  Biochemistry, 47, 11377-11385.  
17653358 A.C.Mercer, and M.D.Burkart (2007).
The ubiquitous carrier protein--a window to metabolite biosynthesis.
  Nat Prod Rep, 24, 750-773.  
17260147 A.Favila, M.Gallo, and D.Glossman-Mitnik (2007).
CHIH-DFT determination of the molecular structure infrared spectra, UV spectra and chemical reactivity of three antitubercular compounds: Rifampicin, Isoniazid and Pyrazinamide.
  J Mol Model, 13, 505-518.  
18035606 C.Vilchèze, and W.R.Jacobs (2007).
The mechanism of isoniazid killing: clarity through the scope of genetics.
  Annu Rev Microbiol, 61, 35-50.  
17227913 F.Wang, R.Langley, G.Gulten, L.G.Dover, G.S.Besra, W.R.Jacobs, and J.C.Sacchettini (2007).
Mechanism of thioamide drug action against tuberculosis and leprosy.
  J Exp Med, 204, 73-78.
PDB codes: 2h9i 2ntj 2ntv
17509532 G.Nicola, C.A.Smith, E.Lucumi, M.R.Kuo, L.Karagyozov, D.A.Fidock, J.C.Sacchettini, and R.Abagyan (2007).
Discovery of novel inhibitors targeting enoyl-acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening.
  Biochem Biophys Res Commun, 358, 686-691.  
17600151 N.A.Kruh, R.Rawat, B.P.Ruzsicska, and P.J.Tonge (2007).
Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis.
  Protein Sci, 16, 1617-1627.  
17723305 X.He, A.Alian, and P.R.Ortiz de Montellano (2007).
Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides.
  Bioorg Med Chem, 15, 6649-6658.
PDB code: 2nsd
16789833 S.Gagneux, M.V.Burgos, K.DeRiemer, A.Encisco, S.Muñoz, P.C.Hopewell, P.M.Small, and A.S.Pym (2006).
Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis.
  PLoS Pathog, 2, e61.  
16492739 T.W.Lin, M.M.Melgar, D.Kurth, S.J.Swamidass, J.Purdon, T.Tseng, G.Gago, P.Baldi, H.Gramajo, and S.C.Tsai (2006).
Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis.
  Proc Natl Acad Sci U S A, 103, 3072-3077.
PDB code: 2a7s
17034137 X.He, A.Alian, R.Stroud, and P.R.Ortiz de Montellano (2006).
Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis.
  J Med Chem, 49, 6308-6323.
PDB codes: 2h7i 2h7l 2h7m 2h7n 2h7p 4trj 4tzk 4tzt 4u0j 4u0k
15937179 A.Singh, R.Gupta, R.A.Vishwakarma, P.R.Narayanan, C.N.Paramasivan, V.D.Ramanathan, and A.K.Tyagi (2005).
Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs.
  J Bacteriol, 187, 4173-4186.  
15673755 C.Vilchèze, T.R.Weisbrod, B.Chen, L.Kremer, M.H.Hazbón, F.Wang, D.Alland, J.C.Sacchettini, and W.R.Jacobs (2005).
Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria.
  Antimicrob Agents Chemother, 49, 708-720.  
15908576 E.K.Schroeder, L.A.Basso, D.S.Santos, and O.N.de Souza (2005).
Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities.
  Biophys J, 89, 876-884.  
15653820 K.Takayama, C.Wang, and G.S.Besra (2005).
Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis.
  Clin Microbiol Rev, 18, 81.  
15109786 L.G.Dover, A.M.Cerdeño-Tárraga, M.J.Pallen, J.Parkhill, and G.S.Besra (2004).
Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae.
  FEMS Microbiol Rev, 28, 225-250.  
15328099 R.F.Cardoso, R.C.Cooksey, G.P.Morlock, P.Barco, L.Cecon, F.Forestiero, C.Q.Leite, D.N.Sato, M.d.e. .L.Shikama, E.M.Mamizuka, R.D.Hirata, and M.H.Hirata (2004).
Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil.
  Antimicrob Agents Chemother, 48, 3373-3381.  
  15043388 R.J.Heath, and C.O.Rock (2004).
Fatty acid biosynthesis as a target for novel antibacterials.
  Curr Opin Investig Drugs, 5, 146-153.  
15554959 R.Veyron-Churlet, O.Guerrini, L.Mourey, M.Daffé, and D.Zerbib (2004).
Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability.
  Mol Microbiol, 54, 1161-1172.  
14693546 S.Ducasse-Cabanot, M.Cohen-Gonsaud, H.Marrakchi, M.Nguyen, D.Zerbib, J.Bernadou, M.Daffé, G.Labesse, and A.Quémard (2004).
In vitro inhibition of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by isoniazid.
  Antimicrob Agents Chemother, 48, 242-249.  
15726819 Y.M.Zhang, Y.J.Lu, and C.O.Rock (2004).
The reductase steps of the type II fatty acid synthase as antimicrobial targets.
  Lipids, 39, 1055-1060.  
14675542 C.V.Smith, and J.C.Sacchettini (2003).
Mycobacterium tuberculosis: a model system for structural genomics.
  Curr Opin Struct Biol, 13, 658-664.  
14638486 G.P.Morlock, B.Metchock, D.Sikes, J.T.Crawford, and R.C.Cooksey (2003).
ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates.
  Antimicrob Agents Chemother, 47, 3799-3805.  
12915092 M.Bellinzoni, and G.Riccardi (2003).
Techniques and applications: The heterologous expression of Mycobacterium tuberculosis genes is an uphill road.
  Trends Microbiol, 11, 351-358.  
14623976 R.Rawat, A.Whitty, and P.J.Tonge (2003).
The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance.
  Proc Natl Acad Sci U S A, 100, 13881-13886.
PDB codes: 2x22 2x23
12654653 S.V.Ramaswamy, R.Reich, S.J.Dou, L.Jasperse, X.Pan, A.Wanger, T.Quitugua, and E.A.Graviss (2003).
Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis.
  Antimicrob Agents Chemother, 47, 1241-1250.  
12037321 H.H.Lee, J.Yun, J.Moon, B.W.Han, B.I.Lee, J.Y.Lee, and S.W.Suh (2002).
Crystallization and preliminary X-ray crystallographic analysis of enoyl-acyl carrier protein reductase from Helicobacter pylori.
  Acta Crystallogr D Biol Crystallogr, 58, 1071-1073.  
11829709 L.Kremer, and G.S.Besra (2002).
Re-emergence of tuberculosis: strategies and treatment.
  Expert Opin Investig Drugs, 11, 153-157.  
12406221 M.H.Larsen, C.Vilchèze, L.Kremer, G.S.Besra, L.Parsons, M.Salfinger, L.Heifets, M.H.Hazbon, D.Alland, J.C.Sacchettini, and W.R.Jacobs (2002).
Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis.
  Mol Microbiol, 46, 453-466.  
11796333 R.Maccari, R.Ottanà, F.Monforte, and M.G.Vigorita (2002).
In vitro antimycobacterial activities of 2'-monosubstituted isonicotinohydrazides and their cyanoborane adducts.
  Antimicrob Agents Chemother, 46, 294-299.  
11870865 S.Pantano, F.Alber, D.Lamba, and P.Carloni (2002).
NADH interactions with WT- and S94A-acyl carrier protein reductase from Mycobacterium tuberculosis: an ab initio study.
  Proteins, 47, 62-68.  
11795407 D.Young (2001).
Letting the genome out of the bottle: prospects for new drug development.
  Ann N Y Acad Sci, 953, 146-150.  
11544358 J.W.Campbell, and J.E.Cronan (2001).
Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery.
  Annu Rev Microbiol, 55, 305-332.  
11257028 N.M.Parrish, T.Houston, P.B.Jones, C.Townsend, and J.D.Dick (2001).
In vitro activity of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis.
  Antimicrob Agents Chemother, 45, 1143-1150.  
11591436 R.J.Heath, S.W.White, and C.O.Rock (2001).
Lipid biosynthesis as a target for antibacterial agents.
  Prog Lipid Res, 40, 467-497.  
11306095 T.Lanisnik Rizner, J.Stojan, and J.Adamski (2001).
17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus: structural and functional aspects.
  Chem Biol Interact, 130, 793-803.  
10762047 B.Bottari, R.Maccari, F.Monforte, R.Ottanà, E.Rotondo, and M.G.Vigorita (2000).
Isoniazid-related copper(II) and nickel(II) complexes with antimycobacterial in vitro activity. Part 9.
  Bioorg Med Chem Lett, 10, 657-660.  
10869086 C.Vilchèze, H.R.Morbidoni, T.R.Weisbrod, H.Iwamoto, M.Kuo, J.C.Sacchettini, and W.R.Jacobs (2000).
Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis.
  J Bacteriol, 182, 4059-4067.  
10997907 K.D.Parris, L.Lin, A.Tam, R.Mathew, J.Hixon, M.Stahl, C.C.Fritz, J.Seehra, and W.S.Somers (2000).
Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites.
  Structure, 8, 883-895.
PDB codes: 1f7l 1f7t 1f80
10841782 K.L.Fillgrove, and V.E.Anderson (2000).
Orientation of coenzyme A substrates, nicotinamide and active site functional groups in (Di)enoyl-coenzyme A reductases.
  Biochemistry, 39, 7001-7011.  
10896119 R.Ragno, G.R.Marshall, R.Di Santo, R.Costi, S.Massa, R.Rompei, and M.Artico (2000).
Antimycobacterial pyrroles: synthesis, anti-Mycobacterium tuberculosis activity and QSAR studies.
  Bioorg Med Chem, 8, 1423-1432.  
10869170 S.L.Parikh, G.Xiao, and P.J.Tonge (2000).
Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid.
  Biochemistry, 39, 7645-7650.  
10027962 G.J.de Boer, G.J.Pielage, H.J.Nijkamp, A.R.Slabas, J.B.Rafferty, C.Baldock, D.W.Rice, and A.R.Stuitje (1999).
Molecular genetic analysis of enoyl-acyl carrier protein reductase inhibition by diazaborine.
  Mol Microbiol, 31, 443-450.  
10547700 L.J.Shimkets (1999).
Intercellular signaling during fruiting-body development of Myxococcus xanthus.
  Annu Rev Microbiol, 53, 525-549.  
  10049298 L.M.McMurry, P.F.McDermott, and S.B.Levy (1999).
Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan.
  Antimicrob Agents Chemother, 43, 711-713.  
  10464225 T.T.Hoang, and H.P.Schweizer (1999).
Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis.
  J Bacteriol, 181, 5489-5497.  
  10595560 X.Qiu, C.A.Janson, R.I.Court, M.G.Smyth, D.J.Payne, and S.S.Abdel-Meguid (1999).
Molecular basis for triclosan activity involves a flipping loop in the active site.
  Protein Sci, 8, 2529-2532.
PDB code: 1c14
  9719813 A.M.Ginsberg (1998).
The tuberculosis epidemic. Scientific challenges and opportunities.
  Public Health Rep, 113, 128-136.  
  9621190 A.Rattan, A.Kalia, and N.Ahmad (1998).
Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.
  Emerg Infect Dis, 4, 195-209.  
  10319064 A.Telenti (1998).
Genetics and pulmonary medicine. 5. Genetics of drug resistant tuberculosis.
  Thorax, 53, 793-797.  
9652124 B.J.Rawlings (1998).
Biosynthesis of fatty acids and related metabolites.
  Nat Prod Rep, 15, 275-308.  
16904399 C.E.Barry, R.A.Slayden, and K.Mdluli (1998).
Mechanisms of isoniazid resistance in Mycobacterium tuberculosis.
  Drug Resist Updat, 1, 128-134.  
9829124 C.E.Barry, R.E.Lee, K.Mdluli, A.E.Sampson, B.G.Schroeder, R.A.Slayden, and Y.Yuan (1998).
Mycolic acids: structure, biosynthesis and physiological functions.
  Prog Lipid Res, 37, 143-179.  
9521731 J.Luba, B.Nare, P.H.Liang, K.S.Anderson, S.M.Beverley, and L.W.Hardy (1998).
Leishmania major pteridine reductase 1 belongs to the short chain dehydrogenase family: stereochemical and kinetic evidence.
  Biochemistry, 37, 4093-4104.  
  9517959 J.Y.Wang, R.M.Burger, and K.Drlica (1998).
Role of superoxide in catalase-peroxidase-mediated isoniazid action against mycobacteria.
  Antimicrob Agents Chemother, 42, 709-711.  
9519408 M.Allaire, Y.Li, R.E.MacKenzie, and M.Cygler (1998).
The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme at 1.5 A resolution.
  Structure, 6, 173-182.
PDB code: 1a4i
  9784509 P.Chen, and W.R.Bishai (1998).
Novel selection for isoniazid (INH) resistance genes supports a role for NAD+-binding proteins in mycobacterial INH resistance.
  Infect Immun, 66, 5099-5106.  
  9098059 A.M.Fitzmaurice, and P.E.Kolattukudy (1997).
Open reading frame 3, which is adjacent to the mycocerosic acid synthase gene, is expressed as an acyl coenzyme A synthase in Mycobacterium bovis BCG.
  J Bacteriol, 179, 2608-2615.  
9461299 A.Quémard, M.A.Lanéelle, H.Marrakchi, D.Promé, E.Dubnau, and M.Daffé (1997).
Structure of a hydroxymycolic acid potentially involved in the synthesis of oxygenated mycolic acids of the Mycobacterium tuberculosis complex.
  Eur J Biochem, 250, 758-763.  
  9119479 B.Heym, E.Stavropoulos, N.Honoré, P.Domenech, B.Saint-Joanis, T.M.Wilson, D.M.Collins, M.J.Colston, and S.T.Cole (1997).
Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis.
  Infect Immun, 65, 1395-1401.  
  9336832 C.E.Bell, T.O.Yeates, and D.Eisenberg (1997).
Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes.
  Protein Sci, 6, 2084-2096.  
9405351 G.Auerbach, A.Herrmann, M.Gütlich, M.Fischer, U.Jacob, A.Bacher, and R.Huber (1997).
The 1.25 A crystal structure of sepiapterin reductase reveals its binding mode to pterins and brain neurotransmitters.
  EMBO J, 16, 7219-7230.
PDB codes: 1nas 1oaa 1sep
  9008277 J.L.Doran, Y.Pang, K.E.Mdluli, A.J.Moran, T.C.Victor, R.W.Stokes, E.Mahenthiralingam, B.N.Kreiswirth, J.L.Butt, G.S.Baron, J.D.Treit, V.J.Kerr, P.D.Van Helden, M.C.Roberts, and F.E.Nano (1997).
Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family.
  Clin Diagn Lab Immunol, 4, 23-32.  
9162010 J.T.Belisle, V.D.Vissa, T.Sievert, K.Takayama, P.J.Brennan, and G.S.Besra (1997).
Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis.
  Science, 276, 1420-1422.  
8939741 A.Andersson, D.Jordan, G.Schneider, and Y.Lindqvist (1996).
Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor.
  Structure, 4, 1161-1170.
PDB code: 1ybv
8829336 C.E.Barry, and K.Mdluli (1996).
Drug sensitivity and environmental adaptation of mycobacterial cell wall components.
  Trends Microbiol, 4, 275-281.  
8695652 C.O.Rock, and J.E.Cronan (1996).
Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis.
  Biochim Biophys Acta, 1302, 1.  
  8913447 F.Bardou, A.Quémard, M.A.Dupont, C.Horn, G.Marchal, and M.Daffé (1996).
Effects of isoniazid on ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on production of secreted proteins.
  Antimicrob Agents Chemother, 40, 2459-2467.  
9022698 H.Bergler, S.Fuchsbichler, G.Högenauer, and F.Turnowsky (1996).
The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA.
  Eur J Biochem, 242, 689-694.  
8805534 M.Leesong, B.S.Henderson, J.R.Gillig, J.M.Schwab, and J.L.Smith (1996).
Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site.
  Structure, 4, 253-264.
PDB codes: 1mka 1mkb
8672472 N.Tanaka, T.Nonaka, T.Tanabe, T.Yoshimoto, D.Tsuru, and Y.Mitsui (1996).
Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
  Biochemistry, 35, 7715-7730.
PDB codes: 1ahh 1ahi 1fmc
  8807080 T.R.Garbe, N.S.Hibler, and V.Deretic (1996).
Isoniazid induces expression of the antigen 85 complex in Mycobacterium tuberculosis.
  Antimicrob Agents Chemother, 40, 1754-1756.  
9634820 V.Deretic, E.Pagán-Ramos, Y.Zhang, S.Dhandayuthapani, and L.E.Via (1996).
The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid.
  Nat Biotechnol, 14, 1557-1561.  
8994882 W.L.Duax, J.F.Griffin, and D.Ghosh (1996).
The fascinating complexities of steroid-binding enzymes.
  Curr Opin Struct Biol, 6, 813-823.  
8917570 Y.Zhang, S.Dhandayuthapani, and V.Deretic (1996).
Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid.
  Proc Natl Acad Sci U S A, 93, 13212-13216.  
  8585728 D.A.Rouse, Z.Li, G.H.Bai, and S.L.Morris (1995).
Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis.
  Antimicrob Agents Chemother, 39, 2472-2477.  
8535786 J.B.Rafferty, J.W.Simon, C.Baldock, P.J.Artymiuk, P.J.Baker, A.R.Stuitje, A.R.Slabas, and D.W.Rice (1995).
Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase.
  Structure, 3, 927-938.
PDB codes: 1eno 1enp
  8665467 J.M.Musser (1995).
Antimicrobial agent resistance in mycobacteria: molecular genetic insights.
  Clin Microbiol Rev, 8, 496-514.  
7637495 M.Ristow, M.Möhlig, M.Rifai, H.Schatz, K.Feldmann, and A.Pfeiffer (1995).
New isoniazid/ethionamide resistance gene mutation and screening for multidrug-resistant Mycobacterium tuberculosis strains.
  Lancet, 346, 502-503.  
8527834 R.C.Jackson (1995).
Update on computer-aided drug design.
  Curr Opin Biotechnol, 6, 646-651.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.