 |
PDBsum entry 1ej0
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase
|
 |
|
Title:
|
 |
Ftsj RNA methyltransferase complexed with s-adenosylmethionine, mercury derivative
|
|
Structure:
|
 |
Ftsj. Chain: a. Synonym: ftsj methyltransferase. Engineered: yes
|
|
Source:
|
 |
Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
|
|
Resolution:
|
 |
|
1.50Å
|
R-factor:
|
0.198
|
R-free:
|
0.232
|
|
|
Authors:
|
 |
H.Bugl,E.B.Fauman,B.L.Staker,F.Zheng,S.R.Kushner,M.A.Saper, J.C.A.Bardwell,U.Jakob
|
Key ref:
|
 |
H.Bügl
et al.
(2000).
RNA methylation under heat shock control.
Mol Cell,
6,
349-360.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
29-Feb-00
|
Release date:
|
30-Aug-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P0C0R7
(RLME_ECOLI) -
Ribosomal RNA large subunit methyltransferase E from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
209 a.a.
180 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.1.1.166
- 23S rRNA (uridine(2552)-2'-O)-methyltransferase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
uridine2552 in 23S rRNA + S-adenosyl-L-methionine = 2'-O- methyluridine2552 in 23S rRNA + S-adenosyl-L-homocysteine + H+
|
 |
 |
 |
 |
 |
uridine(2552) in 23S rRNA
Bound ligand (Het Group name = )
corresponds exactly
|
+
|
S-adenosyl-L-methionine
|
=
|
2'-O- methyluridine(2552) in 23S rRNA
|
+
|
S-adenosyl-L-homocysteine
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Mol Cell
6:349-360
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
RNA methylation under heat shock control.
|
|
H.Bügl,
E.B.Fauman,
B.L.Staker,
F.Zheng,
S.R.Kushner,
M.A.Saper,
J.C.Bardwell,
U.Jakob.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Structural, biochemical, and genetic techniques were applied to investigate the
function of FtsJ, a recently identified heat shock protein. FtsJ is well
conserved, from bacteria to humans. The 1.5 A crystal structure of FtsJ in
complex with its cofactor S-adenosylmethionine revealed that FtsJ has a
methyltransferase fold. The molecular surface of FtsJ exposes a putative nucleic
acid binding groove composed of highly conserved, positively charged residues.
Substrate analysis showed that FtsJ methylates 23S rRNA within 50S ribosomal
subunits in vitro and in vivo. Null mutations in ftsJ show a dramatically
altered ribosome profile, a severe growth disadvantage, and a
temperature-sensitive phenotype. Our results reveal an unexpected link between
the heat shock response and RNA metabolism.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. FtsJ Has a Methyltransferase FoldStereo diagram
of the FtsJ tertiary fold highlighting secondary structure
elements. Secondary structures were assigned and the figure was
rendered by RIBBONS ([8]). The bound AdoMet is shown in ball and
stick representation.
|
 |
Figure 3.
Figure 3. AdoMet Binding Interactions in FtsJ(A) Stereo
diagram of the AdoMet binding site in FtsJ. In light blue are
the 2σ contours of F[o]–F[c] difference map (1.7 Å
native data) omitting AdoMet from the calculated structure
factors. AdoMet and FtsJ contact residues are shown in ball and
stick representation. Green, carbon (FtsJ); gray, carbon
(AdoMet); blue, nitrogen; yellow, sulfur; red, oxygen. Figure
drawn with RIBBONS.(B) Schematic diagram showing hydrogen bonds
and nonpolar contacts between FtsJ and the AdoMet cofactor
(green bonds). Black, carbon; blue, nitrogen; yellow, sulfur;
red, oxygen; purple, nonpolar contacts. Figure drawn with
LIGPLOT ([42]).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2000,
6,
349-360)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.Liang,
and
H.Li
(2011).
Structures of ribonucleoprotein particle modification enzymes.
|
| |
Q Rev Biophys,
44,
95.
|
 |
|
|
|
|
 |
K.Potrykus,
H.Murphy,
N.Philippe,
and
M.Cashel
(2011).
ppGpp is the major source of growth rate control in E. coli.
|
| |
Environ Microbiol,
13,
563-575.
|
 |
|
|
|
|
 |
N.E.Arenas,
L.M.Salazar,
C.Y.Soto,
C.Vizcaíno,
M.E.Patarroyo,
M.A.Patarroyo,
and
A.Gómez
(2011).
Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: possible misannotation of this tubercle bacilli-hemolysin.
|
| |
BMC Struct Biol,
11,
16.
|
 |
|
|
|
|
 |
S.Casteret,
N.Moiré,
P.Aupinel,
J.N.Tasei,
and
Y.Bigot
(2011).
Profile of the mosaic element BTMR1 in the genome of the bumble bee Bombus terrestris (Hymenoptera: Apidae).
|
| |
Insect Mol Biol,
20,
153-164.
|
 |
|
|
|
|
 |
A.Rasouly,
C.Davidovich,
and
E.Z.Ron
(2010).
The heat shock protein YbeY is required for optimal activity of the 30S ribosomal subunit.
|
| |
J Bacteriol,
192,
4592-4596.
|
 |
|
|
|
|
 |
J.Hwang,
and
M.Inouye
(2010).
Interaction of an essential Escherichia coli GTPase, Der, with the 50S ribosome via the KH-like domain.
|
| |
J Bacteriol,
192,
2277-2283.
|
 |
|
|
|
|
 |
K.Richter,
M.Haslbeck,
and
J.Buchner
(2010).
The heat shock response: life on the verge of death.
|
| |
Mol Cell,
40,
253-266.
|
 |
|
|
|
|
 |
M.Schaefer,
T.Pollex,
K.Hanna,
F.Tuorto,
M.Meusburger,
M.Helm,
and
F.Lyko
(2010).
RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage.
|
| |
Genes Dev,
24,
1590-1595.
|
 |
|
|
|
|
 |
N.D.Maynard,
E.W.Birch,
J.C.Sanghvi,
L.Chen,
M.V.Gutschow,
and
M.W.Covert
(2010).
A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy.
|
| |
PLoS Genet,
6,
e1001017.
|
 |
|
|
|
|
 |
S.Welker,
B.Rudolph,
E.Frenzel,
F.Hagn,
G.Liebisch,
G.Schmitz,
J.Scheuring,
A.Kerth,
A.Blume,
S.Weinkauf,
M.Haslbeck,
H.Kessler,
and
J.Buchner
(2010).
Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function.
|
| |
Mol Cell,
39,
507-520.
|
 |
|
|
|
|
 |
A.M.Jansson,
E.Jakobsson,
P.Johansson,
V.Lantez,
B.Coutard,
X.de Lamballerie,
T.Unge,
and
T.A.Jones
(2009).
Structure of the methyltransferase domain from the Modoc virus, a flavivirus with no known vector.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
796-803.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Rasouly,
M.Schonbrun,
Y.Shenhar,
and
E.Z.Ron
(2009).
YbeY, a heat shock protein involved in translation in Escherichia coli.
|
| |
J Bacteriol,
191,
2649-2655.
|
 |
|
|
|
|
 |
E.Purta,
M.O'Connor,
J.M.Bujnicki,
and
S.Douthwaite
(2009).
YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA.
|
| |
Mol Microbiol,
72,
1147-1158.
|
 |
|
|
|
|
 |
L.M.Sharpe Elles,
M.T.Sykes,
J.R.Williamson,
and
O.C.Uhlenbeck
(2009).
A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit.
|
| |
Nucleic Acids Res,
37,
6503-6514.
|
 |
|
|
|
|
 |
B.Mittra,
J.R.Zamudio,
J.M.Bujnicki,
J.Stepinski,
E.Darzynkiewicz,
D.A.Campbell,
and
N.R.Sturm
(2008).
The TbMTr1 Spliced Leader RNA Cap 1 2 '-O-Ribose Methyltransferase from Trypanosoma brucei Acts with Substrate Specificity.
|
| |
J Biol Chem,
283,
3161-3172.
|
 |
|
|
|
|
 |
E.Decroly,
I.Imbert,
B.Coutard,
M.Bouvet,
B.Selisko,
K.Alvarez,
A.E.Gorbalenya,
E.J.Snijder,
and
B.Canard
(2008).
Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity.
|
| |
J Virol,
82,
8071-8084.
|
 |
|
|
|
|
 |
E.Guisbert,
T.Yura,
V.A.Rhodius,
and
C.A.Gross
(2008).
Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response.
|
| |
Microbiol Mol Biol Rev,
72,
545-554.
|
 |
|
|
|
|
 |
K.Takano,
E.Nakagawa,
K.Inoue,
F.Kamada,
S.Kure,
Y.Goto,
Y.Goto,
J.Inazawa,
M.Kato,
T.Kubota,
K.Kurosawa,
N.Matsumoto,
E.Nakagawa,
E.Nanba,
H.Okazawa,
S.Saitoh,
and
T.Wada
(2008).
A loss-of-function mutation in the FTSJ1 gene causes nonsyndromic X-linked mental retardation in a Japanese family.
|
| |
Am J Med Genet B Neuropsychiatr Genet,
147,
479-484.
|
 |
|
|
|
|
 |
L.Dai,
L.Xing,
P.Gong,
K.Zhang,
X.Gao,
Z.Zheng,
J.Zhou,
Y.Guo,
S.Guo,
and
F.Zhang
(2008).
Positive association of the FTSJ1 gene polymorphisms with nonsyndromic X-linked mental retardation in young Chinese male subjects.
|
| |
J Hum Genet,
53,
592-597.
|
 |
|
|
|
|
 |
L.Peil,
K.Virumäe,
and
J.Remme
(2008).
Ribosome assembly in Escherichia coli strains lacking the RNA helicase DeaD/CsdA or DbpA.
|
| |
FEBS J,
275,
3772-3782.
|
 |
|
|
|
|
 |
Mayuri,
T.W.Geders,
J.L.Smith,
and
R.J.Kuhn
(2008).
Role for conserved residues of sindbis virus nonstructural protein 2 methyltransferase-like domain in regulation of minus-strand synthesis and development of cytopathic infection.
|
| |
J Virol,
82,
7284-7297.
|
 |
|
|
|
|
 |
S.E.Galloway,
P.E.Richardson,
and
G.W.Wertz
(2008).
Analysis of a structural homology model of the 2'-O-ribose methyltransferase domain within the vesicular stomatitis virus L protein.
|
| |
Virology,
382,
69-82.
|
 |
|
|
|
|
 |
S.M.Toh,
L.Xiong,
T.Bae,
and
A.S.Mankin
(2008).
The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA.
|
| |
RNA,
14,
98.
|
 |
|
|
|
|
 |
A.Barkan,
L.Klipcan,
O.Ostersetzer,
T.Kawamura,
Y.Asakura,
and
K.P.Watkins
(2007).
The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.
|
| |
RNA,
13,
55-64.
|
 |
|
|
|
|
 |
C.S.Chow,
T.N.Lamichhane,
and
S.K.Mahto
(2007).
Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications.
|
| |
ACS Chem Biol,
2,
610-619.
|
 |
|
|
|
|
 |
E.Mastrangelo,
M.Bollati,
M.Milani,
B.Selisko,
F.Peyrane,
B.Canard,
G.Grard,
X.de Lamballerie,
and
M.Bolognesi
(2007).
Structural bases for substrate recognition and activity in Meaban virus nucleoside-2'-O-methyltransferase.
|
| |
Protein Sci,
16,
1133-1145.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Baxter-Roshek,
A.N.Petrov,
and
J.D.Dinman
(2007).
Optimization of ribosome structure and function by rRNA base modification.
|
| |
PLoS ONE,
2,
e174.
|
 |
|
|
|
|
 |
M.Jiang,
S.M.Sullivan,
A.K.Walker,
J.R.Strahler,
P.C.Andrews,
and
J.R.Maddock
(2007).
Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques.
|
| |
J Bacteriol,
189,
3434-3444.
|
 |
|
|
|
|
 |
P.P.Vaidyanathan,
M.P.Deutscher,
and
A.Malhotra
(2007).
RluD, a highly conserved pseudouridine synthase, modifies 50S subunits more specifically and efficiently than free 23S rRNA.
|
| |
RNA,
13,
1868-1876.
|
 |
|
|
|
|
 |
S.Klimasauskas,
and
E.Weinhold
(2007).
A new tool for biotechnology: AdoMet-dependent methyltransferases.
|
| |
Trends Biotechnol,
25,
99.
|
 |
|
|
|
|
 |
E.Purta,
F.van Vliet,
K.L.Tkaczuk,
S.Dunin-Horkawicz,
H.Mori,
L.Droogmans,
and
J.M.Bujnicki
(2006).
The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase.
|
| |
BMC Mol Biol,
7,
23.
|
 |
|
|
|
|
 |
G.Nonaka,
M.Blankschien,
C.Herman,
C.A.Gross,
and
V.A.Rhodius
(2006).
Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress.
|
| |
Genes Dev,
20,
1776-1789.
|
 |
|
|
|
|
 |
J.Hwang,
and
M.Inouye
(2006).
The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli.
|
| |
Mol Microbiol,
61,
1660-1672.
|
 |
|
|
|
|
 |
K.L.Tkaczuk,
A.Obarska,
and
J.M.Bujnicki
(2006).
Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis.
|
| |
BMC Evol Biol,
6,
6.
|
 |
|
|
|
|
 |
M.Jiang,
K.Datta,
A.Walker,
J.Strahler,
P.Bagamasbad,
P.C.Andrews,
and
J.R.Maddock
(2006).
The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly.
|
| |
J Bacteriol,
188,
6757-6770.
|
 |
|
|
|
|
 |
S.D.Gilbert,
R.K.Montange,
C.D.Stoddard,
and
R.T.Batey
(2006).
Structural studies of the purine and SAM binding riboswitches.
|
| |
Cold Spring Harb Symp Quant Biol,
71,
259-268.
|
 |
|
|
|
|
 |
C.E.Maus,
B.B.Plikaytis,
and
T.M.Shinnick
(2005).
Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis.
|
| |
Antimicrob Agents Chemother,
49,
571-577.
|
 |
|
|
|
|
 |
J.Li,
E.C.Fontaine-Rodriguez,
and
S.P.Whelan
(2005).
Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity.
|
| |
J Virol,
79,
13373-13384.
|
 |
|
|
|
|
 |
K.Datta,
J.L.Fuentes,
and
J.R.Maddock
(2005).
The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2.
|
| |
Mol Biol Cell,
16,
954-963.
|
 |
|
|
|
|
 |
O.V.Morozova,
L.P.Dubytska,
L.B.Ivanova,
C.X.Moreno,
A.V.Bryksin,
M.L.Sartakova,
E.Y.Dobrikova,
H.P.Godfrey,
and
F.C.Cabello
(2005).
Genetic and physiological characterization of 23S rRNA and ftsJ mutants of Borrelia burgdorferi isolated by mariner transposition.
|
| |
Gene,
357,
63-72.
|
 |
|
|
|
|
 |
P.Z.Kozbial,
and
A.R.Mushegian
(2005).
Natural history of S-adenosylmethionine-binding proteins.
|
| |
BMC Struct Biol,
5,
19.
|
 |
|
|
|
|
 |
R.Bhabhra,
and
D.S.Askew
(2005).
Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus.
|
| |
Med Mycol,
43,
S87-S93.
|
 |
|
|
|
|
 |
W.Sun,
X.Xu,
M.Pavlova,
A.M.Edwards,
A.Joachimiak,
A.Savchenko,
and
D.Christendat
(2005).
The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii.
|
| |
Protein Sci,
14,
3121-3128.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.G.Gao,
M.Yao,
Z.Yong,
and
I.Tanaka
(2005).
Crystal structure of the putative RNA methyltransferase PH1948 from Pyrococcus horikoshii, in complex with the copurified S-adenosyl-L-homocysteine.
|
| |
Proteins,
61,
1141-1145.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Armengaud,
J.Urbonavicius,
B.Fernandez,
G.Chaussinand,
J.M.Bujnicki,
and
H.Grosjean
(2004).
N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota.
|
| |
J Biol Chem,
279,
37142-37152.
|
 |
|
|
|
|
 |
J.Hager,
B.L.Staker,
and
U.Jakob
(2004).
Substrate binding analysis of the 23S rRNA methyltransferase RrmJ.
|
| |
J Bacteriol,
186,
6634-6642.
|
 |
|
|
|
|
 |
K.Freude,
K.Hoffmann,
L.R.Jensen,
M.B.Delatycki,
V.des Portes,
B.Moser,
B.Hamel,
H.van Bokhoven,
C.Moraine,
J.P.Fryns,
J.Chelly,
J.Gécz,
S.Lenzner,
V.M.Kalscheuer,
and
H.H.Ropers
(2004).
Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation.
|
| |
Am J Hum Genet,
75,
305-309.
|
 |
|
|
|
|
 |
P.Wout,
K.Pu,
S.M.Sullivan,
V.Reese,
S.Zhou,
B.Lin,
and
J.R.Maddock
(2004).
The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase.
|
| |
J Bacteriol,
186,
5249-5257.
|
 |
|
|
|
|
 |
R.Bhabhra,
M.D.Miley,
E.Mylonakis,
D.Boettner,
J.Fortwendel,
J.C.Panepinto,
M.Postow,
J.C.Rhodes,
and
D.S.Askew
(2004).
Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence.
|
| |
Infect Immun,
72,
4731-4740.
|
 |
|
|
|
|
 |
S.M.Ziesche,
A.D.Omer,
and
P.P.Dennis
(2004).
RNA-guided nucleotide modification of ribosomal and non-ribosomal RNAs in Archaea.
|
| |
Mol Microbiol,
54,
980-993.
|
 |
|
|
|
|
 |
A.R.Ferré-D'Amaré
(2003).
RNA-modifying enzymes.
|
| |
Curr Opin Struct Biol,
13,
49-55.
|
 |
|
|
|
|
 |
C.Bonnerot,
L.Pintard,
and
G.Lutfalla
(2003).
Functional redundancy of Spb1p and a snR52-dependent mechanism for the 2'-O-ribose methylation of a conserved rRNA position in yeast.
|
| |
Mol Cell,
12,
1309-1315.
|
 |
|
|
|
|
 |
J.W.Brown,
M.Echeverria,
and
L.H.Qu
(2003).
Plant snoRNAs: functional evolution and new modes of gene expression.
|
| |
Trends Plant Sci,
8,
42-49.
|
 |
|
|
|
|
 |
M.A.Kurowski,
J.M.Sasin,
M.Feder,
J.Debski,
and
J.M.Bujnicki
(2003).
Characterization of the cofactor-binding site in the SPOUT-fold methyltransferases by computational docking of S-adenosylmethionine to three crystal structures.
|
| |
BMC Bioinformatics,
4,
9.
|
 |
|
|
|
|
 |
P.G.Foster,
C.R.Nunes,
P.Greene,
D.Moustakas,
and
R.M.Stroud
(2003).
The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate.
|
| |
Structure,
11,
1609-1620.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Wu,
and
L.A.Guarino
(2003).
Autographa californica nucleopolyhedrovirus orf69 encodes an RNA cap (nucleoside-2'-O)-methyltransferase.
|
| |
J Virol,
77,
3430-3440.
|
 |
|
|
|
|
 |
F.Ferron,
S.Longhi,
B.Henrissat,
and
B.Canard
(2002).
Viral RNA-polymerases -- a predicted 2'-O-ribose methyltransferase domain shared by all Mononegavirales.
|
| |
Trends Biochem Sci,
27,
222-224.
|
 |
|
|
|
|
 |
G.D.Markham,
P.O.Norrby,
and
C.W.Bock
(2002).
S-adenosylmethionine conformations in solution and in protein complexes: conformational influences of the sulfonium group.
|
| |
Biochemistry,
41,
7636-7646.
|
 |
|
|
|
|
 |
G.Michel,
V.Sauvé,
R.Larocque,
Y.Li,
A.Matte,
and
M.Cygler
(2002).
The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot.
|
| |
Structure,
10,
1303-1315.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Hori,
T.Suzuki,
K.Sugawara,
Y.Inoue,
T.Shibata,
S.Kuramitsu,
S.Yokoyama,
T.Oshima,
and
K.Watanabe
(2002).
Identification and characterization of tRNA (Gm18) methyltransferase from Thermus thermophilus HB8: domain structure and conserved amino acid sequence motifs.
|
| |
Genes Cells,
7,
259-272.
|
 |
|
|
|
|
 |
J.Hager,
B.L.Staker,
H.Bugl,
and
U.Jakob
(2002).
Active site in RrmJ, a heat shock-induced methyltransferase.
|
| |
J Biol Chem,
277,
41978-41986.
|
 |
|
|
|
|
 |
J.M.Bujnicki,
and
L.Rychlewski
(2002).
RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited--bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure.
|
| |
BMC Bioinformatics,
3,
10.
|
 |
|
|
|
|
 |
J.Tan,
U.Jakob,
and
J.C.Bardwell
(2002).
Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase.
|
| |
J Bacteriol,
184,
2692-2698.
|
 |
|
|
|
|
 |
L.Pintard,
F.Lecointe,
J.M.Bujnicki,
C.Bonnerot,
H.Grosjean,
and
B.Lapeyre
(2002).
Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop.
|
| |
EMBO J,
21,
1811-1820.
|
 |
|
|
|
|
 |
L.Pintard,
J.M.Bujnicki,
B.Lapeyre,
and
C.Bonnerot
(2002).
MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase.
|
| |
EMBO J,
21,
1139-1147.
|
 |
|
|
|
|
 |
M.Liu,
and
S.Douthwaite
(2002).
Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Gram-positive bacteria.
|
| |
Mol Microbiol,
44,
195-204.
|
 |
|
|
|
|
 |
M.P.Egloff,
D.Benarroch,
B.Selisko,
J.L.Romette,
and
B.Canard
(2002).
An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization.
|
| |
EMBO J,
21,
2757-2768.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.V.Mawn,
M.J.Fournier,
D.A.Tirrell,
and
T.L.Mason
(2002).
Depletion of free 30S ribosomal subunits in Escherichia coli by expression of RNA containing Shine-Dalgarno-like sequences.
|
| |
J Bacteriol,
184,
494-502.
|
 |
|
|
|
|
 |
O.Nureki,
M.Shirouzu,
K.Hashimoto,
R.Ishitani,
T.Terada,
M.Tamakoshi,
T.Oshima,
M.Chijimatsu,
K.Takio,
D.G.Vassylyev,
T.Shibata,
Y.Inoue,
S.Kuramitsu,
and
S.Yokoyama
(2002).
An enzyme with a deep trefoil knot for the active-site architecture.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1129-1137.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Galardi,
A.Fatica,
A.Bachi,
A.Scaloni,
C.Presutti,
and
I.Bozzoni
(2002).
Purified box C/D snoRNPs are able to reproduce site-specific 2'-O-methylation of target RNA in vitro.
|
| |
Mol Cell Biol,
22,
6663-6668.
|
 |
|
|
|
|
 |
J.M.Bujnicki,
and
L.Rychlewski
(2001).
Reassignment of specificities of two cap methyltransferase domains in the reovirus lambda 2 protein.
|
| |
Genome Biol,
2,
RESEARCH0038.
|
 |
|
|
|
|
 |
J.M.Bujnicki,
M.Feder,
M.Radlinska,
and
L.Rychlewski
(2001).
mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships.
|
| |
BMC Bioinformatics,
2,
2.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Lövgren,
and
P.M.Wikström
(2001).
The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli.
|
| |
J Bacteriol,
183,
6957-6960.
|
 |
|
|
|
|
 |
J.Ofengand,
A.Malhotra,
J.Remme,
N.S.Gutgsell,
M.Del Campo,
S.Jean-Charles,
L.Peil,
and
Y.Kaya
(2001).
Pseudouridines and pseudouridine synthases of the ribosome.
|
| |
Cold Spring Harb Symp Quant Biol,
66,
147-159.
|
 |
|
|
|
|
 |
N.S.Gutgsell,
M.Del Campo,
S.Raychaudhuri,
and
J.Ofengand
(2001).
A second function for pseudouridine synthases: A point mutant of RluD unable to form pseudouridines 1911, 1915, and 1917 in Escherichia coli 23S ribosomal RNA restores normal growth to an RluD-minus strain.
|
| |
RNA,
7,
990-998.
|
 |
|
|
|
|
 |
P.Auffinger,
and
E.Westhof
(2001).
Hydrophobic Groups Stabilize the Hydration Shell of 2'-O-Methylated RNA Duplexes.
|
| |
Angew Chem Int Ed Engl,
40,
4648-4650.
|
 |
|
|
|
|
 |
S.C.Blanchard,
and
J.D.Puglisi
(2001).
Solution structure of the A loop of 23S ribosomal RNA.
|
| |
Proc Natl Acad Sci U S A,
98,
3720-3725.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Cheng,
and
R.J.Roberts
(2001).
AdoMet-dependent methylation, DNA methyltransferases and base flipping.
|
| |
Nucleic Acids Res,
29,
3784-3795.
|
 |
|
|
|
|
 |
M.M.Skinner,
J.M.Puvathingal,
R.L.Walter,
and
A.M.Friedman
(2000).
Crystal structure of protein isoaspartyl methyltransferase: a catalyst for protein repair.
|
| |
Structure,
8,
1189-1201.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |