spacer
spacer

PDBsum entry 1e8b

Go to PDB code: 
protein ligands links
Cell adhesion PDB id
1e8b

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
160 a.a. *
Ligands
NAG
* Residue conservation analysis
PDB id:
1e8b
Name: Cell adhesion
Title: Solution structure of 6f11f22f2, a compact three-module fragment of the gelatin-binding domain of human fibronectin
Structure: Fibronectin. Chain: a. Fragment: 6f11f22f2, residues 305-464. Synonym: fn, cold-insoluble globulin, cig,. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Cellular_location: extracellular. Expressed in: pichia pastoris. Expression_system_taxid: 4922.
NMR struc: 1 models
Authors: A.R.Pickford,S.P.Smith,D.Staunton,J.Boyd,I.D.Campbell
Key ref:
A.R.Pickford et al. (2001). The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. EMBO J, 20, 1519-1529. PubMed id: 11285216 DOI: 10.1093/emboj/20.7.1519
Date:
18-Sep-00     Release date:   15-Oct-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02751  (FINC_HUMAN) -  Fibronectin from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
2477 a.a.
160 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1093/emboj/20.7.1519 EMBO J 20:1519-1529 (2001)
PubMed id: 11285216  
 
 
The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding.
A.R.Pickford, S.P.Smith, D.Staunton, J.Boyd, I.D.Campbell.
 
  ABSTRACT  
 
The solution structure of the (6)F1(1)F2(2)F2 fragment from the gelatin-binding region of fibronectin has been determined (Protein Data Bank entry codes 1e88 and 1e8b). The structure reveals an extensive hydrophobic interface between the non-contiguous (6)F1 and (2)F2 modules. The buried surface area between (6)F1 and (2)F2 ( approximately 870 A(2)) is the largest intermodule interface seen in fibronectin to date. The dissection of (6)F1(1)F2(2)F2 into the (6)F1(1)F2 pair and (2)F2 results in near-complete loss of gelatin-binding activity. The hairpin topology of (6)F1(1)F2(2)F2 may facilitate intramolecular contact between the matrix assembly regions flanking the gelatin-binding domain. This is the first high-resolution study to reveal a compact, globular arrangement of modules in fibronectin. This arrangement is not consistent with the view that fibronectin is simply a linear 'string of beads'.
 
  Selected figure(s)  
 
Figure 5.
Figure 5 Module reorganization upon dissection of 6F1^1F2^2F2. Ribbon diagrams of the minimized average structures of (A) 6F1^1F2^2F2 and (B) 6F1^1F2. The colour scheme for the secondary structure elements is as in Figure 3A -C. Side chains for which 6F1 -2F2 intermodule NOEs were observed (V10, Y12, S13, M16, L19 and L28 of 6F1, and L103, Q105, S111, N112, A114, L115, T145 and K153 for 2F2) are shown in cyan for 6F1 and purple for 2F2. Removal of the 2F2 module allows the side chain of Y68 (pink) in 1F2 to interact with L19 and L28 in 6F1.
Figure 6.
Figure 6 Global topologies of multimodule fibronectin fragments. Solvent-accessible surfaces have been superimposed over ribbon diagrams for the minimized average structure of 6F1^1F2^2F2, and the crystal structures of 7F3^8F3^9F3^10F3 (Leahy et al., 1996) and 12F3^13F3^14F3 (Sharma et al., 1999). The fragment structures are mapped onto the mosaic illustration of fibronectin, which has been folded to account for the hairpin structure of 6F1^1F2^2F2.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2001, 20, 1519-1529) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20695902 B.Henderson, S.Nair, J.Pallas, and M.A.Williams (2011).
Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins.
  FEMS Microbiol Rev, 35, 147-200.  
21371477 R.V.Basaiawmoit, C.L.Oliveira, K.Runager, C.S.Sørensen, M.A.Behrens, B.H.Jonsson, T.Kristensen, G.K.Klintworth, J.J.Enghild, J.S.Pedersen, and D.E.Otzen (2011).
SAXS models of TGFBIp reveal a trimeric structure and show that the overall shape is not affected by the Arg124His mutation.
  J Mol Biol, 408, 503-513.  
20843804 K.E.Atkin, A.S.Brentnall, G.Harris, R.J.Bingham, M.C.Erat, C.J.Millard, U.Schwarz-Linek, D.Staunton, I.Vakonakis, I.D.Campbell, and J.R.Potts (2010).
The streptococcal binding site in the gelatin-binding domain of fibronectin is consistent with a non-linear arrangement of modules.
  J Biol Chem, 285, 36977-36983.  
20947497 L.M.Maurer, B.R.Tomasini-Johansson, W.Ma, D.S.Annis, N.L.Eickstaedt, M.G.Ensenberger, K.A.Satyshur, and D.F.Mosher (2010).
Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes.
  J Biol Chem, 285, 41087-41099.  
20739283 M.C.Erat, U.Schwarz-Linek, A.R.Pickford, R.W.Farndale, I.D.Campbell, and I.Vakonakis (2010).
Implications for collagen binding from the crystallographic structure of fibronectin 6FnI1-2FnII7FnI.
  J Biol Chem, 285, 33764-33770.
PDB code: 3mql
20541508 M.Graille, M.Pagano, T.Rose, M.R.Ravaux, and H.van Tilbeurgh (2010).
Zinc induces structural reorganization of gelatin binding domain from human fibronectin and affects collagen binding.
  Structure, 18, 710-718.
PDB code: 3m7p
20541501 R.J.Bingham, and J.R.Potts (2010).
Fibronectin structure: a new piece of the puzzle emerges.
  Structure, 18, 660-661.  
19909400 S.Pal, Z.Chen, X.Xu, M.Mikhailova, and B.Steffensen (2010).
Co-purified gelatinases alter the stability and biological activities of human plasma fibronectin preparations.
  J Periodontal Res, 45, 292-295.  
20180650 V.Stoka, and V.Turk (2010).
A structural network associated with the kallikrein-kinin and renin-angiotensin systems.
  Biol Chem, 391, 443-454.  
19366708 I.Vakonakis, D.Staunton, I.R.Ellis, P.Sarkies, A.Flanagan, A.M.Schor, S.L.Schor, and I.D.Campbell (2009).
Motogenic sites in human fibronectin are masked by long range interactions.
  J Biol Chem, 284, 15668-15675.  
19037100 L.Sabatier, D.Chen, C.Fagotto-Kaufmann, D.Hubmacher, M.D.McKee, D.S.Annis, D.F.Mosher, and D.P.Reinhardt (2009).
Fibrillin assembly requires fibronectin.
  Mol Biol Cell, 20, 846-858.  
19251642 M.C.Erat, D.A.Slatter, E.D.Lowe, C.J.Millard, R.W.Farndale, I.D.Campbell, and I.Vakonakis (2009).
Identification and structural analysis of type I collagen sites in complex with fibronectin fragments.
  Proc Natl Acad Sci U S A, 106, 4195-4200.
PDB code: 3ejh
17307731 C.D.Blundell, D.J.Mahoney, M.R.Cordell, A.Almond, J.D.Kahmann, A.Perczel, J.D.Taylor, I.D.Campbell, and A.J.Day (2007).
Determining the molecular basis for the pH-dependent interaction between the link module of human TSG-6 and hyaluronan.
  J Biol Chem, 282, 12976-12988.  
17218263 K.L.Wegener, A.W.Partridge, J.Han, A.R.Pickford, R.C.Liddington, M.H.Ginsberg, and I.D.Campbell (2007).
Structural basis of integrin activation by talin.
  Cell, 128, 171-182.
PDB codes: 2h7d 2h7e
17690686 Y.Lad, T.Kiema, P.Jiang, O.T.Pentikäinen, C.H.Coles, I.D.Campbell, D.A.Calderwood, and J.Ylänne (2007).
Structure of three tandem filamin domains reveals auto-inhibition of ligand binding.
  EMBO J, 26, 3993-4004.
PDB code: 2j3s
16331677 I.Biunno, M.Cattaneo, R.Orlandi, C.Canton, L.Biagiotti, S.Ferrero, M.Barberis, S.M.Pupa, A.Scarpa, and S.Ménard (2006).
SEL1L a multifaceted protein playing a role in tumor progression.
  J Cell Physiol, 208, 23-38.  
15972109 E.T.Ifon, A.L.Pang, W.Johnson, K.Cashman, S.Zimmerman, S.Muralidhar, W.Y.Chan, J.Casey, and L.J.Rosenthal (2005).
U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3.
  Cancer Cell Int, 5, 19.  
15317806 M.L.Gehrmann, J.T.Douglas, L.Bányai, H.Tordai, L.Patthy, and M.Llinás (2004).
Modular autonomy, ligand specificity, and functional cooperativity of the three in-tandem fibronectin type II repeats from human matrix metalloproteinase 2.
  J Biol Chem, 279, 46921-46929.  
14734808 P.Lukacik, P.Roversi, J.White, D.Esser, G.P.Smith, J.Billington, P.A.Williams, P.M.Rudd, M.R.Wormald, D.J.Harvey, M.D.Crispin, C.M.Radcliffe, R.A.Dwek, D.J.Evans, B.P.Morgan, R.A.Smith, and S.M.Lea (2004).
Complement regulation at the molecular level: the structure of decay-accelerating factor.
  Proc Natl Acad Sci U S A, 101, 1279-1284.
PDB codes: 1ojv 1ojw 1ojy 1ok1 1ok2 1ok3 1ok9
14992719 P.Teriete, S.Banerji, M.Noble, C.D.Blundell, A.J.Wright, A.R.Pickford, E.Lowe, D.J.Mahoney, M.I.Tammi, J.D.Kahmann, I.D.Campbell, A.J.Day, and D.G.Jackson (2004).
Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44.
  Mol Cell, 13, 483-496.
PDB codes: 1poz 1uuh
12972412 C.D.Blundell, D.J.Mahoney, A.Almond, P.L.DeAngelis, J.D.Kahmann, P.Teriete, A.R.Pickford, I.D.Campbell, and A.J.Day (2003).
The link module from ovulation- and inflammation-associated protein TSG-6 changes conformation on hyaluronan binding.
  J Biol Chem, 278, 49261-49270.
PDB codes: 1o7b 1o7c
12972549 D.Wienke, J.R.MacFadyen, and C.M.Isacke (2003).
Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor.
  Mol Biol Cell, 14, 3592-3604.  
12566443 L.Becker, B.A.Webb, S.Chitayat, M.E.Nesheim, and M.L.Koschinsky (2003).
A ligand-induced conformational change in apolipoprotein(a) enhances covalent Lp(a) formation.
  J Biol Chem, 278, 14074-14081.  
12736686 U.Schwarz-Linek, J.M.Werner, A.R.Pickford, S.Gurusiddappa, J.H.Kim, E.S.Pilka, J.A.Briggs, T.S.Gough, M.Höök, I.D.Campbell, and J.R.Potts (2003).
Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper.
  Nature, 423, 177-181.
PDB code: 1o9a
12538576 Y.Katagiri, S.A.Brew, and K.C.Ingham (2003).
All six modules of the gelatin-binding domain of fibronectin are required for full affinity.
  J Biol Chem, 278, 11897-11902.  
11928808 M.Gehrmann, K.Briknarová, L.Bányai, L.Patthy, and M.Llinás (2002).
The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding kringle domains.
  Biol Chem, 383, 137-148.
PDB code: 1ks0
12501157 R.L.Rich, and D.G.Myszka (2002).
Survey of the year 2001 commercial optical biosensor literature.
  J Mol Recognit, 15, 352-376.  
12377765 Sachchidanand, O.Lequin, D.Staunton, B.Mulloy, M.J.Forster, K.Yoshida, and I.D.Campbell (2002).
Mapping the heparin-binding site on the 13-14F3 fragment of fibronectin.
  J Biol Chem, 277, 50629-50635.  
11574466 E.Liepinsh, M.Trexler, A.Kaikkonen, J.Weigelt, L.Bányai, L.Patthy, and G.Otting (2001).
NMR structure of the LCCL domain and implications for DFNA9 deafness disorder.
  EMBO J, 20, 5347-5353.
PDB code: 1jbi
11574465 M.Kvansakul, M.Hopf, A.Ries, R.Timpl, and E.Hohenester (2001).
Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan.
  EMBO J, 20, 5342-5346.
PDB code: 1gl4
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer