spacer
spacer

PDBsum entry 1e5d

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
1e5d

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
401 a.a. *
Ligands
FMN ×2
FEO-OXY ×2
Waters ×170
* Residue conservation analysis
PDB id:
1e5d
Name: Oxidoreductase
Title: Rubredoxin oxygen:oxidoreductase (roo) from anaerobe desulfovibrio gigas
Structure: Rubredoxin\:oxygen oxidoreductase. Chain: a, b
Source: Desulfovibrio gigas. Organism_taxid: 879
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
2.50Å     R-factor:   0.179     R-free:   0.248
Authors: C.Frazao,G.Silva,C.M.Gomes,P.Matias,R.Coelho,L.Sieker,S.Macedo, M.Y.Liu,S.Oliveira,M.Teixeira,A.V.Xavier,C.Rodrigues-Pousada, M.A.Carrondo,J.Le Gall
Key ref:
C.Frazão et al. (2000). Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol, 7, 1041-1045. PubMed id: 11062560 DOI: 10.1038/80961
Date:
24-Jul-00     Release date:   17-Nov-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9F0J6  (ROO_MEGG1) -  Rubredoxin-oxygen oxidoreductase from Megalodesulfovibrio gigas (strain ATCC 19364 / DSM 1382 / NCIMB 9332 / VKM B-1759)
Seq:
Struc:
402 a.a.
401 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.-.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/80961 Nat Struct Biol 7:1041-1045 (2000)
PubMed id: 11062560  
 
 
Structure of a dioxygen reduction enzyme from Desulfovibrio gigas.
C.Frazão, G.Silva, C.M.Gomes, P.Matias, R.Coelho, L.Sieker, S.Macedo, M.Y.Liu, S.Oliveira, M.Teixeira, A.V.Xavier, C.Rodrigues-Pousada, M.A.Carrondo, J.Le Gall.
 
  ABSTRACT  
 
Desulfovibrio gigas is a strict anaerobe that contains a well-characterized metabolic pathway that enables it to survive transient contacts with oxygen. The terminal enzyme in this pathway, rubredoxin:oxygen oxidoreductase (ROO) reduces oxygen to water in a direct and safe way. The 2.5 A resolution crystal structure of ROO shows that each monomer of this homodimeric enzyme consists of a novel combination of two domains, a flavodoxin-like domain and a Zn-beta-lactamase-like domain that contains a di-iron center for dioxygen reduction. This is the first structure of a member of a superfamily of enzymes widespread in strict and facultative anaerobes, indicating its broad physiological significance.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. ROO is a modular enzyme. a, The ROO dimer (monomers in blue and brown), showing the -lactamase-like (light) and flavodoxin-like (dark) domains, iron (orange spheres) and FMN (stick model). A two-fold axis relates both monomers. b, The -lactamase-like domain. Left, a ribbon diagram with termini labeled. Right, stereo view of the -lactamase-like domain (blue) superimposed on -lactamases from Stenotrophomonas maltophilia^11 (green), Bacillus cereus12 (deep pink) and Bacteroides fragilis13 (gold). Additional ROO structural elements in the region corresponding to the substrate groove of -lactamases are indicated in dark blue. c, The flavodoxin-like domain. Left, ribbon diagram. Right, stereo view of the flavodoxin-like domain (blue) superimposed on Desulfovibrio vulgaris 32 (brown) and Clostridium beijerinckii17 (violet) flavodoxins.
Figure 3.
Figure 3. 3 ROO catalytic site. a, Distances (Å) are given for contacts to the pentacoordinated (quadrangular pyramid) Fe 1 and tetracoordinated (quadrangular plane) Fe 2 coordinations (green), and for other close contacts (cyan). The oxygen molecule (OXY) and water (WAT 1) are close to Fe 2, but outside the typical bonding distances. Similar to other di-iron proteins14, 15, this site contains a bridging -O (or -OH; MUO) at hydrogen bonding distance from the Asp 83 OD1. The electron density was contoured at 1 (blue) and 7 (red). b, ROO dimerization (monomers in blue and brown) couples the two monomer cofactors. The spatial orientations of the side chains of His 79, Glu 81, and His 226 are stabilized through hydrogen bonds to the side chains of Asp 149 and Trp 263 and to the carbonyl O of Tyr 34, respectively. Intradimer contacts involve Trp 147, Pro 148 and Asp 149 as well as the aromatic ring of Trp 347.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2000, 7, 1041-1045) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21071492 M.L.Wu, S.de Vries, T.A.van Alen, M.K.Butler, H.J.Op den Camp, J.T.Keltjens, M.S.Jetten, and M.Strous (2011).
Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'.
  Microbiology, 157, 890-898.  
21265776 V.L.Gonçalves, L.M.Saraiva, and M.Teixeira (2011).
Gene expression study of the flavodi-iron proteins from the cyanobacterium Synechocystis sp. PCC6803.
  Biochem Soc Trans, 39, 216-218.  
20669241 A.L.Stamp, P.Owen, K.E.Omari, C.E.Nichols, M.Lockyer, H.K.Lamb, I.G.Charles, A.R.Hawkins, and D.K.Stammers (2010).
Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase.
  Protein Sci, 19, 1897-1905.
PDB code: 2xf4
20385411 V.A.Campos-Bermudez, J.Morán-Barrio, A.J.Costa-Filho, and A.J.Vila (2010).
Metal-dependent inhibition of glyoxalase II: a possible mechanism to regulate the enzyme activity.
  J Inorg Biochem, 104, 726-731.  
19337761 B.L.Victor, A.M.Baptista, and C.M.Soares (2009).
Dioxygen and nitric oxide pathways and affinity to the catalytic site of rubredoxin:oxygen oxidoreductase from Desulfovibrio gigas.
  J Biol Inorg Chem, 14, 853-862.  
19578872 C.Hackenberg, A.Engelhardt, H.C.Matthijs, F.Wittink, H.Bauwe, A.Kaplan, and M.Hagemann (2009).
Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803.
  Planta, 230, 625-637.  
19084524 F.Hillmann, O.Riebe, R.J.Fischer, A.Mot, J.D.Caranto, D.M.Kurtz, and H.Bahl (2009).
Reductive dioxygen scavenging by flavo-diiron proteins of Clostridium acetobutylicum.
  FEBS Lett, 583, 241-245.  
18782082 P.Limphong, M.W.Crowder, B.Bennett, and C.A.Makaroff (2009).
Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2.
  Biochem J, 417, 323-330.  
19390625 P.Zhang, Y.Allahverdiyeva, M.Eisenhut, and E.M.Aro (2009).
Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803.
  PLoS ONE, 4, e5331.  
19011120 T.Smutná, V.L.Gonçalves, L.M.Saraiva, J.Tachezy, M.Teixeira, and I.Hrdy (2009).
Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase.
  Eukaryot Cell, 8, 47-55.  
18077462 A.Di Matteo, F.M.Scandurra, F.Testa, E.Forte, P.Sarti, M.Brunori, and A.Giuffrè (2008).
The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis.
  J Biol Chem, 283, 4061-4068.
PDB code: 2q9u
18767153 A.Yamamura, J.Ohtsuka, K.Kubota, Y.Agari, A.Ebihara, N.Nakagawa, K.Nagata, and M.Tanokura (2008).
Crystal structure of TTHA1429, a novel metallo-beta-lactamase superfamily protein from Thermus thermophilus HB8.
  Proteins, 73, 1053-1057.
PDB code: 2zo4
18397308 C.Le Fourn, M.L.Fardeau, B.Ollivier, E.Lojou, and A.Dolla (2008).
The hyperthermophilic anaerobe Thermotoga Maritima is able to cope with limited amount of oxygen: insights into its defence strategies.
  Environ Microbiol, 10, 1877-1887.  
18656261 M.M.Holdorf, B.Bennett, M.W.Crowder, and C.A.Makaroff (2008).
Spectroscopic studies on Arabidopsis ETHE1, a glyoxalase II-like protein.
  J Inorg Biochem, 102, 1825-1830.  
18786405 M.V.Petoukhov, J.B.Vicente, P.B.Crowley, M.A.Carrondo, M.Teixeira, and D.I.Svergun (2008).
Quaternary structure of flavorubredoxin as revealed by synchrotron radiation small-angle X-ray scattering.
  Structure, 16, 1428-1436.  
17335583 C.H.Tung, J.W.Huang, and J.M.Yang (2007).
Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database.
  Genome Biol, 8, R31.  
17636129 G.Hagelueken, L.Wiehlmann, T.M.Adams, H.Kolmar, D.W.Heinz, B.Tümmler, and W.D.Schubert (2007).
Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa.
  Proc Natl Acad Sci U S A, 104, 12276-12281.
PDB codes: 2v3a 2v3b
17480207 H.Seedorf, C.H.Hagemeier, S.Shima, R.K.Thauer, E.Warkentin, and U.Ermler (2007).
Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O.
  FEBS J, 274, 1588-1599.
PDB codes: 2ohh 2ohi 2ohj
17181540 J.B.Vicente, F.M.Scandurra, J.V.Rodrigues, M.Brunori, P.Sarti, M.Teixeira, and A.Giuffrè (2007).
Kinetics of electron transfer from NADH to the Escherichia coli nitric oxide reductase flavorubredoxin.
  FEBS J, 274, 677-686.  
17630305 K.S.Bender, H.C.Yen, C.L.Hemme, Z.Yang, Z.He, Q.He, J.Zhou, K.H.Huang, E.J.Alm, T.C.Hazen, A.P.Arkin, and J.D.Wall (2007).
Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough.
  Appl Environ Microbiol, 73, 5389-5400.  
17318598 M.A.Carrondo, I.Bento, P.M.Matias, and P.F.Lindley (2007).
Crystallographic evidence for dioxygen interactions with iron proteins.
  J Biol Inorg Chem, 12, 429-442.  
17712822 Y.Okamoto, J.Wang, J.Morishita, and N.Ueda (2007).
Biosynthetic pathways of the endocannabinoid anandamide.
  Chem Biodivers, 4, 1842-1857.  
16684886 G.Hagelueken, T.M.Adams, L.Wiehlmann, U.Widow, H.Kolmar, B.Tümmler, D.W.Heinz, and W.D.Schubert (2006).
The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases.
  Proc Natl Acad Sci U S A, 103, 7631-7636.
PDB codes: 2cfu 2cfz 2cg2 2cg3
16923892 J.D.Wildschut, R.M.Lang, J.K.Voordouw, and G.Voordouw (2006).
Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris hildenborough under microaerophilic conditions.
  J Bacteriol, 188, 6253-6260.  
17088542 J.E.Guy, I.A.Abreu, M.Moche, Y.Lindqvist, E.Whittle, and J.Shanklin (2006).
A single mutation in the castor Delta9-18:0-desaturase changes reaction partitioning from desaturation to oxidase chemistry.
  Proc Natl Acad Sci U S A, 103, 17220-17224.
PDB code: 2j2f
16527816 J.Wang, Y.Okamoto, J.Morishita, K.Tsuboi, A.Miyatake, and N.Ueda (2006).
Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-beta-lactamase family.
  J Biol Chem, 281, 12325-12335.  
16550467 P.Machado, R.Félix, R.Rodrigues, S.Oliveira, and C.Rodrigues-Pousada (2006).
Characterization and expression analysis of the cytochrome bd oxidase operon from Desulfovibrio gigas.
  Curr Microbiol, 52, 274-281.  
16552139 R.Agarwal, J.B.Bonanno, S.K.Burley, and S.Swaminathan (2006).
Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal.
  Acta Crystallogr D Biol Crystallogr, 62, 383-391.
PDB codes: 1rtt 1x77
16585735 R.Rodrigues, J.B.Vicente, R.Félix, S.Oliveira, M.Teixeira, and C.Rodrigues-Pousada (2006).
Desulfovibrio gigas flavodiiron protein affords protection against nitrosative stress in vivo.
  J Bacteriol, 188, 2745-2751.  
16336119 A.Vogel, O.Schilling, B.Späth, and A.Marchfelder (2005).
The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties.
  Biol Chem, 386, 1253-1264.  
16087890 D.Liu, B.W.Lepore, G.A.Petsko, P.W.Thomas, E.M.Stone, W.Fast, and D.Ringe (2005).
Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis.
  Proc Natl Acad Sci U S A, 102, 11882-11887.
PDB code: 2a7m
15980349 G.Garau, A.M.Di Guilmi, and B.G.Hall (2005).
Structure-based phylogeny of the metallo-beta-lactamases.
  Antimicrob Agents Chemother, 49, 2778-2784.  
15908436 G.Garau, D.Lemaire, T.Vernet, O.Dideberg, and A.M.Di Guilmi (2005).
Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein e from streptococcus pneumoniae: new structural features among the metallo-beta-lactamase superfamily.
  J Biol Chem, 280, 28591-28600.
PDB codes: 1wra 2v05
16227621 G.P.Marasinghe, I.M.Sander, B.Bennett, G.Periyannan, K.W.Yang, C.A.Makaroff, and M.W.Crowder (2005).
Structural studies on a mitochondrial glyoxalase II.
  J Biol Chem, 280, 40668-40675.
PDB code: 1xm8
15654328 I.L.de la Sierra-Gallay, O.Pellegrini, and C.Condon (2005).
Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z.
  Nature, 433, 657-661.
PDB code: 1y44
15895092 J.A.Hermoso, L.Lagartera, A.González, M.Stelter, P.García, M.Martínez-Ripoll, J.L.García, and M.Menéndez (2005).
Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce.
  Nat Struct Mol Biol, 12, 533-538.
PDB code: 2bib
16100392 J.B.Vicente, and M.Teixeira (2005).
Redox and spectroscopic properties of the Escherichia coli nitric oxide-detoxifying system involving flavorubredoxin and its NADH-oxidizing redox partner.
  J Biol Chem, 280, 34599-34608.  
16322580 J.Gorman, and L.Shapiro (2005).
Crystal structures of the tryptophan repressor binding protein WrbA and complexes with flavin mononucleotide.
  Protein Sci, 14, 3004-3012.
PDB codes: 1ydg 1yrh 1zwk 1zwl
16260756 L.Lagartera, A.González, J.A.Hermoso, J.L.Saíz, P.García, J.L.García, and M.Menéndez (2005).
Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis.
  Protein Sci, 14, 3013-3024.  
15699034 O.Schilling, B.Späth, B.Kostelecky, A.Marchfelder, W.Meyer-Klaucke, and A.Vogel (2005).
Exosite modules guide substrate recognition in the ZiPD/ElaC protein family.
  J Biol Chem, 280, 17857-17862.  
15901710 S.L.Andrade, F.Cruz, C.L.Drennan, V.Ramakrishnan, D.C.Rees, J.G.Ferry, and O.Einsle (2005).
Structures of the iron-sulfur flavoproteins from Methanosarcina thermophila and Archaeoglobus fulgidus.
  J Bacteriol, 187, 3848-3854.  
16336124 S.S.Leal, and C.M.Gomes (2005).
Linear three-iron centres are unlikely cluster degradation intermediates during unfolding of iron-sulfur proteins.
  Biol Chem, 386, 1295-1300.  
15535866 D.A.Rodionov, I.Dubchak, A.Arkin, E.Alm, and M.S.Gelfand (2004).
Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria.
  Genome Biol, 5, R90.  
15184374 D.Liger, M.Graille, C.Z.Zhou, N.Leulliot, S.Quevillon-Cheruel, K.Blondeau, J.Janin, and H.van Tilbeurgh (2004).
Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities.
  J Biol Chem, 279, 34890-34897.
PDB code: 1t0i
15215079 G.Garau, I.García-Sáez, C.Bebrone, C.Anne, P.Mercuri, M.Galleni, J.M.Frère, and O.Dideberg (2004).
Update of the standard numbering scheme for class B beta-lactamases.
  Antimicrob Agents Chemother, 48, 2347-2349.  
14705030 I.Bento, P.M.Matias, A.M.Baptista, P.N.da Costa, W.M.van Dongen, L.M.Saraiva, T.R.Schneider, C.M.Soares, and M.A.Carrondo (2004).
Molecular basis for redox-Bohr and cooperative effects in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774: crystallographic and modeling studies of oxidized and reduced high-resolution structures at pH 7.6.
  Proteins, 54, 135-152.
PDB codes: 1up9 1upd
15466556 M.A.Pysz, S.B.Conners, C.I.Montero, K.R.Shockley, M.R.Johnson, D.E.Ward, and R.M.Kelly (2004).
Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima.
  Appl Environ Microbiol, 70, 6098-6112.  
14634025 Y.Okamoto, J.Morishita, K.Tsuboi, T.Tonai, and N.Ueda (2004).
Molecular characterization of a phospholipase D generating anandamide and its congeners.
  J Biol Chem, 279, 5298-5305.  
12529359 A.M.Gardner, C.R.Gessner, and P.R.Gardner (2003).
Regulation of the nitric oxide reduction operon (norRVW) in Escherichia coli. Role of NorR and sigma54 in the nitric oxide stress response.
  J Biol Chem, 278, 10081-10086.  
12727864 M.A.Carrondo (2003).
Ferritins, iron uptake and storage from the bacterioferritin viewpoint.
  EMBO J, 22, 1959-1968.  
12486042 M.Fournier, Y.Zhang, J.D.Wildschut, A.Dolla, J.K.Voordouw, D.C.Schriemer, and G.Voordouw (2003).
Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough.
  J Bacteriol, 185, 71-79.  
14529289 O.Schilling, N.Wenzel, M.Naylor, A.Vogel, M.Crowder, C.Makaroff, and W.Meyer-Klaucke (2003).
Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo.
  Biochemistry, 42, 11777-11786.  
12586421 P.N.da Costa, M.Teixeira, and L.M.Saraiva (2003).
Regulation of the flavorubredoxin nitric oxide reductase gene in Escherichia coli: nitrate repression, nitrite induction, and possible post-transcription control.
  FEMS Microbiol Lett, 218, 385-393.  
12824499 R.M.Rasia, M.Ceolín, and A.J.Vila (2003).
Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity.
  Protein Sci, 12, 1538-1546.  
12029081 A.Vogel, O.Schilling, M.Niecke, J.Bettmer, and W.Meyer-Klaucke (2002).
ElaC encodes a novel binuclear zinc phosphodiesterase.
  J Biol Chem, 277, 29078-29085.  
12101220 C.M.Gomes, A.Giuffrè, E.Forte, J.B.Vicente, L.M.Saraiva, M.Brunori, and M.Teixeira (2002).
A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin.
  J Biol Chem, 277, 25273-25276.  
11847294 C.M.Gomes, C.Frazão, A.V.Xavier, J.Legall, and M.Teixeira (2002).
Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.
  Protein Sci, 11, 707-712.  
12093901 J.A.Eisen, K.E.Nelson, I.T.Paulsen, J.F.Heidelberg, M.Wu, R.J.Dodson, R.Deboy, M.L.Gwinn, W.C.Nelson, D.H.Haft, E.K.Hickey, J.D.Peterson, A.S.Durkin, J.L.Kolonay, F.Yang, I.Holt, L.A.Umayam, T.Mason, M.Brenner, T.P.Shea, D.Parksey, W.C.Nierman, T.V.Feldblyum, C.L.Hansen, M.B.Craven, D.Radune, J.Vamathevan, H.Khouri, O.White, T.M.Gruber, K.A.Ketchum, J.C.Venter, H.Tettelin, D.A.Bryant, and C.M.Fraser (2002).
The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium.
  Proc Natl Acad Sci U S A, 99, 9509-9514.  
12039004 M.J.Ryle, and R.P.Hausinger (2002).
Non-heme iron oxygenases.
  Curr Opin Chem Biol, 6, 193-201.  
11160086 A.Das, E.D.Coulter, D.M.Kurtz, and L.G.Ljungdahl (2001).
Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase- rubredoxin and rubrerythrin-type A flavoprotein- high-molecular-weight rubredoxin.
  J Bacteriol, 183, 1560-1567.  
11443075 G.Silva, J.LeGall, A.V.Xavier, M.Teixeira, and C.Rodrigues-Pousada (2001).
Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes.
  J Bacteriol, 183, 4413-4420.  
11454214 P.N.da Costa, C.V.Romão, J.LeGall, A.V.Xavier, E.Melo, M.Teixeira, and L.M.Saraiva (2001).
The genetic organization of Desulfovibrio desulphuricans ATCC 27774 bacterioferritin and rubredoxin-2 genes: involvement of rubredoxin in iron metabolism.
  Mol Microbiol, 41, 217-227.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer