 |
PDBsum entry 1dmo
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Calcium-binding protein
|
PDB id
|
|
|
|
1dmo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nat Struct Biol
2:758-767
(1995)
|
|
PubMed id:
|
|
|
|
|
| |
|
Calcium-induced conformational transition revealed by the solution structure of apo calmodulin.
|
|
M.Zhang,
T.Tanaka,
M.Ikura.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The solution structure of Ca(2+)-free calmodulin has been determined by NMR
spectroscopy, and is compared to the previously reported structure of the
Ca(2+)-saturated form. The removal of Ca2+ causes the interhelical angles of
four EF-hand motifs to increase by 36 degrees-44 degrees. This leads to major
changes in surface properties, including the closure of the deep hydrophobic
cavity essential for target protein recognition. Concerted movements of helices
A and D with respect to B and C, and of helices E and H with respect to F and G
are likely responsible for the cooperative Ca(2+)-binding property observed
between two adjacent EF-hand sites in the amino- and carboxy-terminal domains.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
E.Project,
E.Nachliel,
and
M.Gutman
(2011).
The Dynamics of Ca Ions within the Solvation Shell of Calbindin D9k.
|
| |
PLoS One,
6,
e14718.
|
 |
|
|
|
|
 |
J.L.Gifford,
H.Ishida,
and
H.J.Vogel
(2011).
Fast methionine-based solution structure determination of calcium-calmodulin complexes.
|
| |
J Biomol NMR,
50,
71-81.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Chandra,
V.Ramakrishnan,
Y.Sharma,
and
K.V.Chary
(2011).
N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor-1.
|
| |
J Biol Inorg Chem,
16,
81-95.
|
 |
|
|
|
|
 |
L.Santamaria-Kisiel,
and
G.S.Shaw
(2011).
Identification of regions responsible for the open conformation of S100A10 using chimaeric S100A11-S100A10 proteins.
|
| |
Biochem J,
434,
37-48.
|
 |
|
|
|
|
 |
W.Ohashi,
H.Hirota,
and
T.Yamazaki
(2011).
Solution structure and fluctuation of the Mg(2+)-bound form of calmodulin C-terminal domain.
|
| |
Protein Sci,
20,
690-701.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Grabarek
(2011).
Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins.
|
| |
Biochim Biophys Acta,
1813,
913-921.
|
 |
|
|
|
|
 |
C.C.Wei,
N.Motl,
K.Levek,
L.Q.Chen,
Y.P.Yang,
T.Johnson,
L.Hamilton,
and
D.J.Stuehr
(2010).
Conformational States and kinetics of the calcium binding domain of NADPH oxidase 5.
|
| |
Open Biochem J,
4,
59-67.
|
 |
|
|
|
|
 |
F.Rodríguez-Castañeda,
M.Maestre-Martínez,
N.Coudevylle,
K.Dimova,
H.Junge,
N.Lipstein,
D.Lee,
S.Becker,
N.Brose,
O.Jahn,
T.Carlomagno,
and
C.Griesinger
(2010).
Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity.
|
| |
EMBO J,
29,
680-691.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Huang,
H.Ishida,
and
H.J.Vogel
(2010).
The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells.
|
| |
Protein Sci,
19,
475-485.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Kitevski-Leblanc,
F.Evanics,
and
R.Scott Prosser
(2010).
Approaches to the assignment of (19)F resonances from 3-fluorophenylalanine labeled calmodulin using solution state NMR.
|
| |
J Biomol NMR,
47,
113-123.
|
 |
|
|
|
|
 |
L.W.Xiong,
Q.K.Kleerekoper,
X.Wang,
and
J.A.Putkey
(2010).
Intra- and interdomain effects due to mutation of calcium-binding sites in calmodulin.
|
| |
J Biol Chem,
285,
8094-8103.
|
 |
|
|
|
|
 |
M.D.Feldkamp,
S.E.O'Donnell,
L.Yu,
and
M.A.Shea
(2010).
Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin.
|
| |
Proteins,
78,
2265-2282.
|
 |
|
|
|
|
 |
N.Uchikoga,
and
T.Hirokawa
(2010).
Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes.
|
| |
BMC Bioinformatics,
11,
236.
|
 |
|
|
|
|
 |
A.P.Yamniuk,
H.Ishida,
D.Lippert,
and
H.J.Vogel
(2009).
Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin.
|
| |
Biophys J,
96,
1495-1507.
|
 |
|
|
|
|
 |
C.Li,
J.Chan,
F.Haeseleer,
K.Mikoshiba,
K.Palczewski,
M.Ikura,
and
J.B.Ames
(2009).
Structural Insights into Ca2+-dependent Regulation of Inositol 1,4,5-Trisphosphate Receptors by CaBP1.
|
| |
J Biol Chem,
284,
2472-2481.
|
 |
|
|
|
|
 |
D.Yamamoto,
N.Nagura,
S.Omote,
M.Taniguchi,
and
T.Ando
(2009).
Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy.
|
| |
Biophys J,
97,
2358-2367.
|
 |
|
|
|
|
 |
E.Laine,
A.Blondel,
and
T.E.Malliavin
(2009).
Dynamics and energetics: a consensus analysis of the impact of calcium on EF-CaM protein complex.
|
| |
Biophys J,
96,
1249-1263.
|
 |
|
|
|
|
 |
G.Loving,
and
B.Imperiali
(2009).
Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: a highly sensitive toolset for the detection of biomolecular interactions.
|
| |
Bioconjug Chem,
20,
2133-2141.
|
 |
|
|
|
|
 |
G.Meissner,
D.A.Pasek,
N.Yamaguchi,
S.Ramachandran,
N.V.Dokholyan,
and
A.Tripathy
(2009).
Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels.
|
| |
Proteins,
74,
207-211.
|
 |
|
|
|
|
 |
I.Bertini,
S.Das Gupta,
X.Hu,
T.Karavelas,
C.Luchinat,
G.Parigi,
and
J.Yuan
(2009).
Solution structure and dynamics of S100A5 in the apo and Ca2+-bound states.
|
| |
J Biol Inorg Chem,
14,
1097-1107.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Akerboom,
J.D.Rivera,
M.M.Guilbe,
E.C.Malavé,
H.H.Hernandez,
L.Tian,
S.A.Hires,
J.S.Marvin,
L.L.Looger,
and
E.R.Schreiter
(2009).
Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design.
|
| |
J Biol Chem,
284,
6455-6464.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.L.Kitevski-LeBlanc,
F.Evanics,
and
R.S.Prosser
(2009).
Approaches for the measurement of solvent exposure in proteins by 19F NMR.
|
| |
J Biomol NMR,
45,
255-264.
|
 |
|
|
|
|
 |
J.L.Li,
C.Y.Geng,
Y.Bu,
X.R.Huang,
and
C.C.Sun
(2009).
Conformational transition pathway in the allosteric process of calcium-induced recoverin: molecular dynamics simulations.
|
| |
J Comput Chem,
30,
1135-1145.
|
 |
|
|
|
|
 |
J.P.Junker,
F.Ziegler,
and
M.Rief
(2009).
Ligand-dependent equilibrium fluctuations of single calmodulin molecules.
|
| |
Science,
323,
633-637.
|
 |
|
|
|
|
 |
R.M.Hoffman,
and
B.D.Sykes
(2009).
Structure of the inhibitor W7 bound to the regulatory domain of cardiac troponin C.
|
| |
Biochemistry,
48,
5541-5552.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Dobney,
D.Chiasson,
P.Lam,
S.P.Smith,
and
W.A.Snedden
(2009).
The calmodulin-related calcium sensor CML42 plays a role in trichome branching.
|
| |
J Biol Chem,
284,
31647-31657.
|
 |
|
|
|
|
 |
V.Borsi,
C.Luchinat,
and
G.Parigi
(2009).
Global and local mobility of apocalmodulin monitored through fast-field cycling relaxometry.
|
| |
Biophys J,
97,
1765-1771.
|
 |
|
|
|
|
 |
B.Kim,
and
A.Chilkoti
(2008).
Allosteric actuation of inverse phase transition of a stimulus-responsive fusion polypeptide by ligand binding.
|
| |
J Am Chem Soc,
130,
17867-17873.
|
 |
|
|
|
|
 |
E.Johnson,
L.Bruschweiler-Li,
S.A.Showalter,
G.W.Vuister,
F.Zhang,
and
R.Brüschweiler
(2008).
Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+.
|
| |
J Mol Biol,
377,
945-955.
|
 |
|
|
|
|
 |
E.Laine,
J.D.Yoneda,
A.Blondel,
and
T.E.Malliavin
(2008).
The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
|
| |
Proteins,
71,
1813-1829.
|
 |
|
|
|
|
 |
E.M.Jones,
T.C.Squier,
and
C.A.Sacksteder
(2008).
An altered mode of calcium coordination in methionine-oxidized calmodulin.
|
| |
Biophys J,
95,
5268-5280.
|
 |
|
|
|
|
 |
J.Gsponer,
J.Christodoulou,
A.Cavalli,
J.M.Bui,
B.Richter,
C.M.Dobson,
and
M.Vendruscolo
(2008).
A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction.
|
| |
Structure,
16,
736-746.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.N.Wingard,
J.Ladner,
M.Vanarotti,
A.J.Fisher,
H.Robinson,
K.T.Buchanan,
D.M.Engman,
and
J.B.Ames
(2008).
Structural Insights into Membrane Targeting by the Flagellar Calcium-binding Protein (FCaBP), a Myristoylated and Palmitoylated Calcium Sensor in Trypanosoma cruzi.
|
| |
J Biol Chem,
283,
23388-23396.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.M.Trybus
(2008).
Myosin V from head to tail.
|
| |
Cell Mol Life Sci,
65,
1378-1389.
|
 |
|
|
|
|
 |
N.V.Valeyev,
D.G.Bates,
P.Heslop-Harrison,
I.Postlethwaite,
and
N.V.Kotov
(2008).
Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach.
|
| |
BMC Syst Biol,
2,
48.
|
 |
|
|
|
|
 |
N.V.Valeyev,
P.Heslop-Harrison,
I.Postlethwaite,
N.V.Kotov,
and
D.G.Bates
(2008).
Multiple calcium binding sites make calmodulin multifunctional.
|
| |
Mol Biosyst,
4,
66-73.
|
 |
|
|
|
|
 |
Q.Guo,
J.E.Jureller,
J.T.Warren,
E.Solomaha,
J.Florián,
and
W.J.Tang
(2008).
Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.
|
| |
J Biol Chem,
283,
23836-23845.
|
 |
|
|
|
|
 |
R.A.Newman,
W.S.Van Scyoc,
B.R.Sorensen,
O.R.Jaren,
and
M.A.Shea
(2008).
Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
|
| |
Proteins,
71,
1792-1812.
|
 |
|
|
|
|
 |
S.Malik,
M.Revington,
S.P.Smith,
and
G.S.Shaw
(2008).
Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins.
|
| |
Proteins,
73,
28-42.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Tripathi,
and
J.J.Portman
(2008).
Inherent flexibility and protein function: The open/closed conformational transition in the N-terminal domain of calmodulin.
|
| |
J Chem Phys,
128,
205104.
|
 |
|
|
|
|
 |
T.Ly,
and
R.R.Julian
(2008).
Protein-metal interactions of calmodulin and alpha-synuclein monitored by selective noncovalent adduct protein probing mass spectrometry.
|
| |
J Am Soc Mass Spectrom,
19,
1663-1672.
|
 |
|
|
|
|
 |
A.Isvoran,
C.T.Craescu,
and
E.Alexov
(2007).
Electrostatic control of the overall shape of calmodulin: numerical calculations.
|
| |
Eur Biophys J,
36,
225-237.
|
 |
|
|
|
|
 |
A.Uttenweiler,
H.Schwarz,
H.Neumann,
and
A.Mayer
(2007).
The vacuolar transporter chaperone (VTC) complex is required for microautophagy.
|
| |
Mol Biol Cell,
18,
166-175.
|
 |
|
|
|
|
 |
F.Edlich,
M.Maestre-Martínez,
F.Jarczowski,
M.Weiwad,
M.C.Moutty,
M.Malesević,
G.Jahreis,
G.Fischer,
and
C.Lücke
(2007).
A novel calmodulin-Ca2+ target recognition activates the Bcl-2 regulator FKBP38.
|
| |
J Biol Chem,
282,
36496-36504.
|
 |
|
|
|
|
 |
J.S.Sharp,
and
K.B.Tomer
(2007).
Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping.
|
| |
Biophys J,
92,
1682-1692.
|
 |
|
|
|
|
 |
K.M.Trybus,
M.I.Gushchin,
H.Lui,
L.Hazelwood,
E.B.Krementsova,
N.Volkmann,
and
D.Hanein
(2007).
Effect of calcium on calmodulin bound to the IQ motifs of myosin V.
|
| |
J Biol Chem,
282,
23316-23325.
|
 |
|
|
|
|
 |
L.Settimo,
S.Donnini,
A.H.Juffer,
R.W.Woody,
and
O.Marin
(2007).
Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin.
|
| |
Biopolymers,
88,
373-385.
|
 |
|
|
|
|
 |
M.Rainaldi,
A.P.Yamniuk,
T.Murase,
and
H.J.Vogel
(2007).
Calcium-dependent and -independent binding of soybean calmodulin isoforms to the calmodulin binding domain of tobacco MAPK phosphatase-1.
|
| |
J Biol Chem,
282,
6031-6042.
|
 |
|
|
|
|
 |
N.Juranić,
E.Atanasova,
J.H.Streiff,
S.Macura,
and
F.G.Prendergast
(2007).
Solvent-induced differentiation of protein backbone hydrogen bonds in calmodulin.
|
| |
Protein Sci,
16,
1329-1337.
|
 |
|
|
|
|
 |
S.L.Russell,
N.V.McFerran,
E.M.Hoey,
A.Trudgett,
and
D.J.Timson
(2007).
Characterisation of two calmodulin-like proteins from the liver fluke, Fasciola hepatica.
|
| |
Biol Chem,
388,
593-599.
|
 |
|
|
|
|
 |
T.M.Lakowski,
G.M.Lee,
M.Okon,
R.E.Reid,
and
L.P.McIntosh
(2007).
Calcium-induced folding of a fragment of calmodulin composed of EF-hands 2 and 3.
|
| |
Protein Sci,
16,
1119-1132.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Vacic,
C.J.Oldfield,
A.Mohan,
P.Radivojac,
M.S.Cortese,
V.N.Uversky,
and
A.K.Dunker
(2007).
Characterization of molecular recognition features, MoRFs, and their binding partners.
|
| |
J Proteome Res,
6,
2351-2366.
|
 |
|
|
|
|
 |
W.S.Jong,
C.M.ten Hagen-Jongman,
T.den Blaauwen,
D.J.Slotboom,
J.R.Tame,
D.Wickström,
J.W.de Gier,
B.R.Otto,
and
J.Luirink
(2007).
Limited tolerance towards folded elements during secretion of the autotransporter Hbp.
|
| |
Mol Microbiol,
63,
1524-1536.
|
 |
|
|
|
|
 |
A.Ganoth,
E.Nachliel,
R.Friedman,
and
M.Gutman
(2006).
Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide.
|
| |
Proteins,
64,
133-146.
|
 |
|
|
|
|
 |
A.Houdusse,
J.F.Gaucher,
E.Krementsova,
S.Mui,
K.M.Trybus,
and
C.Cohen
(2006).
Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features.
|
| |
Proc Natl Acad Sci U S A,
103,
19326-19331.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.K.Johnson
(2006).
Calmodulin, conformational states, and calcium signaling. A single-molecule perspective.
|
| |
Biochemistry,
45,
14233-14246.
|
 |
|
|
|
|
 |
E.Babini,
I.Bertini,
F.Capozzi,
E.Chirivino,
and
C.Luchinat
(2006).
A structural and dynamic characterization of the EF-hand protein CLSP.
|
| |
Structure,
14,
1029-1038.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Lyman,
and
D.M.Zuckerman
(2006).
Ensemble-based convergence analysis of biomolecular trajectories.
|
| |
Biophys J,
91,
164-172.
|
 |
|
|
|
|
 |
E.Project,
R.Friedman,
E.Nachliel,
and
M.Gutman
(2006).
A molecular dynamics study of the effect of Ca2+ removal on calmodulin structure.
|
| |
Biophys J,
90,
3842-3850.
|
 |
|
|
|
|
 |
F.Capozzi,
F.Casadei,
and
C.Luchinat
(2006).
EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view.
|
| |
J Biol Inorg Chem,
11,
949-962.
|
 |
|
|
|
|
 |
J.M.Shifman,
M.H.Choi,
S.Mihalas,
S.L.Mayo,
and
M.B.Kennedy
(2006).
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums.
|
| |
Proc Natl Acad Sci U S A,
103,
13968-13973.
|
 |
|
|
|
|
 |
J.S.Salafsky
(2006).
Detection of protein conformational change by optical second-harmonic generation.
|
| |
J Chem Phys,
125,
074701.
|
 |
|
|
|
|
 |
K.Chen,
J.Ruan,
and
L.A.Kurgan
(2006).
Prediction of three dimensional structure of calmodulin.
|
| |
Protein J,
25,
57-70.
|
 |
|
|
|
|
 |
L.Milanesi,
C.A.Hunter,
S.E.Sedelnikova,
and
J.P.Waltho
(2006).
Amplification of bifunctional ligands for calmodulin from a dynamic combinatorial library.
|
| |
Chemistry,
12,
1081-1087.
|
 |
|
|
|
|
 |
M.M.Wu,
J.Buchanan,
R.M.Luik,
and
R.S.Lewis
(2006).
Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane.
|
| |
J Cell Biol,
174,
803-813.
|
 |
|
|
|
|
 |
M.T.Naik,
N.Suree,
U.Ilangovan,
C.K.Liew,
W.Thieu,
D.O.Campbell,
J.J.Clemens,
M.E.Jung,
and
R.T.Clubb
(2006).
Staphylococcus aureus Sortase A transpeptidase. Calcium promotes sorting signal binding by altering the mobility and structure of an active site loop.
|
| |
J Biol Chem,
281,
1817-1826.
|
 |
|
|
|
|
 |
X.Zhang,
T.Zou,
Y.Liu,
and
Y.Qi
(2006).
The gating effect of calmodulin and calcium on the connexin50 hemichannel.
|
| |
Biol Chem,
387,
595-601.
|
 |
|
|
|
|
 |
Y.B.Ammar,
S.Takeda,
T.Hisamitsu,
H.Mori,
and
S.Wakabayashi
(2006).
Crystal structure of CHP2 complexed with NHE1-cytosolic region and an implication for pH regulation.
|
| |
EMBO J,
25,
2315-2325.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.A.Pandyra,
A.P.Yamniuk,
V.V.Andrushchenko,
H.Wieser,
and
H.J.Vogel
(2005).
Isotope-labeled vibrational circular dichroism studies of calmodulin and its interactions with ligands.
|
| |
Biopolymers,
79,
231-237.
|
 |
|
|
|
|
 |
C.L.Chyan,
P.C.Huang,
T.H.Lin,
J.W.Huang,
S.S.Lin,
H.B.Huang,
and
Y.C.Chen
(2005).
Purification, crystallization and preliminary crystallographic studies of a calmodulin-OLFp hybrid molecule.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
785-787.
|
 |
|
|
|
|
 |
G.Fiorin,
R.R.Biekofsky,
A.Pastore,
and
P.Carloni
(2005).
Unwinding the helical linker of calcium-loaded calmodulin: a molecular dynamics study.
|
| |
Proteins,
61,
829-839.
|
 |
|
|
|
|
 |
I.Horváth,
V.Harmat,
A.Perczel,
V.Pálfi,
L.Nyitray,
A.Nagy,
E.Hlavanda,
G.Náray-Szabó,
and
J.Ovádi
(2005).
The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug.
|
| |
J Biol Chem,
280,
8266-8274.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.A.Young,
and
J.H.Caldwell
(2005).
Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin.
|
| |
J Physiol,
565,
349-370.
|
 |
|
|
|
|
 |
M.Palczewska,
G.Batta,
P.Groves,
S.Linse,
and
J.Kuznicki
(2005).
Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain.
|
| |
Protein Sci,
14,
1879-1887.
|
 |
|
|
|
|
 |
N.Uchikoga,
S.Y.Takahashi,
R.Ke,
M.Sonoyama,
and
S.Mitaku
(2005).
Electric charge balance mechanism of extended soluble proteins.
|
| |
Protein Sci,
14,
74-80.
|
 |
|
|
|
|
 |
P.Lundström,
and
M.Akke
(2005).
Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation.
|
| |
Chembiochem,
6,
1685-1692.
|
 |
|
|
|
|
 |
P.Lundström,
and
M.Akke
(2005).
Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins.
|
| |
J Biomol NMR,
32,
163-173.
|
 |
|
|
|
|
 |
A.M.Weljie,
and
H.J.Vogel
(2004).
Unexpected structure of the Ca2+-regulatory region from soybean calcium-dependent protein kinase-alpha.
|
| |
J Biol Chem,
279,
35494-35502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.P.Yamniuk,
and
H.J.Vogel
(2004).
Structurally homologous binding of plant calmodulin isoforms to the calmodulin-binding domain of vacuolar calcium-ATPase.
|
| |
J Biol Chem,
279,
7698-7707.
|
 |
|
|
|
|
 |
B.Bánfi,
F.Tirone,
I.Durussel,
J.Knisz,
P.Moskwa,
G.Z.Molnár,
K.H.Krause,
and
J.A.Cox
(2004).
Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5).
|
| |
J Biol Chem,
279,
18583-18591.
|
 |
|
|
|
|
 |
B.Wang,
S.R.Martin,
R.A.Newman,
S.L.Hamilton,
M.A.Shea,
P.M.Bayley,
and
K.M.Beckingham
(2004).
Biochemical properties of V91G calmodulin: A calmodulin point mutation that deregulates muscle contraction in Drosophila.
|
| |
Protein Sci,
13,
3285-3297.
|
 |
|
|
|
|
 |
C.M.Shepherd,
and
H.J.Vogel
(2004).
A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale.
|
| |
Biophys J,
87,
780-791.
|
 |
|
|
|
|
 |
G.Qing,
L.C.Ma,
A.Khorchid,
G.V.Swapna,
T.K.Mal,
M.M.Takayama,
B.Xia,
S.Phadtare,
H.Ke,
T.Acton,
G.T.Montelione,
M.Ikura,
and
M.Inouye
(2004).
Cold-shock induced high-yield protein production in Escherichia coli.
|
| |
Nat Biotechnol,
22,
877-882.
|
 |
|
|
|
|
 |
H.Hu,
J.H.Sheehan,
and
W.J.Chazin
(2004).
The mode of action of centrin. Binding of Ca2+ and a peptide fragment of Kar1p to the C-terminal domain.
|
| |
J Biol Chem,
279,
50895-50903.
|
 |
|
|
|
|
 |
J.S.Shim,
J.Lee,
H.J.Park,
S.J.Park,
and
H.J.Kwon
(2004).
A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function.
|
| |
Chem Biol,
11,
1455-1463.
|
 |
|
|
|
|
 |
M.A.Schumacher,
M.Crum,
and
M.C.Miller
(2004).
Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex.
|
| |
Structure,
12,
849-860.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.Zhou,
Y.Qian,
K.Kunjilwar,
P.J.Pfaffinger,
and
S.Choe
(2004).
Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels.
|
| |
Neuron,
41,
573-586.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.M.Weljie,
A.P.Yamniuk,
H.Yoshino,
Y.Izumi,
and
H.J.Vogel
(2003).
Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins.
|
| |
Protein Sci,
12,
228-236.
|
 |
|
|
|
|
 |
A.M.Weljie,
K.M.Robertson,
and
H.J.Vogel
(2003).
Conformational changes in the Ca2+-regulatory region from soybean calcium-dependent protein kinase-alpha: fluorescence resonance energy transfer studies.
|
| |
J Biol Chem,
278,
43764-43769.
|
 |
|
|
|
|
 |
H.Tossavainen,
P.Permi,
A.Annila,
I.Kilpeläinen,
and
T.Drakenberg
(2003).
NMR solution structure of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea.
|
| |
Eur J Biochem,
270,
2505-2512.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Kleinjung,
F.Fraternali,
S.R.Martin,
and
P.M.Bayley
(2003).
Thermal unfolding simulations of apo-calmodulin using leap-dynamics.
|
| |
Proteins,
50,
648-656.
|
 |
|
|
|
|
 |
J.Symersky,
G.Lin,
S.Li,
S.Qiu,
M.Carson,
N.Schormann,
and
M.Luo
(2003).
Structural genomics of caenorhabditis elegans: crystal structure of calmodulin.
|
| |
Proteins,
53,
947-949.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Aoyagi,
A.S.Arvai,
J.A.Tainer,
and
E.D.Getzoff
(2003).
Structural basis for endothelial nitric oxide synthase binding to calmodulin.
|
| |
EMBO J,
22,
766-775.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.M.Zhu,
D.L.Rempel,
J.Zhao,
D.E.Giblin,
and
M.L.Gross
(2003).
Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength.
|
| |
Biochemistry,
42,
15388-15397.
|
 |
|
|
|
|
 |
M.Nagae,
A.Nozawa,
N.Koizumi,
H.Sano,
H.Hashimoto,
M.Sato,
and
T.Shimizu
(2003).
The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana.
|
| |
J Biol Chem,
278,
42240-42246.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.W.Vetter,
and
E.Leclerc
(2003).
Novel aspects of calmodulin target recognition and activation.
|
| |
Eur J Biochem,
270,
404-414.
|
 |
|
|
|
|
 |
V.Janssens,
J.Jordens,
I.Stevens,
C.Van Hoof,
E.Martens,
H.De Smedt,
Y.Engelborghs,
E.Waelkens,
and
J.Goris
(2003).
Identification and functional analysis of two Ca2+-binding EF-hand motifs in the B"/PR72 subunit of protein phosphatase 2A.
|
| |
J Biol Chem,
278,
10697-10706.
|
 |
|
|
|
|
 |
A.L.Papish,
L.W.Tari,
and
H.J.Vogel
(2002).
Dynamic light scattering study of calmodulin-target peptide complexes.
|
| |
Biophys J,
83,
1455-1464.
|
 |
|
|
|
|
 |
B.Wang,
C.Bolduc,
K.Beckingham,
K.Beckingham,
and
L.V.McIntire
(2002).
Calmodulin UAS-constructs and the in vivo roles of calmodulin: analysis of a muscle-specific phenotype.
|
| |
Genesis,
34,
86-90.
|
 |
|
|
|
|
 |
D.S.Libich,
and
G.Harauz
(2002).
Interactions of the 18.5-kDa isoform of myelin basic protein with Ca(2+)-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy.
|
| |
Biochem Cell Biol,
80,
395-406.
|
 |
|
|
|
|
 |
G.Li,
and
Q.Cui
(2002).
A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase.
|
| |
Biophys J,
83,
2457-2474.
|
 |
|
|
|
|
 |
J.B.Ames,
N.Hamasaki,
and
T.Molchanova
(2002).
Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
|
| |
Biochemistry,
41,
5776-5787.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Elezgaray,
G.Marcou,
and
Y.H.Sanejouand
(2002).
Exploring the natural conformational changes of the C-terminal domain of calmodulin.
|
| |
Phys Rev E Stat Nonlin Soft Matter Phys,
66,
031908.
|
 |
|
|
|
|
 |
J.K.Kranz,
E.K.Lee,
A.C.Nairn,
and
A.J.Wand
(2002).
A direct test of the reductionist approach to structural studies of calmodulin activity: relevance of peptide models of target proteins.
|
| |
J Biol Chem,
277,
16351-16354.
|
 |
|
|
|
|
 |
L.S.Mizoue,
and
W.J.Chazin
(2002).
Engineering and design of ligand-induced conformational change in proteins.
|
| |
Curr Opin Struct Biol,
12,
459-463.
|
 |
|
|
|
|
 |
M.R.Nelson,
E.Thulin,
P.A.Fagan,
S.Forsén,
and
W.J.Chazin
(2002).
The EF-hand domain: a globally cooperative structural unit.
|
| |
Protein Sci,
11,
198-205.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.R.Biekofsky,
S.R.Martin,
J.E.McCormick,
L.Masino,
S.Fefeu,
P.M.Bayley,
and
J.Feeney
(2002).
Thermal stability of calmodulin and mutants studied by (1)H-(15)N HSQC NMR measurements of selectively labeled [(15)N]Ile proteins.
|
| |
Biochemistry,
41,
6850-6859.
|
 |
|
|
|
|
 |
R.Wissmann,
W.Bildl,
H.Neumann,
A.F.Rivard,
N.Klöcker,
D.Weitz,
U.Schulte,
J.P.Adelman,
D.Bentrop,
and
B.Fakler
(2002).
A helical region in the C terminus of small-conductance Ca2+-activated K+ channels controls assembly with apo-calmodulin.
|
| |
J Biol Chem,
277,
4558-4564.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Martin,
and
P.M.Bayley
(2002).
Regulatory implications of a novel mode of interaction of calmodulin with a double IQ-motif target sequence from murine dilute myosin V.
|
| |
Protein Sci,
11,
2909-2923.
|
 |
|
|
|
|
 |
W.E.Meador,
and
F.A.Quiocho
(2002).
Man bites dog.
|
| |
Nat Struct Biol,
9,
156-158.
|
 |
|
|
|
|
 |
A.Ababou,
and
J.R.Desjarlais
(2001).
Solvation energetics and conformational change in EF-hand proteins.
|
| |
Protein Sci,
10,
301-312.
|
 |
|
|
|
|
 |
D.Vigil,
S.C.Gallagher,
J.Trewhella,
and
A.E.García
(2001).
Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin.
|
| |
Biophys J,
80,
2082-2092.
|
 |
|
|
|
|
 |
G.Larsson,
J.Schleucher,
J.Onions,
S.Hermann,
T.Grundström,
and
S.S.Wijmenga
(2001).
A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2.
|
| |
Protein Sci,
10,
169-186.
|
 |
|
|
|
|
 |
H.Aitio,
T.Laakso,
T.Pihlajamaa,
M.Torkkeli,
I.Kilpeläinen,
T.Drakenberg,
R.Serimaa,
and
A.Annila
(2001).
Characterization of apo and partially saturated states of calerythrin, an EF-hand protein from S. erythraea: a molten globule when deprived of Ca(2+).
|
| |
Protein Sci,
10,
74-82.
|
 |
|
|
|
|
 |
J.J.Chou,
S.Li,
C.B.Klee,
and
A.Bax
(2001).
Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains.
|
| |
Nat Struct Biol,
8,
990-997.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Nakasako,
T.Fujisawa,
S.Adachi,
T.Kudo,
and
S.Higuchi
(2001).
Large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase from Thermococcus profundus studied by cryogenic X-ray crystal structure analysis and small-angle X-ray scattering.
|
| |
Biochemistry,
40,
3069-3079.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.S.Hook,
and
A.R.Means
(2001).
Ca(2+)/CaM-dependent kinases: from activation to function.
|
| |
Annu Rev Pharmacol Toxicol,
41,
471-505.
|
 |
|
|
|
|
 |
W.S.VanScyoc,
and
M.A.Shea
(2001).
Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder.
|
| |
Protein Sci,
10,
1758-1768.
|
 |
|
|
|
|
 |
Z.Qin,
and
T.C.Squier
(2001).
Calcium-dependent stabilization of the central sequence between Met(76) and Ser(81) in vertebrate calmodulin.
|
| |
Biophys J,
81,
2908-2918.
|
 |
|
|
|
|
 |
A.Lewit-Bentley,
and
S.Réty
(2000).
EF-hand calcium-binding proteins.
|
| |
Curr Opin Struct Biol,
10,
637-643.
|
 |
|
|
|
|
 |
A.M.Weljie,
T.E.Clarke,
A.H.Juffer,
A.C.Harmon,
and
H.J.Vogel
(2000).
Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean.
|
| |
Proteins,
39,
343-357.
|
 |
|
|
|
|
 |
A.Ulrich,
A.A.Schmitz,
T.Braun,
T.Yuan,
H.J.Vogel,
and
G.Vergères
(2000).
Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
97,
5191-5196.
|
 |
|
|
|
|
 |
D.Yin,
H.Sun,
D.A.Ferrington,
and
T.C.Squier
(2000).
Closer proximity between opposing domains of vertebrate calmodulin following deletion of Met(145)-Lys(148).
|
| |
Biochemistry,
39,
10255-10268.
|
 |
|
|
|
|
 |
H.Ishida,
K.Takahashi,
K.Nakashima,
Y.Kumaki,
M.Nakata,
K.Hikichi,
and
M.Yazawa
(2000).
Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.
|
| |
Biochemistry,
39,
13660-13668.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Sun,
and
T.C.Squier
(2000).
Ordered and cooperative binding of opposing globular domains of calmodulin to the plasma membrane Ca-ATPase.
|
| |
J Biol Chem,
275,
1731-1738.
|
 |
|
|
|
|
 |
K.Palczewski,
A.S.Polans,
W.Baehr,
and
J.B.Ames
(2000).
Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases.
|
| |
Bioessays,
22,
337-350.
|
 |
|
|
|
|
 |
L.Masino,
S.R.Martin,
and
P.M.Bayley
(2000).
Ligand binding and thermodynamic stability of a multidomain protein, calmodulin.
|
| |
Protein Sci,
9,
1519-1529.
|
 |
|
|
|
|
 |
M.Mori,
T.Konno,
T.Ozawa,
M.Murata,
K.Imoto,
and
K.Nagayama
(2000).
Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity?
|
| |
Biochemistry,
39,
1316-1323.
|
 |
|
|
|
|
 |
R.D.Brokx,
and
H.J.Vogel
(2000).
Peptide and metal ion-dependent association of isolated helix-loop-helix calcium binding domains: studies of thrombic fragments of calmodulin.
|
| |
Protein Sci,
9,
964-975.
|
 |
|
|
|
|
 |
S.Fefeu,
R.R.Biekofsky,
J.E.McCormick,
S.R.Martin,
P.M.Bayley,
and
J.Feeney
(2000).
Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
|
| |
Biochemistry,
39,
15920-15931.
|
 |
|
|
|
|
 |
S.R.Martin,
L.Masino,
and
P.M.Bayley
(2000).
Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences.
|
| |
Protein Sci,
9,
2477-2488.
|
 |
|
|
|
|
 |
S.Y.Lee,
and
R.E.Klevit
(2000).
The whole is not the simple sum of its parts in calmodulin from S. cerevisiae.
|
| |
Biochemistry,
39,
4225-4230.
|
 |
|
|
|
|
 |
T.Berggård,
M.Silow,
E.Thulin,
and
S.Linse
(2000).
Ca(2+)- and H(+)-dependent conformational changes of calbindin D(28k).
|
| |
Biochemistry,
39,
6864-6873.
|
 |
|
|
|
|
 |
T.J.Hill,
D.Lafitte,
J.I.Wallace,
H.J.Cooper,
P.O.Tsvetkov,
and
P.J.Derrick
(2000).
Calmodulin-peptide interactions: apocalmodulin binding to the myosin light chain kinase target-site.
|
| |
Biochemistry,
39,
7284-7290.
|
 |
|
|
|
|
 |
T.Ozawa,
M.Fukuda,
M.Nara,
A.Nakamura,
Y.Komine,
K.Kohama,
and
Y.Umezawa
(2000).
How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies.
|
| |
Biochemistry,
39,
14495-14503.
|
 |
|
|
|
|
 |
A.Wallqvist,
T.A.Lavoie,
J.A.Chanatry,
D.G.Covell,
and
J.Carey
(1999).
Cooperative folding units of escherichia coli tryptophan repressor.
|
| |
Biophys J,
77,
1619-1626.
|
 |
|
|
|
|
 |
D.Lafitte,
A.J.Heck,
T.J.Hill,
K.Jumel,
S.E.Harding,
and
P.J.Derrick
(1999).
Evidence of noncovalent dimerization of calmodulin.
|
| |
Eur J Biochem,
261,
337-344.
|
 |
|
|
|
|
 |
K.L.Yap,
J.B.Ames,
M.B.Swindells,
and
M.Ikura
(1999).
Diversity of conformational states and changes within the EF-hand protein superfamily.
|
| |
Proteins,
37,
499-507.
|
 |
|
|
|
|
 |
K.Nakashima,
H.Ishida,
S.Y.Ohki,
K.Hikichi,
and
M.Yazawa
(1999).
Calcium binding induces interaction between the N- and C-terminal domains of yeast calmodulin and modulates its overall conformation.
|
| |
Biochemistry,
38,
98.
|
 |
|
|
|
|
 |
K.W.Lo,
Q.Zhang,
M.Li,
and
M.Zhang
(1999).
Apoptosis-linked gene product ALG-2 is a new member of the calpain small subunit subfamily of Ca2+-binding proteins.
|
| |
Biochemistry,
38,
7498-7508.
|
 |
|
|
|
|
 |
O.Nemirovskiy,
D.E.Giblin,
and
M.L.Gross
(1999).
Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium.
|
| |
J Am Soc Mass Spectrom,
10,
711-718.
|
 |
|
|
|
|
 |
S.B.Williams,
and
V.Stewart
(1999).
Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction.
|
| |
Mol Microbiol,
33,
1093-1102.
|
 |
|
|
|
|
 |
S.Rentschler,
H.Linn,
K.Deininger,
M.T.Bedford,
X.Espanel,
and
M.Sudol
(1999).
The WW domain of dystrophin requires EF-hands region to interact with beta-dystroglycan.
|
| |
Biol Chem,
380,
431-442.
|
 |
|
|
|
|
 |
T.Yuan,
and
H.J.Vogel
(1999).
Substitution of the methionine residues of calmodulin with the unnatural amino acid analogs ethionine and norleucine: biochemical and spectroscopic studies.
|
| |
Protein Sci,
8,
113-121.
|
 |
|
|
|
|
 |
T.Yuan,
H.Ouyang,
and
H.J.Vogel
(1999).
Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide spin label and two-dimensional NMR study.
|
| |
J Biol Chem,
274,
8411-8420.
|
 |
|
|
|
|
 |
T.Yuan,
M.P.Walsh,
C.Sutherland,
H.Fabian,
and
H.J.Vogel
(1999).
Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin.
|
| |
Biochemistry,
38,
1446-1455.
|
 |
|
|
|
|
 |
A.L.Hazard,
S.C.Kohout,
N.L.Stricker,
J.A.Putkey,
and
J.J.Falke
(1998).
The kinetic cycle of cardiac troponin C: calcium binding and dissociation at site II trigger slow conformational rearrangements.
|
| |
Protein Sci,
7,
2451-2459.
|
 |
|
|
|
|
 |
A.Malmendal,
G.Carlstrom,
C.Hambraeus,
T.Drakenberg,
S.Forsen,
and
M.Akke
(1998).
Sequence and context dependence of EF-hand loop dynamics. An 15N relaxation study of a calcium-binding site mutant of calbindin D9k.
|
| |
Biochemistry,
37,
2586-2595.
|
 |
|
|
|
|
 |
A.Malmendal,
J.Evenäs,
E.Thulin,
G.P.Gippert,
T.Drakenberg,
and
S.Forsén
(1998).
When size is important. Accommodation of magnesium in a calcium binding regulatory domain.
|
| |
J Biol Chem,
273,
28994-29001.
|
 |
|
|
|
|
 |
J.Gao,
D.H.Yin,
Y.Yao,
H.Sun,
Z.Qin,
C.Schöneich,
T.D.Williams,
and
T.C.Squier
(1998).
Loss of conformational stability in calmodulin upon methionine oxidation.
|
| |
Biophys J,
74,
1115-1134.
|
 |
|
|
|
|
 |
J.K.Krueger,
N.A.Bishop,
D.K.Blumenthal,
G.Zhi,
K.Beckingham,
J.T.Stull,
and
J.Trewhella
(1998).
Calmodulin binding to myosin light chain kinase begins at substoichiometric Ca2+ concentrations: a small-angle scattering study of binding and conformational transitions.
|
| |
Biochemistry,
37,
17810-17817.
|
 |
|
|
|
|
 |
M.R.Nelson,
and
W.J.Chazin
(1998).
An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins.
|
| |
Protein Sci,
7,
270-282.
|
 |
|
|
|
|
 |
M.Sastry,
R.R.Ketchem,
O.Crescenzi,
C.Weber,
M.J.Lubienski,
H.Hidaka,
and
W.J.Chazin
(1998).
The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins.
|
| |
Structure,
6,
223-231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.E.Zielinski
(1998).
CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS.
|
| |
Annu Rev Plant Physiol Plant Mol Biol,
49,
697-725.
|
 |
|
|
|
|
 |
R.Gilli,
D.Lafitte,
C.Lopez,
M.Kilhoffer,
A.Makarov,
C.Briand,
and
J.Haiech
(1998).
Thermodynamic analysis of calcium and magnesium binding to calmodulin.
|
| |
Biochemistry,
37,
5450-5456.
|
 |
|
|
|
|
 |
R.R.Biekofsky,
S.R.Martin,
J.P.Browne,
P.M.Bayley,
and
J.Feeney
(1998).
Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination.
|
| |
Biochemistry,
37,
7617-7629.
|
 |
|
|
|
|
 |
S.P.Smith,
and
G.S.Shaw
(1998).
A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form.
|
| |
Structure,
6,
211-222.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.A.Millward,
C.W.Heizmann,
B.W.Schäfer,
and
B.A.Hemmings
(1998).
Calcium regulation of Ndr protein kinase mediated by S100 calcium-binding proteins.
|
| |
EMBO J,
17,
5913-5922.
|
 |
|
|
|
|
 |
T.Wolf,
B.Solomon,
D.Ivnitski,
J.Rishpon,
and
G.Fleminger
(1998).
Interactions of calmodulin with metal ions and with its target proteins revealed by conformation-sensitive monoclonal antibodies.
|
| |
J Mol Recognit,
11,
14-19.
|
 |
|
|
|
|
 |
T.Yuan,
A.M.Weljie,
and
H.J.Vogel
(1998).
Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
|
| |
Biochemistry,
37,
3187-3195.
|
 |
|
|
|
|
 |
T.Yuan,
and
H.J.Vogel
(1998).
Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. A novel calmodulin-peptide interaction motif.
|
| |
J Biol Chem,
273,
30328-30335.
|
 |
|
|
|
|
 |
W.Wriggers,
E.Mehler,
F.Pitici,
H.Weinstein,
and
K.Schulten
(1998).
Structure and dynamics of calmodulin in solution.
|
| |
Biophys J,
74,
1622-1639.
|
 |
|
|
|
|
 |
X.Shao,
I.Fernandez,
T.C.Südhof,
and
J.Rizo
(1998).
Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change?
|
| |
Biochemistry,
37,
16106-16115.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.H.Han,
and
D.M.Roberts
(1997).
Altered methylation substrate kinetics and calcium binding of a calmodulin with a Val136-->Thr substitution.
|
| |
Eur J Biochem,
244,
904-912.
|
 |
|
|
|
|
 |
D.Chin,
K.E.Winkler,
and
A.R.Means
(1997).
Characterization of substrate phosphorylation and use of calmodulin mutants to address implications from the enzyme crystal structure of calmodulin-dependent protein kinase I.
|
| |
J Biol Chem,
272,
31235-31240.
|
 |
|
|
|
|
 |
I.Protasevich,
B.Ranjbar,
V.Lobachov,
A.Makarov,
R.Gilli,
C.Briand,
D.Lafitte,
and
J.Haiech
(1997).
Conformation and thermal denaturation of apocalmodulin: role of electrostatic mutations.
|
| |
Biochemistry,
36,
2017-2024.
|
 |
|
|
|
|
 |
J.Evenäs,
E.Thulin,
A.Malmendal,
S.Forsén,
and
G.Carlström
(1997).
NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state.
|
| |
Biochemistry,
36,
3448-3457.
|
 |
|
|
|
|
 |
J.K.Krueger,
G.A.Olah,
S.E.Rokop,
G.Zhi,
J.T.Stull,
and
J.Trewhella
(1997).
Structures of calmodulin and a functional myosin light chain kinase in the activated complex: a neutron scattering study.
|
| |
Biochemistry,
36,
6017-6023.
|
 |
|
|
|
|
 |
J.P.Browne,
M.Strom,
S.R.Martin,
and
P.M.Bayley
(1997).
The role of beta-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin.
|
| |
Biochemistry,
36,
9550-9561.
|
 |
|
|
|
|
 |
L.Spyracopoulos,
M.X.Li,
S.K.Sia,
S.M.Gagné,
M.Chandra,
R.J.Solaro,
and
B.D.Sykes
(1997).
Calcium-induced structural transition in the regulatory domain of human cardiac troponin C.
|
| |
Biochemistry,
36,
12138-12146.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.B.Peersen,
T.S.Madsen,
and
J.J.Falke
(1997).
Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca2+ binding and implications for kinase activation.
|
| |
Protein Sci,
6,
794-807.
|
 |
|
|
|
|
 |
S.Linse,
E.Thulin,
L.K.Gifford,
D.Radzewsky,
J.Hagan,
R.R.Wilk,
and
K.S.Akerfeldt
(1997).
Domain organization of calbindin D28k as determined from the association of six synthetic EF-hand fragments.
|
| |
Protein Sci,
6,
2385-2396.
|
 |
|
|
|
|
 |
S.Lundberg,
A.V.Buevich,
I.Sethson,
U.Edlund,
and
L.Backman
(1997).
Calcium-binding mechanism of human nonerythroid alpha-spectrin EF-structures.
|
| |
Biochemistry,
36,
7199-7208.
|
 |
|
|
|
|
 |
S.M.Gagné,
M.X.Li,
and
B.D.Sykes
(1997).
Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins.
|
| |
Biochemistry,
36,
4386-4392.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.D.Kohn,
C.T.Mant,
and
R.S.Hodges
(1997).
Alpha-helical protein assembly motifs.
|
| |
J Biol Chem,
272,
2583-2586.
|
 |
|
|
|
|
 |
X.Wu,
and
R.E.Reid
(1997).
Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation.
|
| |
Biochemistry,
36,
3608-3616.
|
 |
|
|
|
|
 |
A.Houdusse,
M.Silver,
and
C.Cohen
(1996).
A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch.
|
| |
Structure,
4,
1475-1490.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.J.Wand,
and
S.W.Englander
(1996).
Protein complexes studied by NMR spectroscopy.
|
| |
Curr Opin Biotechnol,
7,
403-408.
|
 |
|
|
|
|
 |
B.C.Potts,
G.Carlström,
K.Okazaki,
H.Hidaka,
and
W.J.Chazin
(1996).
1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta.
|
| |
Protein Sci,
5,
2162-2174.
|
 |
|
|
|
|
 |
B.R.Sorensen,
and
M.A.Shea
(1996).
Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R90A, and R90G.
|
| |
Biophys J,
71,
3407-3420.
|
 |
|
|
|
|
 |
D.F.Meyer,
Y.Mabuchi,
and
Z.Grabarek
(1996).
The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin.
|
| |
J Biol Chem,
271,
11284-11290.
|
 |
|
|
|
|
 |
D.van der Spoel,
B.L.de Groot,
S.Hayward,
H.J.Berendsen,
and
H.J.Vogel
(1996).
Bending of the calmodulin central helix: a theoretical study.
|
| |
Protein Sci,
5,
2044-2053.
|
 |
|
|
|
|
 |
K.S.Akerfeldt,
A.N.Coyne,
R.R.Wilk,
E.Thulin,
and
S.Linse
(1996).
Ca2+-binding stoichiometry of calbindin D28k as assessed by spectroscopic analyses of synthetic peptide fragments.
|
| |
Biochemistry,
35,
3662-3669.
|
 |
|
|
|
|
 |
M.Ikura
(1996).
Calcium binding and conformational response in EF-hand proteins.
|
| |
Trends Biochem Sci,
21,
14-17.
|
 |
|
|
|
|
 |
P.M.Bayley,
W.A.Findlay,
and
S.R.Martin
(1996).
Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences.
|
| |
Protein Sci,
5,
1215-1228.
|
 |
|
|
|
|
 |
P.Mukherjea,
J.F.Maune,
and
K.Beckingham
(1996).
Interlobe communication in multiple calcium-binding site mutants of Drosophila calmodulin.
|
| |
Protein Sci,
5,
468-477.
|
 |
|
|
|
|
 |
S.P.Smith,
K.R.Barber,
S.D.Dunn,
and
G.S.Shaw
(1996).
Structural influence of cation binding to recombinant human brain S100b: evidence for calcium-induced exposure of a hydrophobic surface.
|
| |
Biochemistry,
35,
8805-8814.
|
 |
|
|
|
|
 |
S.R.Martin,
P.M.Bayley,
S.E.Brown,
T.Porumb,
M.Zhang,
and
M.Ikura
(1996).
Spectroscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule.
|
| |
Biochemistry,
35,
3508-3517.
|
 |
|
|
|
|
 |
S.M.Gagné,
S.Tsuda,
M.X.Li,
L.B.Smillie,
and
B.D.Sykes
(1995).
Structures of the troponin C regulatory domains in the apo and calcium-saturated states.
|
| |
Nat Struct Biol,
2,
784-789.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |