spacer
spacer

PDBsum entry 1df1

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1df1

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
420 a.a. *
Ligands
HEM ×2
H4B ×2
ITU ×2
Metals
_ZN ×2
Waters ×218
* Residue conservation analysis
PDB id:
1df1
Name: Oxidoreductase
Title: Murine inosoxy dimer with isothiourea bound in the active site
Structure: Nitric oxide synthase. Chain: a, b. Synonym: nos. Engineered: yes
Source: Mus musculus. House mouse. Organism_taxid: 10090. Cell: macrophage. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
2.35Å     R-factor:   0.223     R-free:   0.298
Authors: B.R.Crane,R.J.Rosenfeld,A.S.Arvai,D.K.Ghosh,S.Ghosh,J.A.Tainer, D.J.Stuehr,E.D.Getzoff
Key ref:
B.R.Crane et al. (1999). N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization. EMBO J, 18, 6271-6281. PubMed id: 10562539 DOI: 10.1093/emboj/18.22.6271
Date:
16-Nov-99     Release date:   08-Dec-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
P29477  (NOS2_MOUSE) -  Nitric oxide synthase, inducible from Mus musculus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1144 a.a.
420 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.14.13.39  - nitric-oxide synthase (NADPH).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 L-arginine + 3 NADPH + 4 O2 + H+ = 2 L-citrulline + 2 nitric oxide + 3 NADP+ + 4 H2O
2 × L-arginine
+ 3 × NADPH
+ 4 × O2
+ H(+)
= 2 × L-citrulline
+ 2 × nitric oxide
+ 3 × NADP(+)
+ 4 × H2O
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1093/emboj/18.22.6271 EMBO J 18:6271-6281 (1999)
PubMed id: 10562539  
 
 
N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization.
B.R.Crane, R.J.Rosenfeld, A.S.Arvai, D.K.Ghosh, S.Ghosh, J.A.Tainer, D.J.Stuehr, E.D.Getzoff.
 
  ABSTRACT  
 
Nitric oxide synthase oxygenase domains (NOS(ox)) must bind tetrahydrobiopterin and dimerize to be active. New crystallographic structures of inducible NOS(ox) reveal that conformational changes in a switch region (residues 103-111) preceding a pterin-binding segment exchange N-terminal beta-hairpin hooks between subunits of the dimer. N-terminal hooks interact primarily with their own subunits in the 'unswapped' structure, and two switch region cysteines (104 and 109) from each subunit ligate a single zinc ion at the dimer interface. N-terminal hooks rearrange from intra- to intersubunit interactions in the 'swapped structure', and Cys109 forms a self-symmetric disulfide bond across the dimer interface. Subunit association and activity are adversely affected by mutations in the N-terminal hook that disrupt interactions across the dimer interface only in the swapped structure. Residue conservation and electrostatic potential at the NOS(ox) molecular surface suggest likely interfaces outside the switch region for electron transfer from the NOS reductase domain. The correlation between three-dimensional domain swapping of the N-terminal hook and metal ion release with disulfide formation may impact inducible nitric oxide synthase (i)NOS stability and regulation in vivo.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 The effect of domain swapping on the N-terminal hook conformation in iNOS[ox]. Ribbon representation of the iNOS[ox] dimer in swapped (A) and unswapped (B) conformations. N-terminal hook regions (cyan and orange) interact primarily with their own subunits (purple and red) in the unswapped conformation, but reach across to associate with the opposite subunit in the swapped conformation. Each heme (yellow bonds) is cupped in the inward-facing palm of the central webbed -sheet of the 'catcher's mitt' subunit fold. A self-symmetric disulfide bond (yellow, bottom center) links the two subunits in the swapped conformation (A). A single zinc ion (gray, bottom center) is bound between the two subunits at the base of the catcher's mitts in the unswapped conformation (B). Two molecules of H[4]B (yellow, center, on edge) are also bound at the interface and line the active-center channels leading to the hemes.
Figure 5.
Figure 5 Potential interaction surfaces of iNOS[ox]. (A and B) Electrostatic potential mapped onto the solvent-accessible molecular surface of the unswapped zinc-bound iNOS[ox] dimer. In the left orientation (A) (matching Figure 1), surface surrounding the exposed heme edge (Region 1) is surrounded by significant positive (blue) electrostatic potential (contoured at 3 kT/q; k = Boltzmann constant, T = temperature, q = 1 point charge), whereas the region surrounding the zinc site [(B), Region 2] (right view, rotated 90° about a horizontal axis) is neutral or negative (red). A pocket adjoining Region 1 and near the heme-ligating thiolate also has significant positive potential and residue conservation (Region 3). (C and D) Solvent-accessible surface of the iNOS[ox] dimer (one subunit red, the other subunit blue) color coded by residue conservation (paler to more saturated represents less conserved to more conserved), based on a group of NOS oxygenase domain sequences representative of known species and isozymes. Conservation of surface residues is most pronounced around the exposed heme edge (Region 1) and in a region proximal to the heme thiolate (Region 3), and is low around the zinc site (Region 2).
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (1999, 18, 6271-6281) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20976204 C.H.Chu, W.C.Lo, H.W.Wang, Y.C.Hsu, J.K.Hwang, P.C.Lyu, T.W.Pai, and C.Y.Tang (2010).
Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques.
  PLoS One, 5, e13361.  
19290671 R.P.Ilagan, J.Tejero, K.S.Aulak, S.S.Ray, C.Hemann, Z.Q.Wang, M.Gangoda, J.L.Zweier, and D.J.Stuehr (2009).
Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase.
  Biochemistry, 48, 3864-3876.  
18849972 E.D.Garcin, A.S.Arvai, R.J.Rosenfeld, M.D.Kroeger, B.R.Crane, G.Andersson, G.Andrews, P.J.Hamley, P.R.Mallinder, D.J.Nicholls, S.A.St-Gallay, A.C.Tinker, N.P.Gensmantel, A.Mete, D.R.Cheshire, S.Connolly, D.J.Stuehr, A.Aberg, A.V.Wallace, J.A.Tainer, and E.D.Getzoff (2008).
Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase.
  Nat Chem Biol, 4, 700-707.
PDB codes: 3e65 3e67 3e68 3e6l 3e6n 3e6o 3e6t 3e7g 3e7i 3e7m 3e7s 3e7t 3eah 3eai 3ebd 3ebf 3ej8
18214952 R.Minai, Y.Matsuo, H.Onuki, and H.Hirota (2008).
Method for comparing the structures of protein ligand-binding sites and application for predicting protein-drug interactions.
  Proteins, 72, 367-381.  
17202141 H.Lei, A.Venkatakrishnan, S.Yu, and A.Kazlauskas (2007).
Protein kinase A-dependent translocation of Hsp90 alpha impairs endothelial nitric-oxide synthase activity in high glucose and diabetes.
  J Biol Chem, 282, 9364-9371.  
17174478 J.J.Perry, L.Fan, and J.A.Tainer (2007).
Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair.
  Neuroscience, 145, 1280-1299.  
16421101 D.Li, E.Y.Hayden, K.Panda, D.J.Stuehr, H.Deng, D.L.Rousseau, and S.R.Yeh (2006).
Regulation of the monomer-dimer equilibrium in inducible nitric-oxide synthase by nitric oxide.
  J Biol Chem, 281, 8197-8204.  
16605249 R.Pejchal, E.Campbell, B.D.Guenther, B.W.Lennon, R.G.Matthews, and M.L.Ludwig (2006).
Structural perturbations in the Ala --> Val polymorphism of methylenetetrahydrofolate reductase: how binding of folates may protect against inactivation.
  Biochemistry, 45, 4808-4818.
PDB codes: 2fmn 2fmo
16411020 R.Sengupta, R.Sahoo, S.S.Ray, T.Dutta, A.Dasgupta, and S.Ghosh (2006).
Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment.
  Mol Cell Biochem, 284, 117-126.  
16133202 M.L.Fernández, M.A.Martí, A.Crespo, and D.A.Estrin (2005).
Proximal effects in the modulation of nitric oxide synthase reactivity: a QM-MM study.
  J Biol Inorg Chem, 10, 595-604.  
15133020 D.J.Stuehr, J.Santolini, Z.Q.Wang, C.C.Wei, and S.Adak (2004).
Update on mechanism and catalytic regulation in the NO synthases.
  J Biol Chem, 279, 36167-36170.  
15451052 D.Mansuy, and J.L.Boucher (2004).
Alternative nitric oxide-producing substrates for NO synthases.
  Free Radic Biol Med, 37, 1105-1121.  
15208315 E.D.Garcin, C.M.Bruns, S.J.Lloyd, D.J.Hosfield, M.Tiso, R.Gachhui, D.J.Stuehr, J.A.Tainer, and E.D.Getzoff (2004).
Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase.
  J Biol Chem, 279, 37918-37927.
PDB code: 1tll
14717702 T.Suzuki, H.Kurita, and H.Ichinose (2004).
GTP cyclohydrolase I utilizes metal-free GTP as its substrate.
  Eur J Biochem, 271, 349-355.  
12499190 J.A.DeVito, and S.Morris (2003).
Exploring the structure and function of the mycobacterial KatG protein using trans-dominant mutants.
  Antimicrob Agents Chemother, 47, 188-195.  
12847099 K.Panda, S.Adak, K.S.Aulak, J.Santolini, J.F.McDonald, and D.J.Stuehr (2003).
Distinct influence of N-terminal elements on neuronal nitric-oxide synthase structure and catalysis.
  J Biol Chem, 278, 37122-37131.  
14510776 W.Zhang, T.Kuncewicz, Z.Y.Yu, L.Zou, X.Xu, and B.C.Kone (2003).
Protein-protein interactions involving inducible nitric oxide synthase.
  Acta Physiol Scand, 179, 137-142.  
12048205 K.Panda, R.J.Rosenfeld, S.Ghosh, A.L.Meade, E.D.Getzoff, and D.J.Stuehr (2002).
Distinct dimer interaction and regulation in nitric-oxide synthase types I, II, and III.
  J Biol Chem, 277, 31020-31030.  
12220171 K.Pant, A.M.Bilwes, S.Adak, D.J.Stuehr, and B.R.Crane (2002).
Structure of a nitric oxide synthase heme protein from Bacillus subtilis.
  Biochemistry, 41, 11071-11079.
PDB codes: 1m7v 1m7z
11756668 S.Adak, A.M.Bilwes, K.Panda, D.Hosfield, K.S.Aulak, J.F.McDonald, J.A.Tainer, E.D.Getzoff, B.R.Crane, and D.J.Stuehr (2002).
Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans.
  Proc Natl Acad Sci U S A, 99, 107-112.  
11856757 S.Adak, K.S.Aulak, and D.J.Stuehr (2002).
Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis.
  J Biol Chem, 277, 16167-16171.  
12081486 W.J.Ingledew, S.M.Smith, J.C.Salerno, and P.R.Rich (2002).
Neuronal nitric oxide synthase ligand and protein vibrations at the substrate binding site. A study by FTIR.
  Biochemistry, 41, 8377-8384.  
11212498 M.David-Dufilho, C.Privat, A.Brunet, M.J.Richard, J.Devynck, and M.A.Devynck (2001).
[Transition metals and nitric oxide production in human endothelial cells].
  C R Acad Sci III, 324, 13-21.  
11274473 P.M.Harrison, H.S.Chan, S.B.Prusiner, and F.E.Cohen (2001).
Conformational propagation with prion-like characteristics in a simple model of protein folding.
  Protein Sci, 10, 819-835.  
10975456 A.W.Munro, P.Taylor, and M.D.Walkinshaw (2000).
Structures of redox enzymes.
  Curr Opin Biotechnol, 11, 369-376.  
10956005 C.Jung, D.J.Stuehr, and D.K.Ghosh (2000).
FT-Infrared spectroscopic studies of the iron ligand CO stretch mode of iNOS oxygenase domain: effect of arginine and tetrahydrobiopterin.
  Biochemistry, 39, 10163-10171.  
11114067 C.Jung (2000).
Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy.
  J Mol Recognit, 13, 325-351.  
10562538 D.K.Ghosh, B.R.Crane, S.Ghosh, D.Wolan, R.Gachhui, C.Crooks, A.Presta, J.A.Tainer, E.D.Getzoff, and D.J.Stuehr (1999).
Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction.
  EMBO J, 18, 6260-6270.
PDB codes: 1dwv 1dww 1dwx
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer