spacer
spacer

PDBsum entry 1deq

Go to PDB code: 
protein links
Blood clotting PDB id
1deq
Contents
Protein chains
180 a.a.* *
380 a.a.* *
370 a.a.* *
90 a.a.* *
* Residue conservation analysis
* C-alpha coords only
PDB id:
1deq
Name: Blood clotting
Title: The crystal structure of modified bovine fibrinogen (at ~4 angstrom resolution)
Structure: Fibrinogen (alpha chain). Chain: a, d, n, q. Fragment: pseudomonas aeruginosa ps-1-modified fragment. Fibrinogen (beta chain). Chain: b, e, o, r. Fragment: pseudomonas aeruginosa ps-1-modified fragment. Fibrinogen (gamma chain). Chain: c, f, p, s. Fragment: pseudomonas aeruginosa ps-1-modified fragment.
Source: Bos taurus. Cattle. Organism_taxid: 9913. Organism_taxid: 9913
Biol. unit: Heptamer (from PQS)
Resolution:
3.50Å     R-factor:   0.257     R-free:   0.370
Authors: J.H.Brown,N.Volkmann,G.Jun,A.H.Henschen-Edman,C.Cohen
Key ref:
J.H.Brown et al. (2000). The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci U S A, 97, 85-90. PubMed id: 10618375 DOI: 10.1073/pnas.97.1.85
Date:
15-Nov-99     Release date:   02-Feb-00    
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P02672  (FIBA_BOVIN) -  Fibrinogen alpha chain from Bos taurus
Seq:
Struc:
 
Seq:
Struc:
615 a.a.
180 a.a.*
Protein chains
Pfam   ArchSchema ?
P02676  (FIBB_BOVIN) -  Fibrinogen beta chain from Bos taurus
Seq:
Struc:
468 a.a.
380 a.a.*
Protein chains
Pfam   ArchSchema ?
P12799  (FIBG_BOVIN) -  Fibrinogen gamma-B chain from Bos taurus
Seq:
Struc:
444 a.a.
370 a.a.*
Protein chains
No UniProt id for this chain
Struc: 90 a.a.
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 12 residue positions (black crosses)

 

 
    reference    
 
 
DOI no: 10.1073/pnas.97.1.85 Proc Natl Acad Sci U S A 97:85-90 (2000)
PubMed id: 10618375  
 
 
The crystal structure of modified bovine fibrinogen.
J.H.Brown, N.Volkmann, G.Jun, A.H.Henschen-Edman, C.Cohen.
 
  ABSTRACT  
 
Here we report the crystal structure at approximately 4-A resolution of a selectively proteolyzed bovine fibrinogen. This key component in hemostasis is an elongated 340-kDa glycoprotein in the plasma that upon activation by thrombin self-assembles to form the fibrin clot. The crystals are unusual because they are made up of end-to-end bonded molecules that form flexible filaments. We have visualized the entire coiled-coil region of the molecule, which has a planar sigmoidal shape. The primary polymerization receptor pockets at the ends of the molecule face the same way throughout the end-to-end bonded filaments, and based on this conformation, we have developed an improved model of the two-stranded protofibril that is the basic building block in fibrin. Near the middle of the coiled-coil region, the plasmin-sensitive segment is a hinge about which the molecule adopts different conformations. This segment also includes the boundary between the three- and four-stranded portions of the coiled coil, indicating the location on the backbone that anchors the extended flexible Aalpha arm. We suggest that a flexible branch point in the molecule may help accommodate variability in the structure of the fibrin clot.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Conformational flexibility of fibrinogen in the crystals. The diagrams show superpositions of noncrystallographically related fibrinogen molecules based on the least-squares fit of the relatively rigid coiled-coil segment: A 104-A 154, B 140-B 190, 77- 127. Among the different noncrystallographically related copies, the rms difference between the coordinates of this segment is about half that of the backbone's most flexible segment: A 64-A 114, B 100-B 150, 37- 87. (a) View, as in Fig. 1a, of one pair of molecules whose conformations differ primarily by bending within the plane of the sigmoidal coiled-coil axis. (b) View, as in Fig. 1b, of a different pair of molecules whose conformations differ primarily by bending out of the plane of the sigmoidal axis.
Figure 3.
Fig. 3. Conserved end-to-end molecular interactions. (a) Superposition of six -domain dimers derived from the various crystals of modified bovine fibrinogen (red) and human fragment D and crosslinked D-dimer (blue) (24, 25) show the domains to be similarly "offset" from one another. This feature can be visualized by noting, for example, that 264 of the right monomer is interacting at the edge of the - interface whereas in the left monomer it is interacting at the center of the interface. No significant difference in the offset is found among the three bovine -domain dimers or among the three human -domain dimers (pooled intra-species SD is 0.455 Å). Interspecies amino acid differences at or near the interface (e.g., 264, which is methionine in human and serine in bovine fibrinogen) probably perturb the docking of the domains, creating a slightly less staggered offset ( 1.7-Å rms difference) in the bovine -dimer relative to that in the human dimer. (b) Crystal structure of an end-to-end bonded fibrinogen filament. All -domain receptor pockets (shown by arrows) are on the same face of the extended filament.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19058845 C.R.Carlisle, C.Coulais, M.Namboothiry, D.L.Carroll, R.R.Hantgan, and M.Guthold (2009).
The mechanical properties of individual, electrospun fibrinogen fibers.
  Biomaterials, 30, 1205-1213.  
19928926 G.Tsurupa, R.R.Hantgan, R.A.Burton, I.Pechik, N.Tjandra, and L.Medved (2009).
Structure, stability, and interaction of the fibrin(ogen) alphaC-domains.
  Biochemistry, 48, 12191-12201.  
19630789 J.K.Ryu, D.Davalos, and K.Akassoglou (2009).
Fibrinogen signal transduction in the nervous system.
  J Thromb Haemost, 7, 151-154.  
  19718461 J.W.Weisel (2009).
Why dysfibrinogenaemias still matter.
  Thromb Haemost, 102, 426-427.  
19036059 L.Medved, and J.W.Weisel (2009).
Recommendations for nomenclature on fibrinogen and fibrin.
  J Thromb Haemost, 7, 355-359.  
19052234 E.T.O'Brien, M.R.Falvo, D.Millard, B.Eastwood, R.M.Taylor, and R.Superfine (2008).
Ultrathin self-assembled fibrin sheets.
  Proc Natl Acad Sci U S A, 105, 19438-19443.  
18567052 V.Castelletto, G.E.Newby, and I.W.Hamley (2008).
Interactions of KLVFF-PEG peptide conjugate with fibrinogen in neutral aqueous solutions.
  Macromol Biosci, 8, 1182-1189.  
17172299 A.E.Brown, R.I.Litvinov, D.E.Discher, and J.W.Weisel (2007).
Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM.
  Biophys J, 92, L39-L41.  
17582492 E.A.Scott, and D.L.Elbert (2007).
Mass spectrometric mapping of fibrinogen conformations at poly(ethylene terephthalate) interfaces.
  Biomaterials, 28, 3904-3917.  
17952642 M.Guthold, W.Liu, E.A.Sparks, L.M.Jawerth, L.Peng, M.Falvo, R.Superfine, R.R.Hantgan, and S.T.Lord (2007).
A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.
  Cell Biochem Biophys, 49, 165-181.  
17590019 R.A.Burton, G.Tsurupa, R.R.Hantgan, N.Tjandra, and L.Medved (2007).
NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment.
  Biochemistry, 46, 8550-8560.
PDB code: 2jor
17630702 R.I.Litvinov, S.Yakovlev, G.Tsurupa, O.V.Gorkun, L.Medved, and J.W.Weisel (2007).
Direct evidence for specific interactions of the fibrinogen alphaC-domains with the central E region and with each other.
  Biochemistry, 46, 9133-9142.  
17555455 V.H.Flood, C.Nagaswami, I.N.Chernysh, H.A.Al-Mondhiry, J.W.Weisel, and D.H.Farrell (2007).
Incorporation of fibrin molecules containing fibrinopeptide A alters clot ultrastructure and decreases permeability.
  Br J Haematol, 138, 117-124.  
16533041 I.Pechik, S.Yakovlev, M.W.Mosesson, G.L.Gilliland, and L.Medved (2006).
Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly.
  Biochemistry, 45, 3588-3597.
PDB code: 2a45
16373473 J.H.Brown (2006).
Breaking symmetry in protein dimers: designs and functions.
  Protein Sci, 15, 1.  
16230339 P.Panizzi, R.Friedrich, P.Fuentes-Prior, K.Richter, P.E.Bock, and W.Bode (2006).
Fibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes.
  J Biol Chem, 281, 1179-1187.  
16475814 R.A.Burton, G.Tsurupa, L.Medved, and N.Tjandra (2006).
Identification of an ordered compact structure within the recombinant bovine fibrinogen alphaC-domain fragment by NMR.
  Biochemistry, 45, 2257-2266.
PDB code: 2baf
16999847 R.Asselta, S.Duga, and M.L.Tenchini (2006).
The molecular basis of quantitative fibrinogen disorders.
  J Thromb Haemost, 4, 2115-2129.  
16288455 R.F.Doolittle, and J.M.Kollman (2006).
Natively unfolded regions of the vertebrate fibrinogen molecule.
  Proteins, 63, 391-397.  
16470353 S.B.Kim, D.W.Lee, C.I.Cheigh, E.A.Choe, S.J.Lee, Y.H.Hong, H.J.Choi, and Y.R.Pyun (2006).
Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh.
  J Ind Microbiol Biotechnol, 33, 436-444.  
17084722 S.Ohnishi, E.S.Garfein, S.J.Karp, and J.V.Frangioni (2006).
Radiolabeled and near-infrared fluorescent fibrinogen derivatives create a system for the identification and repair of obscure gastrointestinal bleeding.
  Surgery, 140, 785-792.  
16879216 T.Sugo, H.Endo, M.Matsuda, T.Ohmori, S.Madoiwa, J.Mimuro, and Y.Sakata (2006).
A classification of the fibrin network structures formed from the hereditary dysfibrinogens.
  J Thromb Haemost, 4, 1738-1746.  
15967976 J.P.Collet, H.Shuman, R.E.Ledger, S.Lee, and J.W.Weisel (2005).
The elasticity of an individual fibrin fiber in a clot.
  Proc Natl Acad Sci U S A, 102, 9133-9137.  
15238080 B.Rubin, and G.Sønderstrup (2004).
Citrullination of self-proteins and autoimmunity.
  Scand J Immunol, 60, 112-120.  
15257013 D.H.Farrell (2004).
Pathophysiologic roles of the fibrinogen gamma chain.
  Curr Opin Hematol, 11, 151-155.  
15009453 J.W.Weisel (2004).
Cross-linked gamma-chains in fibrin fibrils bridge transversely between strands: no.
  J Thromb Haemost, 2, 394-399.  
15465869 M.Guthold, W.Liu, B.Stephens, S.T.Lord, R.R.Hantgan, D.A.Erie, R.M.Taylor, and R.Superfine (2004).
Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3.
  Biophys J, 87, 4226-4236.  
15099268 R.F.Doolittle (2004).
Determining the crystal structure of fibrinogen.
  J Thromb Haemost, 2, 683-689.  
14567695 A.Profumo, M.Turci, G.Damonte, F.Ferri, D.Magatti, B.Cardinali, C.Cuniberti, and M.Rocco (2003).
Kinetics of fibrinopeptide release by thrombin as a function of CaCl2 concentration: different susceptibility of FPA and FPB and evidence for a fibrinogen isoform-specific effect at physiological Ca2+ concentration.
  Biochemistry, 42, 12335-12348.  
14519075 C.A.Staton, N.J.Brown, and C.E.Lewis (2003).
The role of fibrinogen and related fragments in tumour angiogenesis and metastasis.
  Expert Opin Biol Ther, 3, 1105-1120.  
12871291 R.F.Doolittle (2003).
X-ray crystallographic studies on fibrinogen and fibrin.
  J Thromb Haemost, 1, 1559-1565.  
12490209 R.F.Doolittle (2003).
Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography.
  Blood Rev, 17, 33-41.  
12241390 F.Ferri, M.Greco, G.Arcòvito, M.De Spirito, and M.Rocco (2002).
Structure of fibrin gels studied by elastic light scattering techniques: dependence of fractal dimension, gel crossover length, fiber diameter, and fiber density on monomer concentration.
  Phys Rev E Stat Nonlin Soft Matter Phys, 66, 011913.  
12009908 G.Tsurupa, L.Tsonev, and L.Medved (2002).
Structural organization of the fibrin(ogen) alpha C-domain.
  Biochemistry, 41, 6449-6459.  
11877740 H.S.Park, C.Kim, and Y.K.Kang (2002).
Preferred conformations of RGDX tetrapeptides to inhibit the binding of fibrinogen to platelets.
  Biopolymers, 63, 298-313.  
11928820 K.Akassoglou, and S.Strickland (2002).
Nervous system pathology: the fibrin perspective.
  Biol Chem, 383, 37-45.  
12089331 S.Akhter, A.Vignini, Z.Wen, A.English, P.G.Wang, and B.Mutus (2002).
Evidence for S-nitrosothiol-dependent changes in fibrinogen that do not involve transnitrosation or thiolation.
  Proc Natl Acad Sci U S A, 99, 9172-9177.  
  12617173 S.J.Everse (2002).
New insights into fibrin (ogen) structure and function.
  Vox Sang, 83, 375-382.  
12162736 Z.Yang, G.Spraggon, L.Pandi, S.J.Everse, M.Riley, and R.F.Doolittle (2002).
Crystal structure of fragment D from lamprey fibrinogen complexed with the peptide Gly-His-Arg-Pro-amide.
  Biochemistry, 41, 10218-10224.
PDB code: 1lwu
11308648 F.Ferri, M.Greco, G.Arcovito, F.A.Bassi, M.De Spirito, E.Paganini, and M.Rocco (2001).
Growth kinetics and structure of fibrin gels.
  Phys Rev E Stat Nonlin Soft Matter Phys, 63, 031401.  
11593005 J.Madrazo, J.H.Brown, S.Litvinovich, R.Dominguez, S.Yakovlev, L.Medved, and C.Cohen (2001).
Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4-A resolution.
  Proc Natl Acad Sci U S A, 98, 11967-11972.
PDB codes: 1jy2 1jy3
11123898 S.Yakovlev, E.Makogonenko, N.Kurochkina, W.Nieuwenhuizen, K.Ingham, and L.Medved (2000).
Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites.
  Biochemistry, 39, 15730-15741.  
10737772 Z.Yang, I.Mochalkin, L.Veerapandian, M.Riley, and R.F.Doolittle (2000).
Crystal structure of native chicken fibrinogen at 5.5-A resolution.
  Proc Natl Acad Sci U S A, 97, 3907-3912.
PDB code: 1ei3
11121023 Z.Yang, I.Mochalkin, and R.F.Doolittle (2000).
A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides.
  Proc Natl Acad Sci U S A, 97, 14156-14161.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer