PDBsum entry 1d01

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Apoptosis PDB id
Protein chain
(+ 0 more) 168 a.a. *
Waters ×827
* Residue conservation analysis
PDB id:
Name: Apoptosis
Title: Structure of tnf receptor associated factor 2 in complex with a human cd30 peptide
Structure: Tumor necrosis factor receptor associated factor 2. Chain: a, b, c, d, e, f. Fragment: traf domain. Synonym: traf2. Engineered: yes. Cd30 peptide. Chain: g, h, i. Fragment: traf-binding sequence.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: this peptide was chemically synthesized. The sequence of this peptide naturally occurs in humans (homo sapiens)
Biol. unit: Hexamer (from PQS)
2.00Å     R-factor:   0.220     R-free:   0.244
Authors: H.Ye,Y.C.Park,M.Kreishman,E.Kieff,H.Wu
Key ref:
H.Ye et al. (1999). The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell, 4, 321-330. PubMed id: 10518213 DOI: 10.1016/S1097-2765(00)80334-2
07-Sep-99     Release date:   02-Dec-03    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
Q12933  (TRAF2_HUMAN) -  TNF receptor-associated factor 2
501 a.a.
168 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     regulation of apoptotic process   5 terms 
  Biochemical function     ubiquitin-protein ligase activity     1 term  


DOI no: 10.1016/S1097-2765(00)80334-2 Mol Cell 4:321-330 (1999)
PubMed id: 10518213  
The structural basis for the recognition of diverse receptor sequences by TRAF2.
H.Ye, Y.C.Park, M.Kreishman, E.Kieff, H.Wu.
Many members of the tumor necrosis factor receptor (TNFR) superfamily initiate intracellular signaling by recruiting TNFR-associated factors (TRAFs) through their cytoplasmic tails. TRAFs apparently recognize highly diverse receptor sequences. Crystal structures of the TRAF domain of human TRAF2 in complex with peptides from the TNFR family members CD40, CD30, Ox40, 4-1BB, and the EBV oncoprotein LMP1 revealed a conserved binding mode. A major TRAF2-binding consensus sequence, (P/S/A/T)x(Q/E)E, and a minor consensus motif, PxQxxD, can be defined from the structural analysis, which encompass all known TRAF2-binding sequences. The structural information provides a template for the further dissection of receptor binding specificity of TRAF2 and for the understanding of the complexity of TRAF-mediated signal transduction.
  Selected figure(s)  
Figure 3.
Figure 3. Detailed Interactions for the Major Consensus Motif (P/S/A/T)x(Q/E)EShown is the stereo diagram of the interaction between the TRAF domain and the CD40 peptide, with the molecular 3-fold axis vertical. The TRAF domain is represented by purple worm-and-stick models, with carbon atoms in gray. The peptide is shown as a stick model, with carbon atoms in yellow. The side chain at the P[−1] position and the entire chain after the amide of the P[2] position are omitted for clarity. The conformations of the two CD40 peptides with different lengths (Table 1) are essentially identical. Atoms within hydrogen-bonding distances are connected with black dotted lines. The β strands in the path of the peptide and selected residues in the TRAF domain are labeled. Note the interactions at the P[−2], P[0], and P[1] positions of the peptide.
Figure 5.
Figure 5. A Model for the Activated TRAF–Receptor ComplexThe atomic coordinates for the complex between a TNF-like ligand and a TNFR were taken from PDB entry 1tnr and are shown as thin worms (green, light blue, and darker blue) for the ligand and thick worms (pink, orange, and blue) for the receptor. The TRAF domain structure from the CD40 complex is shown as ribbon traces, with the β strands in green, cyan, and dark blue for each of the protomers of the trimer. The receptor peptides (pink, orange, and blue) are shown as the CD40 peptide with an extended amino terminus from the CD30 peptide. Dotted lines are used to connect the extracellular and the intracellular portions of the receptor. The amino-terminal RING and zinc finger domains of the TRAF trimer are shown as green ovals. Cell membrane is represented in yellow.
  The above figures are reprinted by permission from Cell Press: Mol Cell (1999, 4, 321-330) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22728658 C.Shu, G.Yi, T.Watts, C.C.Kao, and P.Li (2012).
Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system.
  Nat Struct Mol Biol, 19, 722-724.
PDB codes: 4emt 4emu
21135870 C.Zheng, Q.Yin, and H.Wu (2011).
Structural studies of NF-κB signaling.
  Cell Res, 21, 183-195.  
20946164 J.F.Arthur, Y.Shen, E.E.Gardiner, L.Coleman, D.Kenny, R.K.Andrews, and M.C.Berndt (2011).
TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets.
  J Thromb Haemost, 9, 163-172.  
21146412 N.E.Davey, G.Travé, and T.J.Gibson (2011).
How viruses hijack cell regulation.
  Trends Biochem Sci, 36, 159-169.  
20012905 A.W.Ho, and S.L.Gaffen (2010).
IL-17RC: a partner in IL-17 signaling and beyond.
  Semin Immunopathol, 32, 33-42.  
20820770 B.Pruvot, V.Laurens, F.Salvadori, E.Solary, L.Pichon, and J.Chluba (2010).
Comparative analysis of nonaspanin protein sequences and expression studies in zebrafish.
  Immunogenetics, 62, 681-699.  
19680262 J.Silke, and R.Brink (2010).
Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs.
  Cell Death Differ, 17, 35-45.  
20512936 K.Z.Wang, D.L.Galson, and P.E.Auron (2010).
TRAF6 is autoinhibited by an intramolecular interaction which is counteracted by trans-ubiquitination.
  J Cell Biochem, 110, 763-771.  
20307208 M.Croft (2010).
Control of immunity by the TNFR-related molecule OX40 (CD134).
  Annu Rev Immunol, 28, 57-78.  
19228877 H.H.Jabara, Y.Weng, T.Sannikova, and R.S.Geha (2009).
TRAF2 and TRAF3 independently mediate Ig class switching driven by CD40.
  Int Immunol, 21, 477-488.  
19815541 J.E.Vince, D.Pantaki, R.Feltham, P.D.Mace, S.M.Cordier, A.C.Schmukle, A.J.Davidson, B.A.Callus, W.W.Wong, I.E.Gentle, H.Carter, E.F.Lee, H.Walczak, C.L.Day, D.L.Vaux, and J.Silke (2009).
TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis.
  J Biol Chem, 284, 35906-35915.  
19667091 J.P.Graham, C.R.Moore, and G.A.Bishop (2009).
Roles of the TRAF2/3 binding site in differential B cell signaling by CD40 and its viral oncogenic mimic, LMP1.
  J Immunol, 183, 2966-2973.  
19426233 K.Chattopadhyay, E.Lazar-Molnar, Q.Yan, R.Rubinstein, C.Zhan, V.Vigdorovich, U.A.Ramagopal, J.Bonanno, S.G.Nathenson, and S.C.Almo (2009).
Sequence, structure, function, immunity: structural genomics of costimulation.
  Immunol Rev, 229, 356-386.  
19426222 M.Croft, T.So, W.Duan, and P.Soroosh (2009).
The significance of OX40 and OX40L to T-cell biology and immune disease.
  Immunol Rev, 229, 173-191.  
18635759 A.Matsuzawa, P.H.Tseng, S.Vallabhapurapu, J.L.Luo, W.Zhang, H.Wang, D.A.Vignali, E.Gallagher, and M.Karin (2008).
Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex.
  Science, 321, 663-668.  
18596940 A.Stein, and P.Aloy (2008).
Contextual specificity in peptide-mediated protein interactions.
  PLoS ONE, 3, e2524.  
18544535 H.Z.Ozsoy, N.Sivasubramanian, E.D.Wieder, S.Pedersen, and D.L.Mann (2008).
Oxidative Stress Promotes Ligand-independent and Enhanced Ligand-dependent Tumor Necrosis Factor Receptor Signaling.
  J Biol Chem, 283, 23419-23428.  
18606850 J.E.Vince, D.Chau, B.Callus, W.W.Wong, C.J.Hawkins, P.Schneider, M.McKinlay, C.A.Benetatos, S.M.Condon, S.K.Chunduru, G.Yeoh, R.Brink, D.L.Vaux, and J.Silke (2008).
TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha.
  J Cell Biol, 182, 171-184.  
18182486 K.Chattopadhyay, U.A.Ramagopal, M.Brenowitz, S.G.Nathenson, and S.C.Almo (2008).
Evolution of GITRL immune function: murine GITRL exhibits unique structural and biochemical properties within the TNF superfamily.
  Proc Natl Acad Sci U S A, 105, 635-640.
PDB codes: 2qdn 3b9i
18485060 Y.Liu, F.Wang, H.Zhang, H.He, L.Ma, and X.W.Deng (2008).
Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development.
  Plant J, 55, 844-856.  
17449269 F.K.Chan (2007).
Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling.
  Cytokine, 37, 101-107.  
18040044 K.Chattopadhyay, U.A.Ramagopal, A.Mukhopadhaya, V.N.Malashkevich, T.P.Dilorenzo, M.Brenowitz, S.G.Nathenson, and S.C.Almo (2007).
Assembly and structural properties of glucocorticoid-induced TNF receptor ligand: Implications for function.
  Proc Natl Acad Sci U S A, 104, 19452-19457.
PDB codes: 2q1m 2r30 2r32
16402859 M.Hu, L.Gu, M.Li, P.D.Jeffrey, W.Gu, and Y.Shi (2006).
Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway.
  PLoS Biol, 4, e27.
PDB codes: 2f1w 2f1x 2f1y 2f1z
16855291 N.E.Davey, D.C.Shields, and R.J.Edwards (2006).
SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent.
  Nucleic Acids Res, 34, 3546-3554.  
16282325 T.Samuel, K.Welsh, T.Lober, S.H.Togo, J.M.Zapata, and J.C.Reed (2006).
Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of tumor necrosis factor receptor-associated factor 2 and second mitochondrial activator of caspases.
  J Biol Chem, 281, 1080-1090.  
16928765 V.Soni, T.Yasui, E.Cahir-McFarland, and E.Kieff (2006).
LMP1 transmembrane domain 1 and 2 (TM1-2) FWLY mediates intermolecular interactions with TM3-6 to activate NF-kappaB.
  J Virol, 80, 10787-10793.  
16474402 Y.Sheng, V.Saridakis, F.Sarkari, S.Duan, T.Wu, C.H.Arrowsmith, and L.Frappier (2006).
Molecular recognition of p53 and MDM2 by USP7/HAUSP.
  Nat Struct Mol Biol, 13, 285-291.
PDB codes: 2foj 2foo 2fop
16636664 Y.Wu, Y.Fan, B.Xue, L.Luo, J.Shen, S.Zhang, Y.Jiang, and Z.Yin (2006).
Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals.
  Oncogene, 25, 5787-5800.  
16020544 A.P.Grech, S.Gardam, T.Chan, R.Quinn, R.Gonzales, A.Basten, and R.Brink (2005).
Tumor necrosis factor receptor 2 (TNFR2) signaling is negatively regulated by a novel, carboxyl-terminal TNFR-associated factor 2 (TRAF2)-binding site.
  J Biol Chem, 280, 31572-31581.  
16234979 K.Kanazawa, and A.Kudo (2005).
Self-assembled RANK induces osteoclastogenesis ligand-independently.
  J Bone Miner Res, 20, 2053-2060.  
16009714 S.Wu, P.Xie, K.Welsh, C.Li, C.Z.Ni, X.Zhu, J.C.Reed, A.C.Satterthwait, G.A.Bishop, and K.R.Ely (2005).
LMP1 protein from the Epstein-Barr virus is a structural CD40 decoy in B lymphocytes for binding to TRAF3.
  J Biol Chem, 280, 33620-33626.
PDB code: 1zms
15771565 T.H.Watts (2005).
TNF/TNFR family members in costimulation of T cell responses.
  Annu Rev Immunol, 23, 23-68.  
15808506 V.Saridakis, Y.Sheng, F.Sarkari, M.N.Holowaty, K.Shire, T.Nguyen, R.G.Zhang, J.Liao, W.Lee, A.M.Edwards, C.H.Arrowsmith, and L.Frappier (2005).
Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization.
  Mol Cell, 18, 25-36.
PDB codes: 1yy6 1yze
15459669 G.A.Bishop (2004).
The multifaceted roles of TRAFs in the regulation of B-cell function.
  Nat Rev Immunol, 4, 775-786.  
15121867 J.Gil, M.A.García, P.Gomez-Puertas, S.Guerra, J.Rullas, H.Nakano, J.Alcamí, and M.Esteban (2004).
TRAF family proteins link PKR with NF-kappa B activation.
  Mol Cell Biol, 24, 4502-4512.  
15341735 K.Saito, T.Kigawa, S.Koshiba, K.Sato, Y.Matsuo, A.Sakamoto, T.Takagi, M.Shirouzu, T.Yabuki, E.Nunokawa, E.Seki, T.Matsuda, M.Aoki, Y.Miyata, N.Hirakawa, M.Inoue, T.Terada, T.Nagase, R.Kikuno, M.Nakayama, O.Ohara, A.Tanaka, and S.Yokoyama (2004).
The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKgamma.
  Structure, 12, 1719-1728.
PDB code: 1ixd
15093542 R.Horie, M.Watanabe, T.Ishida, T.Koiwa, S.Aizawa, K.Itoh, M.Higashihara, M.E.Kadin, and T.Watanabe (2004).
The NPM-ALK oncoprotein abrogates CD30 signaling and constitutive NF-kappaB activation in anaplastic large cell lymphoma.
  Cancer Cell, 5, 353-364.  
14695890 T.Yasui, M.Luftig, V.Soni, and E.Kieff (2004).
Latent infection membrane protein transmembrane FWLY is critical for intermolecular interaction, raft localization, and signaling.
  Proc Natl Acad Sci U S A, 101, 278-283.  
12502848 A.G.Eliopoulos, E.R.Waites, S.M.Blake, C.Davies, P.Murray, and L.S.Young (2003).
TRAF1 is a critical regulator of JNK signaling by the TRAF-binding domain of the Epstein-Barr virus-encoded latent infection membrane protein 1 but not CD40.
  J Virol, 77, 1316-1328.  
12917691 A.Kovalenko, C.Chable-Bessia, G.Cantarella, A.Israël, D.Wallach, and G.Courtois (2003).
The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination.
  Nature, 424, 801-805.  
14517219 C.Li, P.S.Norris, C.Z.Ni, M.L.Havert, E.M.Chiong, B.R.Tran, E.Cabezas, J.C.Reed, A.C.Satterthwait, C.F.Ware, and K.R.Ely (2003).
Structurally distinct recognition motifs in lymphotoxin-beta receptor and CD40 for tumor necrosis factor receptor-associated factor (TRAF)-mediated signaling.
  J Biol Chem, 278, 50523-50529.
PDB code: 1rf3
12774919 I.S.Lee, S.H.Kim, H.G.Song, and S.H.Park (2003).
The molecular basis for the generation of Hodgkin and Reed-Sternberg cells in Hodgkin's lymphoma.
  Int J Hematol, 77, 330-335.  
12783577 J.M.Zapata (2003).
TNF-receptor-associated factors as targets for drug development.
  Expert Opin Ther Targets, 7, 411-425.  
12960157 L.F.Lu, W.J.Cook, L.L.Lin, and R.J.Noelle (2003).
CD40 signaling through a newly identified tumor necrosis factor receptor-associated factor 2 (TRAF2) binding site.
  J Biol Chem, 278, 45414-45418.  
12645006 O.V.Moroz, G.G.Dodson, K.S.Wilson, E.Lukanidin, and I.B.Bronstein (2003).
Multiple structural states of S100A12: A key to its functional diversity.
  Microsc Res Tech, 60, 581-592.  
12787559 P.W.Dempsey, S.E.Doyle, J.Q.He, and G.Cheng (2003).
The signaling adaptors and pathways activated by TNF superfamily.
  Cytokine Growth Factor Rev, 14, 193-209.  
14585990 S.M.Soond, J.L.Terry, J.D.Colbert, and D.W.Riches (2003).
TRUSS, a novel tumor necrosis factor receptor 1 scaffolding protein that mediates activation of the transcription factor NF-kappaB.
  Mol Cell Biol, 23, 8334-8344.  
12787562 S.R.Wiley, and J.A.Winkles (2003).
TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor.
  Cytokine Growth Factor Rev, 14, 241-249.  
12702867 T.Pawson, and P.Nash (2003).
Assembly of cell regulatory systems through protein interaction domains.
  Science, 300, 445-452.  
12215450 A.Krippner-Heidenreich, F.Tübing, S.Bryde, S.Willi, G.Zimmermann, and P.Scheurich (2002).
Control of receptor-induced signaling complex formation by the kinetics of ligand/receptor interaction.
  J Biol Chem, 277, 44155-44163.  
12005438 C.Li, C.Z.Ni, M.L.Havert, E.Cabezas, J.He, D.Kaiser, J.C.Reed, A.C.Satterthwait, G.Cheng, and K.R.Ely (2002).
Downstream regulator TANK binds to the CD40 recognition site on TRAF3.
  Structure, 10, 403-411.
PDB codes: 1kzz 1l0a
12136149 C.Z.Ni, K.Welsh, J.Zheng, M.Havert, J.C.Reed, and K.R.Ely (2002).
Crystallization and preliminary X-ray analysis of the TRAF domain of TRAF3.
  Acta Crystallogr D Biol Crystallogr, 58, 1340-1342.  
12084706 H.Kanda, T.Igaki, H.Kanuka, T.Yagi, and M.Miura (2002).
Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling.
  J Biol Chem, 277, 28372-28375.  
12140561 H.Ye, J.R.Arron, B.Lamothe, M.Cirilli, T.Kobayashi, N.K.Shevde, D.Segal, O.K.Dzivenu, M.Vologodskaia, M.Yim, K.Du, S.Singh, J.W.Pike, B.G.Darnay, Y.Choi, and H.Wu (2002).
Distinct molecular mechanism for initiating TRAF6 signalling.
  Nature, 418, 443-447.
PDB codes: 1lb4 1lb5 1lb6
12351847 H.Ye, M.Cirilli, and H.Wu (2002).
The use of construct variation and diffraction data analysis in the crystallization of the TRAF domain of human tumor necrosis factor receptor associated factor 6.
  Acta Crystallogr D Biol Crystallogr, 58, 1886-1888.  
11753426 J.C.Reed, and K.R.Ely (2002).
Degrading liaisons: Siah structure revealed.
  Nat Struct Biol, 9, 8.  
12370254 J.R.Arron, Y.Pewzner-Jung, M.C.Walsh, T.Kobayashi, and Y.Choi (2002).
Regulation of the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF)2 by TRAF1 reveals mechanisms of TRAF2 signaling.
  J Exp Med, 196, 923-934.  
12447905 K.R.Ely, and C.Li (2002).
Structurally adaptive hot spots at a protein interaction interface on TRAF3.
  J Mol Recognit, 15, 286-290.  
11856825 O.V.Moroz, A.A.Antson, E.J.Dodson, H.J.Burrell, S.J.Grist, R.M.Lloyd, N.J.Maitland, G.G.Dodson, K.S.Wilson, E.Lukanidin, and I.B.Bronstein (2002).
The structure of S100A12 in a hexameric form and its proposed role in receptor signalling.
  Acta Crystallogr D Biol Crystallogr, 58, 407-413.
PDB code: 1gqm
11777919 P.Xia, L.Wang, P.A.Moretti, N.Albanese, F.Chai, S.M.Pitson, R.J.D'Andrea, J.R.Gamble, and M.A.Vadas (2002).
Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling.
  J Biol Chem, 277, 7996-8003.  
12270937 S.K.Sinha, S.Zachariah, H.I.Quiñones, M.Shindo, and P.M.Chaudhary (2002).
Role of TRAF3 and -6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor.
  J Biol Chem, 277, 44953-44961.  
11669605 A.G.Eliopoulos, and L.S.Young (2001).
LMP1 structure and signal transduction.
  Semin Cancer Biol, 11, 435-444.  
11562359 B.G.Werneburg, S.J.Zoog, T.T.Dang, M.R.Kehry, and J.J.Crute (2001).
Molecular characterization of CD40 signaling intermediates.
  J Biol Chem, 276, 43334-43342.  
11239407 R.M.Locksley, N.Killeen, and M.J.Lenardo (2001).
The TNF and TNF receptor superfamilies: integrating mammalian biology.
  Cell, 104, 487-501.  
11598011 U.Schultheiss, S.Püschner, E.Kremmer, T.W.Mak, H.Engelmann, W.Hammerschmidt, and A.Kieser (2001).
TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1.
  EMBO J, 20, 5678-5691.  
11158621 Y.Cho, J.Ramer, P.Rivailler, C.Quink, R.L.Garber, D.R.Beier, and F.Wang (2001).
An Epstein-Barr-related herpesvirus from marmoset lymphomas.
  Proc Natl Acad Sci U S A, 98, 1224-1229.  
  11257231 Y.Huang, Y.C.Park, R.L.Rich, D.Segal, D.G.Myszka, and H.Wu (2001).
Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain.
  Cell, 104, 781-790.
PDB code: 1i4o
10984535 C.Z.Ni, K.Welsh, E.Leo, C.K.Chiou, H.Wu, J.C.Reed, and K.R.Ely (2000).
Molecular basis for CD40 signaling mediated by TRAF3.
  Proc Natl Acad Sci U S A, 97, 10395-10399.
PDB codes: 1flk 1fll
11114500 E.Y.Jones (2000).
The tumour necrosis factor receptor family: life or death choices.
  Curr Opin Struct Biol, 10, 644-648.  
10798444 G.Nocentini, A.Bartoli, S.Ronchetti, L.Giunchi, A.Cupelli, D.Delfino, G.Migliorati, and C.Riccardi (2000).
Gene structure and chromosomal assignment of mouse GITR, a member of the tumor necrosis factor/nerve growth factor receptor family.
  DNA Cell Biol, 19, 205-217.  
10908665 H.Ye, and H.Wu (2000).
Thermodynamic characterization of the interaction between TRAF2 and tumor necrosis factor receptor peptides by isothermal titration calorimetry.
  Proc Natl Acad Sci U S A, 97, 8961-8966.  
11070160 K.F.Chan, M.R.Siegel, and J.M.Lenardo (2000).
Signaling by the TNF receptor superfamily and T cell homeostasis.
  Immunity, 13, 419-422.  
10747026 L.Sanz, M.T.Diaz-Meco, H.Nakano, and J.Moscat (2000).
The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway.
  EMBO J, 19, 1576-1586.  
10892748 Y.C.Park, H.Ye, C.Hsia, D.Segal, R.L.Rich, H.C.Liou, D.G.Myszka, and H.Wu (2000).
A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction.
  Cell, 101, 777-787.
PDB code: 1f3v
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.