PDBsum entry 1cxk

Go to PDB code: 
protein ligands metals links
Transferase PDB id
Protein chain
686 a.a. *
_CA ×2
Waters ×633
* Residue conservation analysis
PDB id:
Name: Transferase
Title: Complex between a maltononaose substrate and bacillus circulans strain 251 cgtase e257q/d229n
Structure: Protein (cyclodextrin-glycosyltransferase). Chain: a. Synonym: cgtase. Engineered: yes. Mutation: yes
Source: Bacillus circulans. Organism_taxid: 1397. Strain: 251. Expressed in: bacillus subtilis. Expression_system_taxid: 1423. Other_details: mutants were constructed in ecoli strain mc1061
2.09Å     R-factor:   0.158     R-free:   0.210
Authors: J.C.M.Uitdehaag,K.H.Kalk,B.W.Dijkstra
Key ref:
J.C.Uitdehaag et al. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol, 6, 432-436. PubMed id: 10331869 DOI: 10.1038/8235
24-Feb-99     Release date:   03-May-99    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P43379  (CDGT2_BACCI) -  Cyclomaltodextrin glucanotransferase
713 a.a.
686 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.  - Cyclomaltodextrin glucanotransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Degrades starch to cyclodextrins by formation of a 1,4-alpha-D- glucosidic bond.
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   1 term 
  Biological process     carbohydrate metabolic process   1 term 
  Biochemical function     catalytic activity     8 terms  


DOI no: 10.1038/8235 Nat Struct Biol 6:432-436 (1999)
PubMed id: 10331869  
X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family.
J.C.Uitdehaag, R.Mosi, K.H.Kalk, B.A.van der Veen, L.Dijkhuizen, S.G.Withers, B.W.Dijkstra.
Cyclodextrin glycosyltransferase (CGTase) is an enzyme of the alpha-amylase family, which uses a double displacement mechanism to process alpha-linked glucose polymers. We have determined two X-ray structures of CGTase complexes, one with an intact substrate at 2.1 A resolution, and the other with a covalently bound reaction intermediate at 1.8 A resolution. These structures give evidence for substrate distortion and the covalent character of the intermediate and for the first time show, in atomic detail, how catalysis in the alpha-amylase family proceeds by the concerted action of all active site residues.
  Selected figure(s)  
Figure 1.
Figure 1. Scheme of the CGTase reaction mechanism. The first step, leading to intermediate formation, is explained in the text. In the second step, Glu 257 activates an acceptor that subsequently reacts with the intermediate, leading to product formation. This proceeds with a mechanism that is essentially the reverse of the first step. The glucoside ring atom nomenclature is incorporated in the left-most picture. The shaded orbital represents the electrons that are in a proper orientation to participate in the cleavage of the substrate -glycosidic bond according to the stereo-electronic theory^22. However, when the intermediate -glycosyl-enzyme bond is cleaved, such a correctly oriented orbital is not present, as pointed out in the text.
Figure 2.
Figure 2. Stereoview of the substrate bound to CGTase. The maltononaose binds from subsites -7 to +2, but for clarity only subsites -2, -1 and +1 are shown. The arrow indicates the scissile bond. a, Showing how the substrate fits into the 2F[o] - F[c] electron density (1 contoured), which was calculated with F[c] and phases from unliganded CGTase to avoid bias^16. b, The substrate distortion at the catalytic subsite -1 (central sugar ring) is revealed by superposition with the minimum energy conformation of maltose (orange)^15. The superposition is based on the glucose C3, C4 and C5 atoms in subsite -1. Comparing the substrate ring puckering parameters with a potential map from molecular mechanics calculations indicates that the glucose ring at the catalytic subsite is strained by ~17 kJ mol^−1 and has a ^4C[1] chair conformation distorted towards a ^2H[3] half chair^15. c, Undistorted (free) maltose clearly does not fit the 2F[o] - F[c] electron density at subsite -1. The glycosidic bond torsion angles of maltose were adjusted to fit the density at subsite +1.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (1999, 6, 432-436) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19940122 A.I.Guce, N.E.Clark, E.N.Salgado, D.R.Ivanen, A.A.Kulminskaya, H.Brumer, and S.C.Garman (2010).
Catalytic mechanism of human alpha-galactosidase.
  J Biol Chem, 285, 3625-3632.
PDB codes: 3hg2 3hg3 3hg4 3hg5
21118988 A.Vujicic-Zagar, T.Pijning, S.Kralj, C.A.López, W.Eeuwema, L.Dijkhuizen, and B.W.Dijkstra (2010).
Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes.
  Proc Natl Acad Sci U S A, 107, 21406-21411.
PDB codes: 3hz3 3klk 3kll
19763564 H.Leemhuis, R.M.Kelly, and L.Dijkhuizen (2010).
Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications.
  Appl Microbiol Biotechnol, 85, 823-835.  
20159465 N.M.Koropatkin, and T.J.Smith (2010).
SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules.
  Structure, 18, 200-215.
PDB codes: 3k8k 3k8l 3k8m
19763902 O.Prakash, and N.Jaiswal (2010).
alpha-Amylase: an ideal representative of thermostable enzymes.
  Appl Biochem Biotechnol, 160, 2401-2414.  
19505290 A.Alhassid, A.Ben-David, O.Tabachnikov, D.Libster, E.Naveh, G.Zolotnitsky, Y.Shoham, and G.Shoham (2009).
Crystal structure of an inverting GH 43 1,5-alpha-L-arabinanase from Geobacillus stearothermophilus complexed with its substrate.
  Biochem J, 422, 73-82.
PDB codes: 3cu9 3d5y 3d5z 3d60 3d61
19801480 J.Schneider, C.Fricke, H.Overwin, B.Hofmann, and B.Hofer (2009).
Generation of amylosucrase variants that terminate catalysis of acceptor elongation at the di- or trisaccharide stage.
  Appl Environ Microbiol, 75, 7453-7460.  
19769746 J.Vasur, R.Kawai, E.Andersson, K.Igarashi, M.Sandgren, M.Samejima, and J.Ståhlberg (2009).
X-ray crystal structures of Phanerochaete chrysosporium Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis.
  FEBS J, 276, 3858-3869.
PDB codes: 2w39 2w52
19367403 R.M.Kelly, L.Dijkhuizen, and H.Leemhuis (2009).
The evolution of cyclodextrin glucanotransferase product specificity.
  Appl Microbiol Biotechnol, 84, 119-133.  
19279191 R.Suzuki, Z.Fujimoto, S.Ito, S.Kawahara, S.Kaneko, K.Taira, T.Hasegawa, and A.Kuno (2009).
Crystallographic snapshots of an entire reaction cycle for a retaining xylanase from Streptomyces olivaceoviridis E-86.
  J Biochem, 146, 61-70.
PDB codes: 2d1z 2d20 2d22 2d23 2d24
19190904 Z.Li, J.Zhang, M.Wang, Z.Gu, G.Du, J.Li, J.Wu, and J.Chen (2009).
Mutations at subsite -3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing alpha-cyclodextrin specificity.
  Appl Microbiol Biotechnol, 83, 483-490.  
18494783 A.Godány, B.Vidová, and S.Janecek (2008).
The unique glycoside hydrolase family 77 amylomaltase from Borrelia burgdorferi with only catalytic triad conserved.
  FEMS Microbiol Lett, 284, 84-91.  
  19058170 C.J.Thibodeaux, C.E.Melançon, and H.W.Liu (2008).
Natural-product sugar biosynthesis and enzymatic glycodiversification.
  Angew Chem Int Ed Engl, 47, 9814-9859.  
18558099 D.J.Vocadlo, and G.J.Davies (2008).
Mechanistic insights into glycosidase chemistry.
  Curr Opin Chem Biol, 12, 539-555.  
18522649 S.Emond, S.Mondeil, K.Jaziri, I.André, P.Monsan, M.Remaud-Siméon, and G.Potocki-Véronèse (2008).
Cloning, purification and characterization of a thermostable amylosucrase from Deinococcus geothermalis.
  FEMS Microbiol Lett, 285, 25-32.  
19016850 S.Kralj, S.S.van Leeuwen, V.Valk, W.Eeuwema, J.P.Kamerling, and L.Dijkhuizen (2008).
Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio.
  FEBS J, 275, 6002-6010.  
18320228 X.L.Yuan, R.M.van der Kaaij, C.A.van den Hondel, P.J.Punt, M.J.van der Maarel, L.Dijkhuizen, and A.F.Ram (2008).
Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles.
  Mol Genet Genomics, 279, 545-561.  
18626642 Y.H.Liu, F.P.Lu, Y.Li, J.L.Wang, and C.Gao (2008).
Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations.
  Appl Microbiol Biotechnol, 80, 795-803.  
18157528 Y.H.Liu, F.P.Lu, Y.Li, X.B.Yin, Y.Wang, and C.Gao (2008).
Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600.
  Appl Microbiol Biotechnol, 78, 85-94.  
17044042 C.Albenne, L.K.Skov, V.Tran, M.Gajhede, P.Monsan, M.Remaud-Siméon, and G.André-Leroux (2007).
Towards the molecular understanding of glycogen elongation by amylosucrase.
  Proteins, 66, 118-126.  
17574546 F.S.Pinto, S.H.Flôres, M.A.Ayub, and P.F.Hertz (2007).
Production of cyclodextrin glycosyltransferase by alkaliphilic Bacillus circulans in submerged and solid-state cultivation.
  Bioprocess Biosyst Eng, 30, 377-382.  
17496125 R.M.van der Kaaij, X.L.Yuan, A.Franken, A.F.Ram, P.J.Punt, M.J.van der Maarel, and L.Dijkhuizen (2007).
Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger.
  Eukaryot Cell, 6, 1178-1188.  
17597061 S.Ravaud, X.Robert, H.Watzlawick, R.Haser, R.Mattes, and N.Aghajari (2007).
Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization.
  J Biol Chem, 282, 28126-28136.
PDB codes: 1zja 2pwd 2pwe 2pwf 2pwg 2pwh
17901056 T.Jank, T.Giesemann, and K.Aktories (2007).
Clostridium difficile glucosyltransferase toxin B-essential amino acids for substrate binding.
  J Biol Chem, 282, 35222-35231.  
17420245 T.R.Barends, J.B.Bultema, T.Kaper, M.J.van der Maarel, L.Dijkhuizen, and B.W.Dijkstra (2007).
Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-amylase-like transglycosylase.
  J Biol Chem, 282, 17242-17249.
PDB codes: 2owc 2oww 2owx
17891389 Z.Li, M.Wang, F.Wang, Z.Gu, G.Du, J.Wu, and J.Chen (2007).
gamma-Cyclodextrin: a review on enzymatic production and applications.
  Appl Microbiol Biotechnol, 77, 245-255.  
  16880540 A.Vujicić-Zagar, and B.W.Dijkstra (2006).
Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 angstroms resolution.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 716-721.
PDB codes: 2guy 2gvy
16441655 B.A.van der Veen, L.K.Skov, G.Potocki-Véronèse, M.Gajhede, P.Monsan, and M.Remaud-Simeon (2006).
Increased amylosucrase activity and specificity, and identification of regions important for activity, specificity and stability through molecular evolution.
  FEBS J, 273, 673-681.  
16864576 C.Moulis, G.Joucla, D.Harrison, E.Fabre, G.Potocki-Veronese, P.Monsan, and M.Remaud-Simeon (2006).
Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases.
  J Biol Chem, 281, 31254-31267.  
16012834 K.Hirano, T.Ishihara, S.Ogasawara, H.Maeda, K.Abe, T.Nakajima, and Y.Yamagata (2006).
Molecular cloning and characterization of a novel gamma-CGTase from alkalophilic Bacillus sp.
  Appl Microbiol Biotechnol, 70, 193-201.  
16703471 L.L.Lin, P.J.Chen, J.S.Liu, W.C.Wang, and H.F.Lo (2006).
Identification of glutamate residues important for catalytic activity or thermostability of a truncated Bacillus sp. strain TS-23 alpha-amylase by site-directed mutagenesis.
  Protein J, 25, 232-239.  
16500055 M.G.Sankalia, R.C.Mashru, J.M.Sankalia, and V.B.Sutariya (2006).
Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index.
  Int J Pharm, 312, 1.  
16990265 O.Mirza, L.K.Skov, D.Sprogøe, L.A.van den Broek, G.Beldman, J.S.Kastrup, and M.Gajhede (2006).
Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion.
  J Biol Chem, 281, 35576-35584.
PDB codes: 2gdu 2gdv
16524921 S.A.van Hijum, S.Kralj, L.K.Ozimek, L.Dijkhuizen, and I.G.van Geel-Schutten (2006).
Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria.
  Microbiol Mol Biol Rev, 70, 157-176.  
16495121 V.L.Yip, and S.G.Withers (2006).
Breakdown of oligosaccharides by the process of elimination.
  Curr Opin Chem Biol, 10, 147-155.  
16517633 Z.Wang, Q.Qi, and P.G.Wang (2006).
Engineering of cyclodextrin glucanotransferase on the cell surface of Saccharomyces cerevisiae for improved cyclodextrin production.
  Appl Environ Microbiol, 72, 1873-1877.  
16302977 A.Abe, H.Yoshida, T.Tonozuka, Y.Sakano, and S.Kamitori (2005).
Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages.
  FEBS J, 272, 6145-6153.
PDB codes: 2d0f 2d0g 2d0h
15722449 R.Maurus, A.Begum, H.H.Kuo, A.Racaza, S.Numao, C.Andersen, J.W.Tams, J.Vind, C.M.Overall, S.G.Withers, and G.D.Brayer (2005).
Structural and mechanistic studies of chloride induced activation of human pancreatic alpha-amylase.
  Protein Sci, 14, 743-755.
PDB codes: 1xgz 1xh0 1xh1 1xh2
16151092 T.Kaper, B.Talik, T.J.Ettema, H.Bos, M.J.van der Maarel, and L.Dijkhuizen (2005).
Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels.
  Appl Environ Microbiol, 71, 5098-5106.  
16030022 X.Robert, R.Haser, H.Mori, B.Svensson, and N.Aghajari (2005).
Oligosaccharide binding to barley alpha-amylase 1.
  J Biol Chem, 280, 32968-32978.
PDB codes: 1rp8 1rp9 1rpk
15138257 A.Ohtaki, M.Mizuno, T.Tonozuka, Y.Sakano, and S.Kamitori (2004).
Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with acarbose and cyclodextrins demonstrate the multiple substrate recognition mechanism.
  J Biol Chem, 279, 31033-31040.
PDB codes: 1vfk 1vfm 1vfo 1vfu 3a6o
14717693 B.Synstad, S.Gåseidnes, D.M.Van Aalten, G.Vriend, J.E.Nielsen, and V.G.Eijsink (2004).
Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase.
  Eur J Biochem, 271, 253-262.  
14570882 C.Albenne, L.K.Skov, O.Mirza, M.Gajhede, G.Feller, S.D'Amico, G.André, G.Potocki-Véronèse, B.A.van der Veen, P.Monsan, and M.Remaud-Simeon (2004).
Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase.
  J Biol Chem, 279, 726-734.  
14730352 C.P.Chiu, A.G.Watts, L.L.Lairson, M.Gilbert, D.Lim, W.W.Wakarchuk, S.G.Withers, and N.C.Strynadka (2004).
Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog.
  Nat Struct Mol Biol, 11, 163-170.
PDB codes: 1ro7 1ro8
15356864 G.André, and V.Tran (2004).
Putative implication of alpha-amylase loop 7 in the mechanism of substrate binding and reaction products release.
  Biopolymers, 75, 95.  
14715651 G.Sulzenbacher, C.Bignon, T.Nishimura, C.A.Tarling, S.G.Withers, B.Henrissat, and Y.Bourne (2004).
Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis.
  J Biol Chem, 279, 13119-13128.
PDB codes: 1hl8 1hl9 1odu
15560783 H.Akeboshi, T.Tonozuka, T.Furukawa, K.Ichikawa, H.Aoki, A.Shimonishi, A.Nishikawa, and Y.Sakano (2004).
Insights into the reaction mechanism of glycosyl hydrolase family 49. Site-directed mutagenesis and substrate preference of isopullulanase.
  Eur J Biochem, 271, 4420-4427.  
14705029 H.Leemhuis, H.J.Rozeboom, B.W.Dijkstra, and L.Dijkhuizen (2004).
Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge.
  Proteins, 54, 128-134.
PDB code: 1pj9
14660599 K.S.Bak-Jensen, G.André, T.E.Gottschalk, G.Paës, V.Tran, and B.Svensson (2004).
Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1.
  J Biol Chem, 279, 10093-10102.  
14739329 R.Kanai, K.Haga, T.Akiba, K.Yamane, and K.Harata (2004).
Role of Phe283 in enzymatic reaction of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp.1011: Substrate binding and arrangement of the catalytic site.
  Protein Sci, 13, 457-465.
PDB codes: 1v3j 1v3k 1v3l 1v3m
15304511 S.Numao, I.Damager, C.Li, T.M.Wrodnigg, A.Begum, C.M.Overall, G.D.Brayer, and S.G.Withers (2004).
In situ extension as an approach for identifying novel alpha-amylase inhibitors.
  J Biol Chem, 279, 48282-48291.
PDB codes: 1u2y 1u30 1u33
12819210 D.Zhang, N.Li, S.M.Lok, L.H.Zhang, and K.Swaminathan (2003).
Isomaltulose synthase (PalI) of Klebsiella sp. LX3. Crystal structure and implication of mechanism.
  J Biol Chem, 278, 35428-35434.
PDB code: 1m53
12492486 H.Leemhuis, B.W.Dijkstra, and L.Dijkhuizen (2003).
Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase.
  Eur J Biochem, 270, 155-162.  
12930989 J.E.Nielsen, and J.A.McCammon (2003).
Calculating pKa values in enzyme active sites.
  Protein Sci, 12, 1894-1901.  
14517232 K.Hövel, D.Shallom, K.Niefind, V.Belakhov, G.Shoham, T.Baasov, Y.Shoham, and D.Schomburg (2003).
Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase.
  EMBO J, 22, 4922-4932.
PDB codes: 1pz2 1pz3 1qw8 1qw9
14661272 L.Greffe, M.T.Jensen, C.Bosso, B.Svensson, and H.Driguez (2003).
Chemoenzymatic synthesis of branched oligo- and polysaccharides as potential substrates for starch active enzymes.
  Chembiochem, 4, 1307-1311.  
12960159 S.Numao, D.A.Kuntz, S.G.Withers, and D.R.Rose (2003).
Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates.
  J Biol Chem, 278, 48074-48083.
PDB codes: 1qwn 1qwu 1qx1
14596624 S.S.Lee, S.Yu, and S.G.Withers (2003).
Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucan lyase.
  Biochemistry, 42, 13081-13090.  
12093900 D.R.Houston, K.Shiomi, N.Arai, S.Omura, M.G.Peter, A.Turberg, B.Synstad, V.G.Eijsink, and D.M.van Aalten (2002).
High-resolution structures of a chitinase complexed with natural product cyclopentapeptide inhibitors: mimicry of carbohydrate substrate.
  Proc Natl Acad Sci U S A, 99, 9127-9132.
PDB codes: 1h0g 1h0i
12039719 D.Zhang, X.Li, and L.H.Zhang (2002).
Isomaltulose synthase from Klebsiella sp. strain LX3: gene cloning and characterization and engineering of thermostability.
  Appl Environ Microbiol, 68, 2676-2682.  
12423336 H.Mori, K.S.Bak-Jensen, and B.Svensson (2002).
Barley alpha-amylase Met53 situated at the high-affinity subsite -2 belongs to a substrate binding motif in the beta-->alpha loop 2 of the catalytic (beta/alpha)8-barrel and is critical for activity and substrate specificity.
  Eur J Biochem, 269, 5377-5390.  
12364331 L.K.Skov, O.Mirza, D.Sprogøe, I.Dar, M.Remaud-Simeon, C.Albenne, P.Monsan, and M.Gajhede (2002).
Oligosaccharide and sucrose complexes of amylosucrase. Structural implications for the polymerase activity.
  J Biol Chem, 277, 47741-47747.
PDB codes: 1mvy 1mw0 1mw1 1mw2 1mw3
12196524 M.C.Abad, K.Binderup, J.Rios-Steiner, R.K.Arni, J.Preiss, and J.H.Geiger (2002).
The X-ray crystallographic structure of Escherichia coli branching enzyme.
  J Biol Chem, 277, 42164-42170.
PDB code: 1m7x
12021442 N.Aghajari, G.Feller, C.Gerday, and R.Haser (2002).
Structural basis of alpha-amylase activation by chloride.
  Protein Sci, 11, 1435-1441.
PDB codes: 1jd7 1jd9 1l0p
12270834 S.Bozonnet, M.Dols-Laffargue, E.Fabre, S.Pizzut, M.Remaud-Simeon, P.Monsan, and R.M.Willemot (2002).
Molecular characterization of DSR-E, an alpha-1,2 linkage-synthesizing dextransucrase with two catalytic domains.
  J Bacteriol, 184, 5753-5761.  
12200277 S.Kralj, G.H.van Geel-Schutten, H.Rahaoui, R.J.Leer, E.J.Faber, M.J.van der Maarel, and L.Dijkhuizen (2002).
Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with alpha-(1-->4) and alpha-(1-->6) glucosidic bonds.
  Appl Environ Microbiol, 68, 4283-4291.  
11856334 T.P.Frandsen, M.M.Palcic, and B.Svensson (2002).
Substrate recognition by three family 13 yeast alpha-glucosidases.
  Eur J Biochem, 269, 728-734.  
11170405 A.Fedorov, W.Shi, G.Kicska, E.Fedorov, P.C.Tyler, R.H.Furneaux, J.C.Hanson, G.J.Gainsford, J.Z.Larese, V.L.Schramm, and S.C.Almo (2001).
Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis.
  Biochemistry, 40, 853-860.
PDB code: 1b8o
11522797 B.L.Mark, D.J.Vocadlo, D.Zhao, S.Knapp, S.G.Withers, and M.N.James (2001).
Biochemical and structural assessment of the 1-N-azasugar GalNAc-isofagomine as a potent family 20 beta-N-acetylhexosaminidase inhibitor.
  J Biol Chem, 276, 42131-42137.
PDB code: 1jak
11731297 C.Saotome, C.H.Wong, and O.Kanie (2001).
Combinatorial library of five-membered iminocyclitol and the inhibitory activities against glyco-enzymes.
  Chem Biol, 8, 1061-1070.  
11481469 D.M.van Aalten, D.Komander, B.Synstad, S.Gåseidnes, M.G.Peter, and V.G.Eijsink (2001).
Structural insights into the catalytic mechanism of a family 18 exo-chitinase.
  Proc Natl Acad Sci U S A, 98, 8979-8984.
PDB codes: 1e6n 1e6p 1e6r 1e6z
11257505 E.A.MacGregor, S.Janecek, and B.Svensson (2001).
Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes.
  Biochim Biophys Acta, 1546, 1.  
11737209 H.Mori, K.S.Bak-Jensen, T.E.Gottschalk, M.S.Motawia, I.Damager, B.L.Møller, and B.Svensson (2001).
Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and -5/-6 of barley alpha-amylase 1.
  Eur J Biochem, 268, 6545-6558.  
11709165 M.Hrmova, J.N.Varghese, R.De Gori, B.J.Smith, H.Driguez, and G.B.Fincher (2001).
Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase.
  Structure, 9, 1005-1016.
PDB codes: 1ieq 1iev 1iew 1iex
11329289 Y.Hou, D.J.Vocadlo, A.Leung, S.G.Withers, and D.Mahuran (2001).
Characterization of the Glu and Asp residues in the active site of human beta-hexosaminidase B.
  Biochemistry, 40, 2201-2209.  
10924103 A.M.Brzozowski, D.M.Lawson, J.P.Turkenburg, H.Bisgaard-Frantzen, A.Svendsen, T.V.Borchert, Z.Dauter, K.S.Wilson, and G.J.Davies (2000).
Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes.
  Biochemistry, 39, 9099-9107.
PDB codes: 1e3x 1e3z 1e40 1e43
11150614 A.Planas (2000).
Bacterial 1,3-1,4-beta-glucanases: structure, function and protein engineering.
  Biochim Biophys Acta, 1543, 361-382.  
10651801 B.A.van der Veen, G.J.van Alebeek, J.C.Uitdehaag, B.W.Dijkstra, and L.Dijkhuizen (2000).
The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms.
  Eur J Biochem, 267, 658-665.  
10848958 B.A.van der Veen, J.C.Uitdehaag, B.W.Dijkstra, and L.Dijkhuizen (2000).
The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity.
  Eur J Biochem, 267, 3432-3441.  
11006547 C.S.Rye, and S.G.Withers (2000).
Glycosidase mechanisms.
  Curr Opin Chem Biol, 4, 573-580.  
10769135 G.D.Brayer, G.Sidhu, R.Maurus, E.H.Rydberg, C.Braun, Y.Wang, N.T.Nguyen, C.M.Overall, and S.G.Withers (2000).
Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic, and mutagenesis techniques.
  Biochemistry, 39, 4778-4791.
PDB codes: 1cpu 2cpu 3cpu
  11082203 I.Przylas, Y.Terada, K.Fujii, T.Takaha, W.Saenger, and N.Sträter (2000).
X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans.
  Eur J Biochem, 267, 6903-6913.
PDB code: 1esw
10869182 J.C.Uitdehaag, G.J.van Alebeek, B.A.van Der Veen, L.Dijkhuizen, and B.W.Dijkstra (2000).
Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.
  Biochemistry, 39, 7772-7780.
PDB codes: 1eo5 1eo7
11150610 J.E.Nielsen, and T.V.Borchert (2000).
Protein engineering of bacterial alpha-amylases.
  Biochim Biophys Acta, 1543, 253-274.  
10805771 S.S.Parikh, G.Walcher, G.D.Jones, G.Slupphaug, H.E.Krokan, G.M.Blackburn, and J.A.Tainer (2000).
Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects.
  Proc Natl Acad Sci U S A, 97, 5083-5088.
PDB codes: 1emh 1emj
10866815 V.Monchois, M.Vignon, P.C.Escalier, B.Svensson, and R.R.Russell (2000).
Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization.
  Eur J Biochem, 267, 4127-4136.  
10995222 V.Notenboom, S.J.Williams, R.Hoos, S.G.Withers, and D.R.Rose (2000).
Detailed structural analysis of glycosidase/inhibitor interactions: complexes of Cex from Cellulomonas fimi with xylobiose-derived aza-sugars.
  Biochemistry, 39, 11553-11563.
PDB codes: 1fh7 1fh8 1fh9 1fhd
10821697 Y.Hou, D.Vocadlo, S.Withers, and D.Mahuran (2000).
Role of beta Arg211 in the active site of human beta-hexosaminidase B.
  Biochemistry, 39, 6219-6227.  
10574960 J.C.Uitdehaag, K.H.Kalk, B.A.van Der Veen, L.Dijkhuizen, and B.W.Dijkstra (1999).
The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a gamma-cyclodextrin-CGTase complex at 1.8-A resolution.
  J Biol Chem, 274, 34868-34876.
PDB code: 1d3c
10469642 K.A.Watson, C.McCleverty, S.Geremia, S.Cottaz, H.Driguez, and L.N.Johnson (1999).
Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question.
  EMBO J, 18, 4619-4632.
PDB codes: 1e4o 1qm5
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.