spacer
spacer

PDBsum entry 1cmz

Go to PDB code: 
protein links
Signaling protein regulation PDB id
1cmz
Jmol
Contents
Protein chain
128 a.a. *
* Residue conservation analysis
PDB id:
1cmz
Name: Signaling protein regulation
Title: Solution structure of gaip (galpha interacting protein): a regulator of g protein signaling
Structure: Protein (gaip (g-alpha interacting) protein). Chain: a. Fragment: rgs box. Synonym: galpha interacting protein. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
NMR struc: 20 models
Authors: E.De Alba,L.De Vries,M.G.Farquhar,N.Tjandra
Key ref:
E.de Alba et al. (1999). Solution structure of human GAIP (Galpha interacting protein): a regulator of G protein signaling. J Mol Biol, 291, 927-939. PubMed id: 10452897 DOI: 10.1006/jmbi.1999.2989
Date:
12-May-99     Release date:   10-Nov-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P49795  (RGS19_HUMAN) -  Regulator of G-protein signaling 19
Seq:
Struc:
217 a.a.
128 a.a.
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     termination of G-protein coupled receptor signaling pathway   1 term 

 

 
DOI no: 10.1006/jmbi.1999.2989 J Mol Biol 291:927-939 (1999)
PubMed id: 10452897  
 
 
Solution structure of human GAIP (Galpha interacting protein): a regulator of G protein signaling.
E.de Alba, L.De Vries, M.G.Farquhar, N.Tjandra.
 
  ABSTRACT  
 
The solution structure of the human protein GAIP (Galpha interacting protein), a regulator of G protein signaling, has been determined by NMR techniques. Dipolar couplings of the oriented protein in two different liquid crystal media have been used in the structure calculation. The solution structure of GAIP is compared to the crystal structure of an homologous protein from rat (RGS4) complexed to the alpha-subunit of a G protein. Some of RGS4 residues involved in the Galpha-RGS binding interface have similar orientations in GAIP (free form), indicating that upon binding these residues do not suffer conformational rearrangements, and therefore, their role does not seem to be restricted to Galpha interaction but also to RGS folding and stability. We suggest that other structural differences between the two proteins may be related to the process of binding as well as to a distinct efficiency in their respective GTPase activating function.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Ribbon diagram of the backbone of the minimized average structure. Helices are Roman- numbered. Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8 have been generated using the program MOLMOL [Koradi et al 1996].
Figure 6.
Figure 6. Comparison between RGS4 and GAIP conformation of residues known to be important for the Gα interaction. GAIP and RGS4 residues are colored red and blue, respectively. Residue type and number are indicated.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1999, 291, 927-939) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20859254 P.Maurice, A.M.Daulat, R.Turecek, K.Ivankova-Susankova, F.Zamponi, M.Kamal, N.Clement, J.L.Guillaume, B.Bettler, C.Galès, P.Delagrange, and R.Jockers (2010).
Molecular organization and dynamics of the melatonin MT₁ receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling.
  EMBO J, 29, 3646-3659.  
19521673 G.R.Anderson, E.Posokhova, and K.A.Martemyanov (2009).
The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling.
  Cell Biochem Biophys, 54, 33-46.  
19700353 K.Berlin, D.P.O'Leary, and D.Fushman (2009).
Improvement and analysis of computational methods for prediction of residual dipolar couplings.
  J Magn Reson, 201, 25-33.  
18365752 M.S.Apaydin, V.Conitzer, and B.R.Donald (2008).
Structure-based protein NMR assignments using native structural ensembles.
  J Biomol NMR, 40, 263-276.  
18434541 M.Soundararajan, F.S.Willard, A.J.Kimple, A.P.Turnbull, L.J.Ball, G.A.Schoch, C.Gileadi, O.Y.Fedorov, E.F.Dowler, V.A.Higman, S.Q.Hutsell, M.Sundström, D.A.Doyle, and D.P.Siderovski (2008).
Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits.
  Proc Natl Acad Sci U S A, 105, 6457-6462.
PDB codes: 1zv4 2a72 2af0 2bt2 2bv1 2es0 2gtp 2i59 2ihb 2ihd 2ik8 2jm5 2jnu 2ode 2owi
17660054 A.J.Kimple, F.S.Willard, P.M.Giguère, C.A.Johnston, V.Mocanu, and D.P.Siderovski (2007).
The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Galpha-interaction face.
  Biochim Biophys Acta, 1774, 1213-1220.  
17173929 G.X.Xie, and P.P.Palmer (2007).
How regulators of G protein signaling achieve selective regulation.
  J Mol Biol, 366, 349-365.  
16687250 G.B.Willars (2006).
Mammalian RGS proteins: multifunctional regulators of cellular signalling.
  Semin Cell Dev Biol, 17, 363-376.  
16467474 S.A.Chasse, P.Flanary, S.C.Parnell, N.Hao, J.Y.Cha, D.P.Siderovski, and H.G.Dohlman (2006).
Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae.
  Eukaryot Cell, 5, 330-346.  
16243026 T.M.Wilkie, and L.Kinch (2005).
New roles for Galpha and RGS proteins: communication continues despite pulling sisters apart.
  Curr Biol, 15, R843-R854.  
15754058 V.A.Higman, J.Boyd, L.J.Smith, and C.Redfield (2004).
Asparagine and glutamine side-chain conformation in solution and crystal: a comparison for hen egg-white lysozyme using residual dipolar couplings.
  J Biomol NMR, 30, 327-346.  
14744980 Y.Qu, J.T.Guo, V.Olman, and Y.Xu (2004).
Protein structure prediction using sparse dipolar coupling data.
  Nucleic Acids Res, 32, 551-561.  
14500984 J.G.Chen, F.S.Willard, J.Huang, J.Liang, S.A.Chasse, A.M.Jones, and D.P.Siderovski (2003).
A seven-transmembrane RGS protein that modulates plant cell proliferation.
  Science, 301, 1728-1731.  
14668443 J.Meiler, and D.Baker (2003).
Rapid protein fold determination using unassigned NMR data.
  Proc Natl Acad Sci U S A, 100, 15404-15409.  
12860983 K.Wakasugi, T.Nakano, and I.Morishima (2003).
Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor.
  J Biol Chem, 278, 36505-36512.  
12427730 R.Sterne-Marr, J.J.Tesmer, P.W.Day, R.P.Stracquatanio, J.A.Cilente, K.E.O'Connor, A.N.Pronin, J.L.Benovic, and P.B.Wedegaertner (2003).
G protein-coupled receptor Kinase 2/G alpha q/11 interaction. A novel surface on a regulator of G protein signaling homology domain for binding G alpha subunits.
  J Biol Chem, 278, 6050-6058.  
12525488 Z.Chen, W.D.Singer, C.D.Wells, S.R.Sprang, and P.C.Sternweis (2003).
Mapping the Galpha13 binding interface of the rgRGS domain of p115RhoGEF.
  J Biol Chem, 278, 9912-9919.  
12120503 R.R.Neubig, and D.P.Siderovski (2002).
Regulators of G-protein signalling as new central nervous system drug targets.
  Nat Rev Drug Discov, 1, 187-197.  
11507164 A.Inanobe, S.Fujita, Y.Makino, K.Matsushita, M.Ishii, M.Chachin, and Y.Kurachi (2001).
Interaction between the RGS domain of RGS4 with G protein alpha subunits mediates the voltage-dependent relaxation of the G protein-gated potassium channel.
  J Physiol, 535, 133-143.  
11331068 J.Sondek, and D.P.Siderovski (2001).
Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding.
  Biochem Pharmacol, 61, 1329-1337.  
11470431 K.L.Longenecker, M.E.Lewis, H.Chikumi, J.S.Gutkind, and Z.S.Derewenda (2001).
Structure of the RGS-like domain from PDZ-RhoGEF: linking heterotrimeric g protein-coupled signaling to Rho GTPases.
  Structure, 9, 559-569.
PDB code: 1htj
11524686 Z.Chen, C.D.Wells, P.C.Sternweis, and S.R.Sprang (2001).
Structure of the rgRGS domain of p115RhoGEF.
  Nat Struct Biol, 8, 805-809.
PDB code: 1iap
10966476 E.M.Ross, and T.M.Wilkie (2000).
GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins.
  Annu Rev Biochem, 69, 795-827.  
10811618 K.E.Spink, P.Polakis, and W.I.Weis (2000).
Structural basis of the Axin-adenomatous polyposis coli interaction.
  EMBO J, 19, 2270-2279.
PDB codes: 1dk8 1emu
10836135 L.De Vries, B.Zheng, T.Fischer, E.Elenko, and M.G.Farquhar (2000).
The regulator of G protein signaling family.
  Annu Rev Pharmacol Toxicol, 40, 235-271.  
10987813 S.A.Burchett (2000).
Regulators of G protein signaling: a bestiary of modular protein binding domains.
  J Neurochem, 75, 1335-1351.  
10610262 N.Tjandra (1999).
Establishing a degree of order: obtaining high-resolution NMR structures from molecular alignment.
  Structure, 7, R205-R211.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.