PDBsum entry 1cmk

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase/transferase inhibitor PDB id
Protein chains
350 a.a. *
20 a.a. *
IOD ×2
* Residue conservation analysis
PDB id:
Name: Transferase/transferase inhibitor
Title: Crystal structures of the myristylated catalytic subunit of dependent protein kinase reveal open and closed conformatio
Structure: Camp-dependent protein kinase catalytic subunit. Chain: e. Engineered: yes. Camp-dependent protein kinase inhibitor, alpha fo chain: i. Engineered: yes
Source: Sus scrofa. Pig. Organism_taxid: 9823. Organ: heart. Synthetic: yes. Homo sapiens. Human. Organism_taxid: 9606
Biol. unit: Dodecamer (from PQS)
2.90Å     R-factor:   0.233    
Authors: J.Zheng,D.R.Knighton,N.-H.Xuong,S.S.Taylor,J.M.Sowadski,L.F.
Key ref:
J.Zheng et al. (1993). Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci, 2, 1559-1573. PubMed id: 8251932 DOI: 10.1002/pro.5560021003
18-Nov-93     Release date:   31-May-94    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P36887  (KAPCA_PIG) -  cAMP-dependent protein kinase catalytic subunit alpha
351 a.a.
350 a.a.*
Protein chain
Pfam   ArchSchema ?
P61925  (IPKA_HUMAN) -  cAMP-dependent protein kinase inhibitor alpha
76 a.a.
20 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chain E: E.C.  - cAMP-dependent protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + a protein = ADP + a phosphoprotein
+ protein
+ phosphoprotein
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   5 terms 
  Biological process     phosphorylation   3 terms 
  Biochemical function     nucleotide binding     9 terms  


DOI no: 10.1002/pro.5560021003 Protein Sci 2:1559-1573 (1993)
PubMed id: 8251932  
Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations.
J.Zheng, D.R.Knighton, N.H.Xuong, S.S.Taylor, J.M.Sowadski, L.F.Ten Eyck.
Three crystal structures, representing two distinct conformational states, of the mammalian catalytic subunit of cAMP-dependent protein kinase were solved using molecular replacement methods starting from the refined structure of the recombinant catalytic subunit ternary complex (Zheng, J., et al., 1993a, Biochemistry 32, 2154-2161). These structures correspond to the free apoenzyme, a binary complex with an iodinated inhibitor peptide, and a ternary complex with both ATP and the unmodified inhibitor peptide. The apoenzyme and the binary complex crystallized in an open conformation, whereas the ternary complex crystallized in a closed conformation similar to the ternary complex of the recombinant enzyme. The model of the binary complex, refined at 2.9 A resolution, shows the conformational changes associated with the open conformation. These can be described by a rotation of the small lobe and a displacement of the C-terminal 30 residues. This rotation of the small lobe alters the cleft interface in the active-site region surrounding the glycine-rich loop and Thr 197, a critical phosphorylation site. In addition to the conformational changes, the myristylation site, absent in the recombinant enzyme, was clearly defined in the binary complex. The myristic acid binds in a deep hydrophobic pocket formed by four segments of the protein that are widely dispersed in the linear sequence. The N-terminal 40 residues that lie outside the conserved catalytic core are anchored by the N-terminal myristylate plus an amphipathic helix that spans both lobes and is capped by Trp 30. Both posttranslational modifications, phosphorylation and myristylation, contribute directly to the stable structure of this enzyme.
  Selected figure(s)  
Figure 3.
Fig. 3. Active-siteregionin the open conformational state. A: Theactive regionof the binary complex from the mamma- lian enzyme(red)issuperimposedinstereowith the correspondingregionfrom the ternary complexof therecombinantenzyme (blue). The ATP in the ternary complex is shon in black. B: Some f the distances that hangemostgoing to open confor- mation of the mammalian binary complex are indicated. Distancesin A betweenseveralkey residuesin the two structures are as follows (numbers in parentheses correspond to the closed conformation): Asp 184 to Gly 52 or, 10.5 (6.5); sp 184 to Lys 72 NZ, 6. (3.7); 54 CZ to His 87 ND1, 7.4 His 87 NE2 to P-Thr 197 OE2,6.0 (2.7); lu 91 OEl to Lys 72 HZ, 4.1
Figure 6.
Fig. 6. The Ca-backbone of heclosedand open conformations, highlightingcriticalchangesathe cleft interface.The binary complex of therecombinantC-subunit,representingthe closed conformation, isshown on heright.The open conformation associatedwiththemamalianbinarycomplexisshown on the left. TheN-terminalregions(1-127inthemammalianC-subunit and 9-127 in therecombinantenzymeareshowninred.TheC-terminalregions(resiues128-350)areshowninblue.Thepep- tidesare shown inblack. The fattyacidinthemammaliancomplexandtheMEGA-8detergentintherecombinantcomlex areshowningreen. Key residues at he cleft interface(His87, Asn 90, Thr 197),whoseenironmentchangesasaconsequence of cleft opening,are also indicated in reen.
  The above figures are reprinted by permission from the Protein Society: Protein Sci (1993, 2, 1559-1573) copyright 1993.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21303506 ..Stakkestad, A.C.Larsen, A.K.Kvissel, S.Eikvar, S.Ørstavik, and B.S.Skålhegg (2011).
Protein kinase A type I activates a CRE-element more efficiently than protein kinase A type II regardless of C subunit isoform.
  BMC Biochem, 12, 7.  
20729810 C.A.Boguth, P.Singh, C.C.Huang, and J.J.Tesmer (2010).
Molecular basis for activation of G protein-coupled receptor kinases.
  EMBO J, 29, 3249-3259.
PDB codes: 3nyn 3nyo
20632993 C.C.Lee, Y.Jia, N.Li, X.Sun, K.Ng, E.Ambing, M.Y.Gao, S.Hua, C.Chen, S.Kim, P.Y.Michellys, S.A.Lesley, J.L.Harris, and G.Spraggon (2010).
Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain.
  Biochem J, 430, 425-437.
PDB codes: 3l9p 3lcs 3lct
20089863 D.H.Fong, C.T.Lemke, J.Hwang, B.Xiong, and A.M.Berghuis (2010).
Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila.
  J Biol Chem, 285, 9545-9555.
PDB codes: 3i0o 3i0q 3i1a
20404920 J.M.Glück, S.Hoffmann, B.W.Koenig, and D.Willbold (2010).
Single vector system for efficient N-myristoylation of recombinant proteins in E. coli.
  PLoS One, 5, e10081.  
20974912 J.S.Oakhill, Z.P.Chen, J.W.Scott, R.Steel, L.A.Castelli, N.Ling, S.L.Macaulay, and B.E.Kemp (2010).
β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK).
  Proc Natl Acad Sci U S A, 107, 19237-19241.  
20139983 L.H.Chao, P.Pellicena, S.Deindl, L.A.Barclay, H.Schulman, and J.Kuriyan (2010).
Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation.
  Nat Struct Mol Biol, 17, 264-272.
PDB codes: 3kk8 3kk9 3kl8
20400529 L.Yang, W.Ji, Y.Zhu, P.Gao, Y.Li, H.Cai, X.Bai, and D.Guo (2010).
GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress.
  J Exp Bot, 61, 2519-2533.  
  19898886 M.H.Wright, W.P.Heal, D.J.Mann, and E.W.Tate (2010).
Protein myristoylation in health and disease.
  J Chem Biol, 3, 19-35.  
20336692 M.Rabiller, M.Getlik, S.Klüter, A.Richters, S.Tückmantel, J.R.Simard, and D.Rauh (2010).
Proteus in the world of proteins: conformational changes in protein kinases.
  Arch Pharm (Weinheim), 343, 193-206.  
19204278 C.Hyeon, P.A.Jennings, J.A.Adams, and J.N.Onuchic (2009).
Ligand-induced global transitions in the catalytic domain of protein kinase A.
  Proc Natl Acad Sci U S A, 106, 3023-3028.  
19610074 E.E.Thompson, A.P.Kornev, N.Kannan, C.Kim, L.F.Ten Eyck, and S.S.Taylor (2009).
Comparative surface geometry of the protein kinase family.
  Protein Sci, 18, 2016-2026.
PDB code: 3fjq
19526051 F.Xu, P.Du, H.Shen, H.Hu, Q.Wu, J.Xie, and L.Yu (2009).
Correlated mutation analysis on the catalytic domains of serine/threonine protein kinases.
  PLoS One, 4, e5913.  
19886670 I.V.Khavrutskii, B.Grant, S.S.Taylor, and J.A.McCammon (2009).
A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A.
  Biochemistry, 48, 11532-11545.  
19166495 Z.S.Xu, L.Liu, Z.Y.Ni, P.Liu, M.Chen, L.C.Li, Y.F.Chen, and Y.Z.Ma (2009).
W55a encodes a novel protein kinase that is involved in multiple stress responses.
  J Integr Plant Biol, 51, 58-66.  
  19052665 Danishuddin, and A.U.Khan (2008).
Analysis of PB2 protein from H9N2 and H5N1 avian flu virus.
  Bioinformation, 3, 41-46.  
17996741 S.S.Taylor, C.Kim, C.Y.Cheng, S.H.Brown, J.Wu, and N.Kannan (2008).
Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design.
  Biochim Biophys Acta, 1784, 16-26.  
18984590 Y.H.Hsu, D.A.Johnson, and J.A.Traugh (2008).
Analysis of conformational changes during activation of protein kinase Pak2 by amide hydrogen/deuterium exchange.
  J Biol Chem, 283, 36397-36405.  
17280834 C.W.Ward, M.C.Lawrence, V.A.Streltsov, T.E.Adams, and N.M.McKern (2007).
The insulin and EGF receptor structures: new insights into ligand-induced receptor activation.
  Trends Biochem Sci, 32, 129-137.  
17137590 J.E.Mills, P.C.Whitford, J.Shaffer, J.N.Onuchic, J.A.Adams, and P.A.Jennings (2007).
A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.
  J Mol Biol, 365, 1460-1468.  
17302814 J.Zheng, C.He, V.K.Singh, N.L.Martin, and Z.Jia (2007).
Crystal structure of a novel prokaryotic Ser/Thr kinase and its implication in the Cpx stress response pathway.
  Mol Microbiol, 63, 1360-1371.
PDB code: 1zyl
17380483 N.K.Banavali, and B.Roux (2007).
Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck.
  Proteins, 67, 1096-1112.  
17227859 N.Kannan, N.Haste, S.S.Taylor, and A.F.Neuwald (2007).
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.
  Proc Natl Acad Sci U S A, 104, 1272-1277.  
17587456 S.C.Flores, and M.B.Gerstein (2007).
FlexOracle: predicting flexible hinges by identification of stable domains.
  BMC Bioinformatics, 8, 215.  
16565070 K.L.Damm, and H.A.Carlson (2006).
Gaussian-weighted RMSD superposition of proteins: a structural comparison for flexible proteins and predicted protein structures.
  Biophys J, 90, 4558-4573.  
16421873 M.D.Hoffman, and J.Kast (2006).
Mass spectrometric characterization of lipid-modified peptides for the analysis of acylated proteins.
  J Mass Spectrom, 41, 229-241.  
16010698 B.Law, R.Weissleder, and C.H.Tung (2005).
Mechanism-based fluorescent reporter for protein kinase A detection.
  Chembiochem, 6, 1361-1367.  
16021629 C.A.Dennis, A.Baron, J.G.Grossmann, S.Mazaleyrat, M.Harris, and J.Jaeger (2005).
Co-translational myristoylation alters the quaternary structure of HIV-1 Nef in solution.
  Proteins, 60, 658-669.  
15731862 J.López-Prados, F.Cuevas, N.C.Reichardt, Paz, E.Q.Morales, and M.Martín-Lomas (2005).
Design and synthesis of inositolphosphoglycan putative insulin mediators.
  Org Biomol Chem, 3, 764-786.  
16191483 N.Ferri, R.Paoletti, and A.Corsini (2005).
Lipid-modified proteins as biomarkers for cardiovascular disease: a review.
  Biomarkers, 10, 219-237.  
15738266 S.Colombo, R.Longhi, S.Alcaro, F.Ortuso, T.Sprocati, A.Flora, and N.Borgese (2005).
N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning.
  J Cell Biol, 168, 735-745.  
16013076 U.Schieborr, M.Vogtherr, B.Elshorst, M.Betz, S.Grimme, B.Pescatore, T.Langer, K.Saxena, and H.Schwalbe (2005).
How much NMR data is required to determine a protein-ligand complex structure?
  Chembiochem, 6, 1891-1898.  
14765114 M.Matsubara, T.Nakatsu, H.Kato, and H.Taniguchi (2004).
Crystal structure of a myristoylated CAP-23/NAP-22 N-terminal domain complexed with Ca2+/calmodulin.
  EMBO J, 23, 712-718.
PDB code: 1l7z
15202951 S.Podell, and M.Gribskov (2004).
Predicting N-terminal myristoylation sites in plant proteins.
  BMC Genomics, 5, 37.  
12493833 M.S.Yousef, S.A.Clark, P.K.Pruett, T.Somasundaram, W.R.Ellington, and M.S.Chapman (2003).
Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase.
  Protein Sci, 12, 103-111.
PDB code: 1m80
12517337 X.Huang, M.Begley, K.A.Morgenstern, Y.Gu, P.Rose, H.Zhao, and X.Zhu (2003).
Crystal structure of an inactive Akt2 kinase domain.
  Structure, 11, 21-30.
PDB codes: 1mrv 1mry
12146960 M.Medkova, A.M.Preininger, N.J.Yu, W.L.Hubbell, and H.E.Hamm (2002).
Conformational changes in the amino-terminal helix of the G protein alpha(i1) following dissociation from Gbetagamma subunit and activation.
  Biochemistry, 41, 9962-9972.  
12169624 R.M.Biondi, D.Komander, C.C.Thomas, J.M.Lizcano, M.Deak, D.R.Alessi, and D.M.van Aalten (2002).
High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site.
  EMBO J, 21, 4219-4228.
PDB code: 1h1w
11141074 A.Tholey, R.Pipkorn, D.Bossemeyer, V.Kinzel, and J.Reed (2001).
Influence of myristoylation, phosphorylation, and deamidation on the structural behavior of the N-terminus of the catalytic subunit of cAMP-dependent protein kinase.
  Biochemistry, 40, 225-231.  
11181826 I.Lengyel, A.Nairn, A.McCluskey, G.Tóth, B.Penke, and J.Rostas (2001).
Auto-inhibition of Ca(2+)/calmodulin-dependent protein kinase II by its ATP-binding domain.
  J Neurochem, 76, 1066-1072.  
11181833 O.A.Bizzozero, H.A.Bixler, J.D.Davis, A.Espinosa, and A.M.Messier (2001).
Chemical deacylation reduces the adhesive properties of proteolipid protein and leads to decompaction of the myelin sheath.
  J Neurochem, 76, 1129-1141.  
11589697 S.Ørstavik, N.Reinton, E.Frengen, B.T.Langeland, T.Jahnsen, and B.S.Skålhegg (2001).
Identification of novel splice variants of the human catalytic subunit Cbeta of cAMP-dependent protein kinase.
  Eur J Biochem, 268, 5066-5073.  
10737782 C.Bruel, K.Cha, L.Niu, P.J.Reeves, and H.G.Khorana (2000).
Rhodopsin kinase: two mAbs binding near the carboxyl terminus cause time-dependent inactivation.
  Proc Natl Acad Sci U S A, 97, 3010-3015.  
11112551 F.Li, M.Gangal, J.M.Jones, J.Deich, K.E.Lovett, S.S.Taylor, and D.A.Johnson (2000).
Consequences of cAMP and catalytic-subunit binding on the flexibility of the A-kinase regulatory subunit.
  Biochemistry, 39, 15626-15632.  
11009601 H.B.Olsen, and N.C.Kaarsholm (2000).
Structural effects of protein lipidation as revealed by LysB29-myristoyl, des(B30) insulin.
  Biochemistry, 39, 11893-11900.  
  10982398 J.T.Agustin, C.G.Wilkerson, and G.B.Witman (2000).
The unique catalytic subunit of sperm cAMP-dependent protein kinase is the product of an alternative Calpha mRNA expressed specifically in spermatogenic cells.
  Mol Biol Cell, 11, 3031-3044.  
10713991 K.A.Denessiouk, and M.S.Johnson (2000).
When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families.
  Proteins, 38, 310-326.  
10820007 M.Batkin, I.Schvartz, and S.Shaltiel (2000).
Snapping of the carboxyl terminal tail of the catalytic subunit of PKA onto its core: characterization of the sites by mutagenesis.
  Biochemistry, 39, 5366-5373.  
11123806 O.R.Patharkar, and J.C.Cushman (2000).
A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator.
  Plant J, 24, 679-691.  
  11045627 Q.Ni, J.Shaffer, and J.A.Adams (2000).
Insights into nucleotide binding in protein kinase A using fluorescent adenosine derivatives.
  Protein Sci, 9, 1818-1827.  
10684253 R.Pepperkok, A.Hotz-Wagenblatt, N.König, A.Girod, D.Bossemeyer, and V.Kinzel (2000).
Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation.
  J Cell Biol, 148, 715-726.  
  11087177 S.Inouye, R.Jain, T.Ueki, H.Nariya, C.Y.Xu, M.Y.Hsu, B.A.Fernandez-Luque, J.Munoz-Dorado, E.Farez-Vidal, and M.Inouye (2000).
A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium.
  Microb Comp Genomics, 5, 103-120.  
10320366 F.W.Herberg, M.L.Doyle, S.Cox, and S.S.Taylor (1999).
Dissection of the nucleotide and metal-phosphate binding sites in cAMP-dependent protein kinase.
  Biochemistry, 38, 6352-6360.  
10479734 I.Tsigelny, J.P.Greenberg, S.Cox, W.L.Nichols, S.S.Taylor, and L.F.Ten Eyck (1999).
600 ps molecular dynamics reveals stable substructures and flexible hinge points in cAMP dependent protein kinase.
  Biopolymers, 50, 513-524.  
  10564270 J.B.McCabe, and L.G.Berthiaume (1999).
Functional roles for fatty acylated amino-terminal domains in subcellular localization.
  Mol Biol Cell, 10, 3771-3786.  
10396602 J.C.DeMar, D.R.Rundle, T.G.Wensel, and R.E.Anderson (1999).
Heterogeneous N-terminal acylation of retinal proteins.
  Prog Lipid Res, 38, 49-90.  
10454194 J.M.Sowadski, L.F.Epstein, L.Lankiewicz, and R.Karlsson (1999).
Conformational diversity of catalytic cores of protein kinases.
  Pharmacol Ther, 82, 157-164.  
10446384 M.D.Resh (1999).
Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins.
  Biochim Biophys Acta, 1451, 1.  
10535933 M.Gangal, T.Clifford, J.Deich, X.Cheng, S.S.Taylor, and D.A.Johnson (1999).
Mobilization of the A-kinase N-myristate through an isoform-specific intermolecular switch.
  Proc Natl Acad Sci U S A, 96, 12394-12399.  
10029530 N.Narayana, T.C.Diller, K.Koide, M.E.Bunnage, K.C.Nicolaou, L.L.Brunton, N.H.Xuong, L.F.Ten Eyck, and S.S.Taylor (1999).
Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase.
  Biochemistry, 38, 2367-2376.
PDB code: 1bx6
10029529 P.H.Hünenberger, V.Helms, N.Narayana, S.S.Taylor, and J.A.McCammon (1999).
Determinants of ligand binding to cAMP-dependent protein kinase.
  Biochemistry, 38, 2358-2366.  
10470373 R.A.Clegg, P.C.Gordge, and W.R.Miller (1999).
Expression of enzymes of covalent protein modification during regulated and dysregulated proliferation of mammary epithelial cells: PKA, PKC and NMT.
  Adv Enzyme Regul, 39, 175-203.  
  10364160 S.Paradis, M.Ailion, A.Toker, J.H.Thomas, and G.Ruvkun (1999).
A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans.
  Genes Dev, 13, 1438-1452.  
10454192 S.S.Taylor, E.Radzio-Andzelm, Madhusudan, X.Cheng, L.Ten Eyck, and N.Narayana (1999).
Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft.
  Pharmacol Ther, 82, 133-141.  
9698376 A.D.Cann, S.M.Bishop, A.J.Ablooglu, and R.A.Kohanski (1998).
Partial activation of the insulin receptor kinase domain by juxtamembrane autophosphorylation.
  Biochemistry, 37, 11289-11300.  
9817025, J.J.Wu, and K.S.Lam (1998).
Protein tyrosine kinases: structure, substrate specificity, and drug discovery.
  Biopolymers, 47, 197-223.  
9472028 H.Y.Wang, W.Lin, J.A.Dyck, J.M.Yeakley, Z.Songyang, L.C.Cantley, and X.D.Fu (1998).
SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells.
  J Cell Biol, 140, 737-750.  
9799515 J.Struppe, E.A.Komives, S.S.Taylor, and R.R.Vold (1998).
2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles.
  Biochemistry, 37, 15523-15527.  
9539704 J.Szczepanowska, U.Ramachandran, C.J.Herring, J.M.Gruschus, J.Qin, E.D.Korn, and H.Brzeska (1998).
Effect of mutating the regulatory phosphoserine and conserved threonine on the activity of the expressed catalytic domain of Acanthamoeba myosin I heavy chain kinase.
  Proc Natl Acad Sci U S A, 95, 4146-4151.  
  9605318 K.A.Denessiouk, J.V.Lehtonen, T.Korpela, and M.S.Johnson (1998).
Two "unrelated" families of ATP-dependent enzymes share extensive structural similarities about their cofactor binding sites.
  Protein Sci, 7, 1136-1146.  
9425067 K.A.Resing, and N.G.Ahn (1998).
Deuterium exchange mass spectrometry as a probe of protein kinase activation. Analysis of wild-type and constitutively active mutants of MAP kinase kinase-1.
  Biochemistry, 37, 463-475.  
9564028 K.Niefind, B.Guerra, L.A.Pinna, O.G.Issinger, and D.Schomburg (1998).
Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution.
  EMBO J, 17, 2451-2462.
PDB code: 1a6o
9753461 M.Gangal, S.Cox, J.Lew, T.Clifford, S.M.Garrod, M.Aschbaher, S.S.Taylor, and D.A.Johnson (1998).
Backbone flexibility of five sites on the catalytic subunit of cAMP-dependent protein kinase in the open and closed conformations.
  Biochemistry, 37, 13728-13735.  
10089519 N.Narayana, P.Akamine, N.H.Xuong, and S.S.Taylor (1998).
Crystallization and preliminary X-ray analysis of the unliganded recombinant catalytic subunit of cAMP-dependent protein kinase.
  Acta Crystallogr D Biol Crystallogr, 54, 1401-1404.  
9724532 S.Gamboni, C.Chaperon, K.Friedrich, P.J.Baehler, and C.D.Reymond (1998).
Inhibition of the cAMP-dependent protein kinase by synthetic A-helix peptides.
  Biochemistry, 37, 12189-12194.  
9435218 S.Shaltiel, S.Cox, and S.S.Taylor (1998).
Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A.
  Proc Natl Acad Sci U S A, 95, 484-491.  
9760235 X.Cheng, S.Shaltiel, and S.S.Taylor (1998).
Mapping substrate-induced conformational changes in cAMP-dependent protein kinase by protein footprinting.
  Biochemistry, 37, 14005-14013.  
9397688 C.M.Smith, I.N.Shindyalov, S.Veretnik, M.Gribskov, S.S.Taylor, L.F.Ten Eyck, and P.E.Bourne (1997).
The protein kinase resource.
  Trends Biochem Sci, 22, 444-446.  
  9070439 F.W.Herberg, B.Zimmermann, M.McGlone, and S.S.Taylor (1997).
Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface.
  Protein Sci, 6, 569-579.  
9067626 J.A.Boutin (1997).
  Cell Signal, 9, 15-35.  
9184152 J.Lew, S.S.Taylor, and J.A.Adams (1997).
Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy.
  Biochemistry, 36, 6717-6724.  
9062128 J.Zhou, and J.A.Adams (1997).
Is there a catalytic base in the active site of cAMP-dependent protein kinase?
  Biochemistry, 36, 2977-2984.  
9342234 L.C.Etchebehere, M.X.Van Bemmelen, C.Anjard, F.Traincard, K.Assemat, C.Reymond, and M.Véron (1997).
The catalytic subunit of Dictyostelium cAMP-dependent protein kinase -- role of the N-terminal domain and of the C-terminal residues in catalytic activity and stability.
  Eur J Biochem, 248, 820-826.  
9174341 M.Kovalenko, L.Rönnstrand, C.H.Heldin, M.Loubtchenkov, A.Gazit, A.Levitzki, and F.D.Böhmer (1997).
Phosphorylation site-specific inhibition of platelet-derived growth factor beta-receptor autophosphorylation by the receptor blocking tyrphostin AG1296.
  Biochemistry, 36, 6260-6269.  
9261084 N.Narayana, S.Cox, X.Nguyen-huu, L.F.Ten Eyck, and S.S.Taylor (1997).
A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility.
  Structure, 5, 921-935.
PDB code: 1bkx
9667861 S.S.Taylor, and E.Radzio-Andzelm (1997).
Protein kinase inhibition: natural and synthetic variations on a theme.
  Curr Opin Chem Biol, 1, 219-226.  
9043657 T.F.Gallagher, G.L.Seibel, S.Kassis, J.T.Laydon, M.J.Blumenthal, J.C.Lee, D.Lee, J.C.Boehm, S.M.Fier-Thompson, J.W.Abt, M.E.Soreson, J.M.Smietana, R.F.Hall, R.S.Garigipati, P.E.Bender, K.F.Erhard, A.J.Krog, G.A.Hofmann, P.L.Sheldrake, P.C.McDonnell, S.Kumar, P.R.Young, and J.L.Adams (1997).
Regulation of stress-induced cytokine production by pyridinylimidazoles; inhibition of CSBP kinase.
  Bioorg Med Chem, 5, 49-64.  
  9385635 V.Helms, and J.A.McCammon (1997).
Kinase conformations: a computational study of the effect of ligand binding.
  Protein Sci, 6, 2336-2343.  
8610175 C.P.Hill, D.Worthylake, D.P.Bancroft, A.M.Christensen, and W.I.Sundquist (1996).
Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly.
  Proc Natl Acad Sci U S A, 93, 3099-3104.
PDB code: 1hiw
  8670794 F.Hanakam, R.Albrecht, C.Eckerskorn, M.Matzner, and G.Gerisch (1996).
Myristoylated and non-myristoylated forms of the pH sensor protein hisactophilin II: intracellular shuttling to plasma membrane and nucleus monitored in real time by a fusion with green fluorescent protein.
  EMBO J, 15, 2935-2943.  
8601311 J.Goldberg, A.C.Nairn, and J.Kuriyan (1996).
Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I.
  Cell, 84, 875-887.
PDB code: 1a06
  8947030 J.L.Smith, L.A.Silveira, and J.A.Spudich (1996).
Activation of Dictyostelium myosin light chain kinase A by phosphorylation of Thr166.
  EMBO J, 15, 6075-6083.  
  8786241 J.M.Sowadski, C.A.Ellis, and Madhusudan (1996).
Detergent binding to unmyristylated protein kinase A--structural implications for the role of myristate.
  J Bioenerg Biomembr, 28, 7.  
8958442 M.D.Resh (1996).
Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins.
  Cell Signal, 8, 403-412.  
8692801 R.Murali, P.J.Brennan, T.Kieber-Emmons, and M.I.Greene (1996).
Structural analysis of p185c-neu and epidermal growth factor receptor tyrosine kinases: oligomerization of kinase domains.
  Proc Natl Acad Sci U S A, 93, 6252-6257.  
8952507 S.J.Mansour, J.M.Candia, J.E.Matsuura, M.C.Manning, and N.G.Ahn (1996).
Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1.
  Biochemistry, 35, 15529-15536.  
  7767386 C.A.Buser, J.Kim, S.McLaughlin, and R.M.Peitzsch (1995).
Does the binding of clusters of basic residues to acidic lipids induce domain formation in membranes?
  Mol Membr Biol, 12, 69-75.  
9383464 K.Koide, M.E.Bunnage, L.Gomez Paloma, J.R.Kanter, S.S.Taylor, L.L.Brunton, and K.C.Nicolaou (1995).
Molecular design and biological activity of potent and selective protein kinase inhibitors related to balanol.
  Chem Biol, 2, 601-608.  
7601142 R.Jakobi, and J.A.Traugh (1995).
Site-directed mutagenesis and structure/function studies of casein kinase II correlate stimulation of activity by the beta subunit with changes in conformation and ATP/GTP utilization.
  Eur J Biochem, 230, 1111-1117.  
7479711 U.Schulze-Gahmen, J.Brandsen, H.D.Jones, D.O.Morgan, L.Meijer, J.Vesely, and S.H.Kim (1995).
Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine.
  Proteins, 22, 378-391.
PDB codes: 1w0x 2exm
8048162 D.Bossemeyer (1994).
The glycine-rich sequence of protein kinases: a multifunctional element.
  Trends Biochem Sci, 19, 201-205.  
7517688 D.O.Morgan, and H.L.De Bondt (1994).
Protein kinase regulation: insights from crystal structure analysis.
  Curr Opin Cell Biol, 6, 239-246.  
7712287 E.J.Goldsmith, and M.H.Cobb (1994).
Protein kinases.
  Curr Opin Struct Biol, 4, 833-840.  
  8003955 Madhusudan, E.A.Trafny, N.H.Xuong, J.A.Adams, L.F.Ten Eyck, S.S.Taylor, and J.M.Sowadski (1994).
cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer.
  Protein Sci, 3, 176-187.
PDB codes: 1jbp 1jlu
7712293 S.Cox, E.Radzio-Andzelm, and S.S.Taylor (1994).
Domain movements in protein kinases.
  Curr Opin Struct Biol, 4, 893-901.  
8081750 S.S.Taylor, and E.Radzio-Andzelm (1994).
Three protein kinase structures define a common motif.
  Structure, 2, 345-355.  
7504272 M.Veron, E.Radzio-Andzelm, I.Tsigelny, L.F.Ten Eyck, and S.S.Taylor (1993).
A conserved helix motif complements the protein kinase core.
  Proc Natl Acad Sci U S A, 90, 10618-10622.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.