PDBsum entry 1cjy

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
Protein chain
633 a.a. *
MES ×2
_CA ×4
Waters ×58
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: Human cytosolic phospholipase a2
Structure: Protein (cytosolic phospholipase a2). Chain: a, b. Synonym: cpla2. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: cricetulus griseus. Expression_system_taxid: 10029
2.50Å     R-factor:   0.229     R-free:   0.298
Authors: A.Dessen,J.Tang,H.Schmidt,M.Stahl,J.D.Clark,J.Seehra, W.S.Somers
Key ref:
A.Dessen et al. (1999). Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell, 97, 349-360. PubMed id: 10319815 DOI: 10.1016/S0092-8674(00)80744-8
20-Apr-99     Release date:   20-Apr-00    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P47712  (PA24A_HUMAN) -  Cytosolic phospholipase A2
749 a.a.
633 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: E.C.  - Phospholipase A(2).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Phosphatidylcholine + H2O = 1-acylglycerophosphocholine + a carboxylate
+ H(2)O
= 1-acylglycerophosphocholine
+ carboxylate
      Cofactor: Calcium
   Enzyme class 3: E.C.  - Lysophospholipase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2-lysophosphatidylcholine + H2O = glycerophosphocholine + a carboxylate
+ H(2)O
= glycerophosphocholine
+ carboxylate
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   8 terms 
  Biological process     metabolic process   23 terms 
  Biochemical function     hydrolase activity     8 terms  


DOI no: 10.1016/S0092-8674(00)80744-8 Cell 97:349-360 (1999)
PubMed id: 10319815  
Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism.
A.Dessen, J.Tang, H.Schmidt, M.Stahl, J.D.Clark, J.Seehra, W.S.Somers.
Cytosolic phospholipase A2 initiates the biosynthesis of prostaglandins, leukotrienes, and platelet-activating factor (PAF), mediators of the pathophysiology of asthma and arthritis. Here, we report the X-ray crystal structure of human cPLA2 at 2.5 A. cPLA2 consists of an N-terminal calcium-dependent lipid-binding/C2 domain and a catalytic unit whose topology is distinct from that of other lipases. An unusual Ser-Asp dyad located in a deep cleft at the center of a predominantly hydrophobic funnel selectively cleaves arachidonyl phospholipids. The structure reveals a flexible lid that must move to allow substrate access to the active site, thus explaining the interfacial activation of this important lipase.
  Selected figure(s)  
Figure 2.
Figure 2. Ribbon and Surface Diagrams of cPLA[2](A) Ribbon diagram of the cPLA[2] monomer. The C2 domain is shown in green, with the two Ca^2+ atoms depicted in red. The “cap” structure of cPLA[2] is colored purple. Mobile loops with poor electron density are shown as dots. The flexible linker between the C2 and catalytic domains is colored red. The positions of the four serine residues, which are phosphorylated in cPLA[2], are also shown. For clarity, β9 and β10 have not been labeled; β10 lies between β4 and β12. Figure prepared with MOLSCRIPT ([28]) and RASTER3D ( [2]).(B) GRASP surface diagram of cPLA[2]. Residues that presented N15/NH shifts upon interaction with dodecylphosphocholine micelles in NMR experiments by [59] are colored purple. The cPLA[2] active cleft is highlighted in red. Lid residues (413–457) have been removed for clarity.(C) Surface potential representation of cPLA[2], with regions with electrostatic potential <−3.5 k[B]T are red, while those >+3.5 k[B]T are blue (K[B], Boltzmann constant; T, absolute temperature). The lid residues (413–457) have been removed for clarity, and neither calcium nor MES was employed in the generation of the potential. A highly basic patch is clearly visible on the membrane-binding region of the molecule and also encompasses residues 57–61, which are located on the β3 strand of the C2 domain. Figure prepared with GRASP ([41]). All views are in the same orientation, with the plasma membrane coming from the direction of the eyes of the reader.
Figure 3.
Figure 3. Richardson Diagrams of cPLA[2] and the Canonical α/β Hydrolase Fold(A) Richardson representation of the canonical α/β hydrolase fold. β strands are represented as arrows, while α helices are rectangles. Secondary structural element numbering is according to the review by [50]. Helix C, which immediately follows the “nucleophilic elbow,” is colored pink.(B) Richardson diagram of the cPLA[2] fold. The naming scheme was devised so that the helix immediately following Ser-288 is helix C, as in the canonical α/β hydrolase fold. The central core is colored yellow for a more facile comparison with the canonical α/β hydrolase fold in (A). Elements composing the “cap” are colored purple; loop regions in red are highly mobile and do not present traceable electron density. Lid residues (see text) are represented primarily by helix Fc.
  The above figures are reprinted by permission from Cell Press: Cell (1999, 97, 349-360) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21087632 A.Lass, R.Zimmermann, M.Oberer, and R.Zechner (2011).
Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores.
  Prog Lipid Res, 50, 14-27.  
21450464 A.Mete, G.Andrews, M.Bernstein, S.Connolly, P.Hartopp, C.G.Jackson, R.Lewis, I.Martin, D.Murray, R.Riley, D.H.Robinson, G.M.Smith, E.Wells, and W.J.Withnall (2011).
Design of novel and potent cPLA2α inhibitors containing an α-methyl-2-ketothiazole as a metabolically stable serine trap.
  Bioorg Med Chem Lett, 21, 3128-3133.  
21259444 S.Zahov, A.Drews, M.Hess, A.Schulze Elfringhoff, and M.Lehr (2011).
1-(3-Biaryloxy-2-oxopropyl)indole-5-carboxylic Acids and Related Compounds as Dual Inhibitors of Human Cytosolic Phospholipase A(2) α and Fatty Acid Amide Hydrolase.
  ChemMedChem, 6, 544-549.  
20097856 K.M.Schmalzer, M.A.Benson, and D.W.Frank (2010).
Activation of ExoU phospholipase activity requires specific C-terminal regions.
  J Bacteriol, 192, 1801-1812.  
19887372 P.Haimi, M.Hermansson, K.C.Batchu, J.A.Virtanen, and P.Somerharju (2010).
Substrate efflux propensity plays a key role in the specificity of secretory A-type phospholipases.
  J Biol Chem, 285, 751-760.  
19692632 R.E.Duncan, Y.Wang, M.Ahmadian, J.Lu, E.Sarkadi-Nagy, and H.S.Sul (2010).
Characterization of desnutrin functional domains: critical residues for triacylglycerol hydrolysis in cultured cells.
  J Lipid Res, 51, 309-317.  
20021282 V.Magrioti, and G.Kokotos (2010).
Phospholipase A2 inhibitors as potential therapeutic agents for the treatment of inflammatory diseases.
  Expert Opin Ther Pat, 20, 1.  
  19390346 A.Cedars, C.M.Jenkins, D.J.Mancuso, and R.W.Gross (2009).
Calcium-independent phospholipases in the heart: mediators of cellular signaling, bioenergetics, and ischemia-induced electrophysiologic dysfunction.
  J Cardiovasc Pharmacol, 53, 277-289.  
19680249 A.R.Hauser (2009).
The type III secretion system of Pseudomonas aeruginosa: infection by injection.
  Nat Rev Microbiol, 7, 654-665.  
19176526 D.E.Tucker, M.Ghosh, F.Ghomashchi, R.Loper, S.Suram, B.S.John, M.Girotti, J.G.Bollinger, M.H.Gelb, and C.C.Leslie (2009).
Role of phosphorylation and basic residues in the catalytic domain of cytosolic phospholipase A2alpha in regulating interfacial kinetics and binding and cellular function.
  J Biol Chem, 284, 9596-9611.  
19459633 J.E.Burke, A.Babakhani, A.A.Gorfe, G.Kokotos, S.Li, V.L.Woods, J.A.McCammon, and E.A.Dennis (2009).
Location of inhibitors bound to group IVA phospholipase A2 determined by molecular dynamics and deuterium exchange mass spectrometry.
  J Am Chem Soc, 131, 8083-8091.  
18931897 J.E.Burke, and E.A.Dennis (2009).
Phospholipase a(2) biochemistry.
  Cardiovasc Drugs Ther, 23, 49-59.  
  19011112 J.E.Burke, and E.A.Dennis (2009).
Phospholipase A2 structure/function, mechanism, and signaling.
  J Lipid Res, 50, S237-S242.  
18850102 J.L.Cacas, P.Marmey, J.L.Montillet, M.Sayegh-Alhamdia, A.Jalloul, A.Rojas-Mendoza, A.Clérivet, and M.Nicole (2009).
A novel patatin-like protein from cotton plant, GhPat1, is co-expressed with GhLox1 during Xanthomonas campestris-mediated hypersensitive cell death.
  Plant Cell Rep, 28, 155-164.  
19479320 J.Mansfeld (2009).
Plant phospholipases A2: perspectives on biotechnological applications.
  Biotechnol Lett, 31, 1373-1380.  
19457107 M.Chalimoniuk, A.Stolecka, E.Ziemińska, A.Stepień, J.Langfort, and J.B.Strosznajder (2009).
Involvement of multiple protein kinases in cPLA2 phosphorylation, arachidonic acid release, and cell death in in vivo and in vitro models of 1-methyl-4-phenylpyridinium-induced parkinsonism--the possible key role of PKG.
  J Neurochem, 110, 307-317.  
18761105 M.Niknami, M.Patel, P.K.Witting, and Q.Dong (2009).
Molecules in focus: cytosolic phospholipase A2-alpha.
  Int J Biochem Cell Biol, 41, 994-997.  
19454031 S.Valentín-Berríos, W.González-Velázquez, L.Pérez-Sánchez, R.González-Méndez, and N.Rodríguez-Del Valle (2009).
Cytosolic phospholipase A2: a member of the signalling pathway of a new G protein alpha subunit in Sporothrix schenckii.
  BMC Microbiol, 9, 100.  
19556238 Y.H.Hsu, J.E.Burke, S.Li, V.L.Woods, and E.A.Dennis (2009).
Localizing the membrane binding region of Group VIA Ca2+-independent phospholipase A2 using peptide amide hydrogen/deuterium exchange mass spectrometry.
  J Biol Chem, 284, 23652-23661.  
18753135 J.E.Burke, Y.H.Hsu, R.A.Deems, S.Li, V.L.Woods, and E.A.Dennis (2008).
A Phospholipid Substrate Molecule Residing in the Membrane Surface Mediates Opening of the Lid Region in Group IVA Cytosolic Phospholipase A2.
  J Biol Chem, 283, 31227-31236.  
18549477 J.Saarela, G.Jung, M.Hermann, J.Nimpf, and W.J.Schneider (2008).
The patatin-like lipase family in Gallus gallus.
  BMC Genomics, 9, 281.  
18502815 L.Y.Chen, G.Woszczek, S.Nagineni, C.Logun, and J.H.Shelhamer (2008).
Cytosolic phospholipase A2alpha activation induced by S1P is mediated by the S1P3 receptor in lung epithelial cells.
  Am J Physiol Lung Cell Mol Physiol, 295, L326-L335.  
18445597 M.Schweiger, G.Schoiswohl, A.Lass, F.P.Radner, G.Haemmerle, R.Malli, W.Graier, I.Cornaciu, M.Oberer, R.Salvayre, J.Fischer, R.Zechner, and R.Zimmermann (2008).
The C-terminal region of human adipose triglyceride lipase affects enzyme activity and lipid droplet binding.
  J Biol Chem, 283, 17211-17220.  
18757801 N.S.Lossi, N.Rolhion, A.I.Magee, C.Boyle, and D.W.Holden (2008).
The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid : cholesterol acyltransferase activity.
  Microbiology, 154, 2680-2688.  
18756268 P.Maier, N.Rathfelder, C.I.Maeder, J.Colombelli, E.H.Stelzer, and M.Knop (2008).
The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis.
  EMBO J, 27, 2363-2374.  
18065419 W.Tian, G.T.Wijewickrama, J.H.Kim, S.Das, M.P.Tun, N.Gokhale, J.W.Jung, K.P.Kim, and W.Cho (2008).
Mechanism of regulation of group IVA phospholipase A2 activity by Ser727 phosphorylation.
  J Biol Chem, 283, 3960-3971.  
18211893 Y.H.Hsu, J.E.Burke, D.L.Stephens, R.A.Deems, S.Li, K.M.Asmus, V.L.Woods, and E.A.Dennis (2008).
Calcium binding rigidifies the C2 domain and the intradomain interaction of GIVA phospholipase A2 as revealed by hydrogen/deuterium exchange mass spectrometry.
  J Biol Chem, 283, 9820-9827.  
18765662 Z.Shmelzer, M.Karter, M.Eisenstein, T.L.Leto, N.Hadad, D.Ben-Menahem, D.Gitler, S.Banani, B.Wolach, M.Rotem, and R.Levy (2008).
Cytosolic Phospholipase A2{alpha} Is Targeted to the p47phox-PX Domain of the Assembled NADPH Oxidase via a Novel Binding Site in Its C2 Domain.
  J Biol Chem, 283, 31898-31908.  
17166175 D.G.Mordue, C.F.Scott-Weathers, C.M.Tobin, and L.J.Knoll (2007).
A patatin-like protein protects Toxoplasma gondii from degradation in activated macrophages.
  Mol Microbiol, 63, 482-496.  
17367165 J.A.Corbin, J.H.Evans, K.E.Landgraf, and J.J.Falke (2007).
Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity.
  Biochemistry, 46, 4322-4336.  
17954913 J.R.Alattia, J.E.Shaw, C.M.Yip, and G.G.Privé (2007).
Molecular imaging of membrane interfaces reveals mode of beta-glucosidase activation by saposin C.
  Proc Natl Acad Sci U S A, 104, 17394-17399.  
17404228 N.E.Babady, Y.P.Pang, O.Elpeleg, and G.Isaya (2007).
Cryptic proteolytic activity of dihydrolipoamide dehydrogenase.
  Proc Natl Acad Sci U S A, 104, 6158-6163.  
17663017 S.C.Vose, N.T.Holland, B.Eskenazi, and J.E.Casida (2007).
Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants.
  Toxicol Appl Pharmacol, 224, 98.  
17216363 S.J.Wijeyesakere, R.J.Richardson, and J.A.Stuckey (2007).
Modeling the tertiary structure of the patatin domain of neuropathy target esterase.
  Protein J, 26, 165-172.  
17071664 S.Jaud, D.J.Tobias, J.J.Falke, and S.H.White (2007).
Self-induced docking site of a deeply embedded peripheral membrane protein.
  Biophys J, 92, 517-524.  
17085504 S.Varma, and E.Jakobsson (2007).
The cPLA2 C2alpha domain in solution: structure and dynamics of its Ca2+-activated and cation-free states.
  Biophys J, 92, 966-976.  
16267052 C.F.Kurat, K.Natter, J.Petschnigg, H.Wolinski, K.Scheuringer, H.Scholz, R.Zimmermann, R.Leber, R.Zechner, and S.D.Kohlwein (2006).
Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast.
  J Biol Chem, 281, 491-500.  
16640343 D.Stephens, E.Barbayianni, V.Constantinou-Kokotou, A.Peristeraki, D.A.Six, J.Cooper, R.Harkewicz, R.A.Deems, E.A.Dennis, and G.Kokotos (2006).
Differential inhibition of group IVA and group VIA phospholipases A2 by 2-oxoamides.
  J Med Chem, 49, 2821-2828.  
17081801 G.A.Köhler, A.Brenot, E.Haas-Stapleton, N.Agabian, R.Deva, and S.Nigam (2006).
Phospholipase A2 and phospholipase B activities in fungi.
  Biochim Biophys Acta, 1761, 1391-1399.  
16551354 G.Schneider, G.Neuberger, M.Wildpaner, S.Tian, I.Berezovsky, and F.Eisenhaber (2006).
Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases.
  BMC Bioinformatics, 7, 164.  
16221889 J.Casas, M.A.Gijón, A.G.Vigo, M.S.Crespo, J.Balsinde, and M.A.Balboa (2006).
Phosphatidylinositol 4,5-bisphosphate anchors cytosolic group IVA phospholipase A2 to perinuclear membranes and decreases its calcium requirement for translocation in live cells.
  Mol Biol Cell, 17, 155-162.  
16616874 J.H.Hurley (2006).
Membrane binding domains.
  Biochim Biophys Acta, 1761, 805-811.  
16617059 M.Ghosh, R.Loper, M.H.Gelb, and C.C.Leslie (2006).
Identification of the expressed form of human cytosolic phospholipase A2beta (cPLA2beta): cPLA2beta3 is a novel variant localized to mitochondria and early endosomes.
  J Biol Chem, 281, 16615-16624.  
15659695 H.Sato, J.B.Feix, C.J.Hillard, and D.W.Frank (2005).
Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin, ExoU.
  J Bacteriol, 187, 1192-1195.  
15765498 N.Jessani, J.A.Young, S.L.Diaz, M.P.Patricelli, A.Varki, and B.F.Cravatt (2005).
Class assignment of sequence-unrelated members of enzyme superfamilies by activity-based protein profiling.
  Angew Chem Int Ed Engl, 44, 2400-2403.  
16290172 P.K.Forsell, A.O.Olsson, E.Andersson, L.Nallan, and M.H.Gelb (2005).
Polychlorinated biphenyls induce arachidonic acid release in human platelets in a tamoxifen sensitive manner via activation of group IVA cytosolic phospholipase A2-alpha.
  Biochem Pharmacol, 71, 144-155.  
15891395 R.Zechner, J.G.Strauss, G.Haemmerle, A.Lass, and R.Zimmermann (2005).
Lipolysis: pathway under construction.
  Curr Opin Lipidol, 16, 333-340.  
15618197 S.D.Rabin, and A.R.Hauser (2005).
Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU.
  Infect Immun, 73, 573-582.  
15866882 T.Ohto, N.Uozumi, T.Hirabayashi, and T.Shimizu (2005).
Identification of novel cytosolic phospholipase A(2)s, murine cPLA(2){delta}, {epsilon}, and {zeta}, which form a gene cluster with cPLA(2){beta}.
  J Biol Chem, 280, 24576-24583.  
15635664 V.Constantinou-Kokotou, A.Peristeraki, C.G.Kokotos, D.A.Six, and E.A.Dennis (2005).
Synthesis and activity of 2-oxoamides containing long chain beta-amino acids.
  J Pept Sci, 11, 431-435.  
15572774 E.Blanc, P.Roversi, C.Vonrhein, C.Flensburg, S.M.Lea, and G.Bricogne (2004).
Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT.
  Acta Crystallogr D Biol Crystallogr, 60, 2210-2221.  
15387809 H.Sato, and D.W.Frank (2004).
ExoU is a potent intracellular phospholipase.
  Mol Microbiol, 53, 1279-1290.  
14623879 J.H.Evans, and C.C.Leslie (2004).
The cytosolic phospholipase A2 catalytic domain modulates association and residence time at Golgi membranes.
  J Biol Chem, 279, 6005-6016.  
13679516 J.H.Evans, S.H.Gerber, D.Murray, and C.C.Leslie (2004).
The calcium binding loops of the cytosolic phospholipase A2 C2 domain specify targeting to Golgi and ER in live cells.
  Mol Biol Cell, 15, 371-383.  
15550674 R.Zimmermann, J.G.Strauss, G.Haemmerle, G.Schoiswohl, R.Birner-Gruenberger, M.Riederer, A.Lass, G.Neuberger, F.Eisenhaber, A.Hermetter, and R.Zechner (2004).
Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.
  Science, 306, 1383-1386.  
15305015 T.Hirabayashi, T.Murayama, and T.Shimizu (2004).
Regulatory mechanism and physiological role of cytosolic phospholipase A2.
  Biol Pharm Bull, 27, 1168-1173.  
12672805 D.A.Six, and E.A.Dennis (2003).
Essential Ca(2+)-independent role of the group IVA cytosolic phospholipase A(2) C2 domain for interfacial activity.
  J Biol Chem, 278, 23842-23850.  
12554936 D.J.Rigden, L.W.Hwa, S.Marangoni, M.H.Toyama, and I.Polikarpov (2003).
The structure of the D49 phospholipase A2 piratoxin III from Bothrops pirajai reveals unprecedented structural displacement of the calcium-binding loop: possiblerelationship to cooperative substrate binding.
  Acta Crystallogr D Biol Crystallogr, 59, 255-262.
PDB code: 1gmz
12815722 G.Shemer, and B.Podbilewicz (2003).
The story of cell fusion: big lessons from little worms.
  Bioessays, 25, 672-682.  
12805211 H.Sato, D.W.Frank, C.J.Hillard, J.B.Feix, R.R.Pankhaniya, K.Moriyama, V.Finck-Barbançon, A.Buchaklian, M.Lei, R.M.Long, J.Wiener-Kronish, and T.Sawa (2003).
The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU.
  EMBO J, 22, 2959-2969.  
12573692 J.H.Hurley (2003).
Membrane proteins: adapting to life at the interface.
  Chem Biol, 10, 2-3.  
12616631 K.A.Hansford, R.C.Reid, C.I.Clark, J.D.Tyndall, M.W.Whitehouse, T.Guthrie, R.P.McGeary, K.Schafer, J.L.Martin, and D.P.Fairlie (2003).
D-Tyrosine as a chiral precusor to potent inhibitors of human nonpancreatic secretory phospholipase A2 (IIa) with antiinflammatory activity.
  Chembiochem, 4, 181-185.
PDB codes: 1j1a 1kqu
12502717 K.Asai, T.Hirabayashi, T.Houjou, N.Uozumi, R.Taguchi, and T.Shimizu (2003).
Human group IVC phospholipase A2 (cPLA2gamma). Roles in the membrane remodeling and activation induced by oxidative stress.
  J Biol Chem, 278, 8809-8814.  
12839876 M.Strokin, M.Sergeeva, and G.Reiser (2003).
Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+.
  Br J Pharmacol, 139, 1014-1022.  
12915403 R.M.Phillips, D.A.Six, E.A.Dennis, and P.Ghosh (2003).
In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors.
  J Biol Chem, 278, 41326-41332.  
14529276 S.Corbalán-Garcia, S.Sánchez-Carrillo, J.García-García, and J.C.Gómez-Fernández (2003).
Characterization of the membrane binding mode of the C2 domain of PKC epsilon.
  Biochemistry, 42, 11661-11668.  
12885780 S.Das, J.D.Rafter, K.P.Kim, S.P.Gygi, and W.Cho (2003).
Mechanism of group IVA cytosolic phospholipase A(2) activation by phosphorylation.
  J Biol Chem, 278, 41431-41442.  
12009889 A.A.Frazier, M.A.Wisner, N.J.Malmberg, K.G.Victor, G.E.Fanucci, E.A.Nalefski, J.J.Falke, and D.S.Cafiso (2002).
Membrane orientation and position of the C2 domain from cPLA2 by site-directed spin labeling.
  Biochemistry, 41, 6282-6292.  
12039969 A.Stewart, M.Ghosh, D.M.Spencer, and C.C.Leslie (2002).
Enzymatic properties of human cytosolic phospholipase A(2)gamma.
  J Biol Chem, 277, 29526-29536.  
12370087 J.H.Evans, D.J.Fergus, and C.C.Leslie (2002).
Inhibition of the MEK1/ERK pathway reduces arachidonic acid release independently of cPLA2 phosphorylation and translocation.
  BMC Biochem, 3, 30.  
11884760 M.N.Teruel, and T.Meyer (2002).
Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module.
  Science, 295, 1910-1912.  
12194976 M.Nauze, L.Gonin, B.Chaminade, C.Perès, F.Hullin-Matsuda, B.Perret, H.Chap, and A.Gassama-Diagne (2002).
Guinea pig phospholipase B, identification of the catalytic serine and the proregion involved in its processing and enzymatic activity.
  J Biol Chem, 277, 44093-44099.  
12357033 P.M.Hwang, W.Y.Choy, E.I.Lo, L.Chen, J.D.Forman-Kay, C.R.Raetz, G.G.Privé, R.E.Bishop, and L.E.Kay (2002).
Solution structure and dynamics of the outer membrane enzyme PagP by NMR.
  Proc Natl Acad Sci U S A, 99, 13560-13565.
PDB codes: 1mm4 1mm5
11956215 S.Das, and W.Cho (2002).
Roles of catalytic domain residues in interfacial binding and activation of group IV cytosolic phospholipase A2.
  J Biol Chem, 277, 23838-23846.  
12059982 W.Jaross, R.Eckey, and M.Menschikowski (2002).
Biological effects of secretory phospholipase A(2) group IIA on lipoproteins and in atherogenesis.
  Eur J Clin Invest, 32, 383-393.  
11258923 E.A.Nalefski, M.A.Wisner, J.Z.Chen, S.R.Sprang, M.Fukuda, K.Mikoshiba, and J.J.Falke (2001).
C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity.
  Biochemistry, 40, 3089-3100.  
11589694 H.J.Hirschberg, J.W.Simons, N.Dekker, and M.R.Egmond (2001).
Cloning, expression, purification and characterization of patatin, a novel phospholipase A.
  Eur J Biochem, 268, 5037-5044.  
11179977 J.García-García, J.C.Gómez-Fernández, and S.Corbalán-García (2001).
Structural characterization of the C2 domain of novel protein kinase Cepsilon.
  Eur J Biochem, 268, 1107-1117.  
11479288 M.M.Muthalif, Y.Hefner, S.Canaan, J.Harper, H.Zhou, J.H.Parmentier, R.Aebersold, M.H.Gelb, and K.U.Malik (2001).
Functional interaction of calcium-/calmodulin-dependent protein kinase II and cytosolic phospholipase A(2).
  J Biol Chem, 276, 39653-39660.  
10673441 A.Dessen (2000).
Phospholipase A(2) enzymes: structural diversity in lipid messenger metabolism.
  Structure, 8, R15-R22.  
10634937 A.G.Buckland, and D.C.Wilton (2000).
Anionic phospholipids, interfacial binding and the regulation of cell functions.
  Biochim Biophys Acta, 1483, 199-216.  
11080672 D.A.Six, and E.A.Dennis (2000).
The expanding superfamily of phospholipase A(2) enzymes: classification and characterization.
  Biochim Biophys Acta, 1488, 1.  
10873862 I.Leiros, F.Secundo, C.Zambonelli, S.Servi, and E.Hough (2000).
The first crystal structure of a phospholipase D.
  Structure, 8, 655-667.
PDB code: 1f0i
10940243 J.H.Hurley, and S.Misra (2000).
Signaling and subcellular targeting by membrane-binding domains.
  Annu Rev Biophys Biomol Struct, 29, 49-79.  
11114512 J.H.Hurley, Y.Tsujishita, and M.A.Pearson (2000).
Floundering about at cell membranes: a structural view of phospholipid signaling.
  Curr Opin Struct Biol, 10, 737-743.  
10828354 M.A.Gijón, D.M.Spencer, and C.C.Leslie (2000).
Recent advances in the regulation of cytosolic phospholipase A(2).
  Adv Enzyme Regul, 40, 255-268.  
10838595 M.Hernández, M.L.Nieto, and M.Sánchez Crespo (2000).
Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells.
  Trends Neurosci, 23, 259-264.  
10951212 S.Pedersen, I.H.Lambert, S.M.Thoroed, and E.K.Hoffmann (2000).
Hypotonic cell swelling induces translocation of the alpha isoform of cytosolic phospholipase A2 but not the gamma isoform in Ehrlich ascites tumor cells.
  Eur J Biochem, 267, 5531-5539.  
11080682 T.Hirabayashi, and T.Shimizu (2000).
Localization and regulation of cytosolic phospholipase A(2).
  Biochim Biophys Acta, 1488, 124-138.  
11063575 X.Chen, D.E.Wolfgang, and N.S.Sampson (2000).
Use of the parallax-quench method to determine the position of the active-site loop of cholesterol oxidase in lipid bilayers.
  Biochemistry, 39, 13383-13389.  
10625659 Y.Nakatani, T.Tanioka, S.Sunaga, M.Murakami, and I.Kudo (2000).
Identification of a cellular protein that functionally interacts with the C2 domain of cytosolic phospholipase A(2)alpha.
  J Biol Chem, 275, 1161-1168.  
10359764 A.Ball, R.Nielsen, M.H.Gelb, and B.H.Robinson (1999).
Interfacial membrane docking of cytosolic phospholipase A2 C2 domain using electrostatic potential-modulated spin relaxation magnetic resonance.
  Proc Natl Acad Sci U S A, 96, 6637-6642.  
10518790 E.Klapisz, M.Ziari, D.Wendum, K.Koumanov, C.Brachet-Ducos, J.L.Olivier, G.Béréziat, G.Trugnan, and J.Masliah (1999).
N-terminal and C-terminal plasma membrane anchoring modulate differently agonist-induced activation of cytosolic phospholipase A2.
  Eur J Biochem, 265, 957-966.  
10562545 N.Verdaguer, S.Corbalan-Garcia, W.F.Ochoa, I.Fita, and J.C.Gómez-Fernández (1999).
Ca(2+) bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine.
  EMBO J, 18, 6329-6338.
PDB code: 1dsy
10497163 O.Merkel, M.Fido, J.A.Mayr, H.Prüger, F.Raab, G.Zandonella, S.D.Kohlwein, and F.Paltauf (1999).
Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae.
  J Biol Chem, 274, 28121-28127.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.