PDBsum entry 1chn

Go to PDB code: 
protein metals links
Signal transduction protein PDB id
Protein chain
126 a.a. *
Waters ×71
* Residue conservation analysis
PDB id:
Name: Signal transduction protein
Title: Magnesium binding to the bacterial chemotaxis protein chey results in large conformational changes involving its functional surface
Structure: Chey. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562.
1.76Å     R-factor:   0.191    
Authors: L.Bellsolell,M.Coll
Key ref: L.Bellsolell et al. (1994). Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface. J Mol Biol, 238, 489-495. PubMed id: 8176739
20-Apr-94     Release date:   31-Jul-94    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P0AE67  (CHEY_ECOLI) -  Chemotaxis protein CheY
129 a.a.
126 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     bacterial-type flagellar cell motility   6 terms 
  Biochemical function     protein binding     4 terms  


J Mol Biol 238:489-495 (1994)
PubMed id: 8176739  
Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface.
L.Bellsolell, J.Prieto, L.Serrano, M.Coll.
The three-dimensional crystal structure of the bacterial chemotaxis protein CheY with the essential Mg2+ cation bound to the active site reveals large conformational changes caused by the metal binding. Displacements of up to 10 A are observed in several residues at the N terminus of alpha-helix 4 and in the preceding loop. One turn of this helix unwinds, and an Asn residue that was located inside the helix becomes the new N-cap. This supports the important role that N or C-cap residues play in alpha-helix stability. In addition the preceding beta-strand becomes elongated and a new beta-turn appears. The final effect is a significant modification of the surface relief of the protein in a region previously indicated, by genetic analysis, to be essential for CheY function. It is suggested that binding of a divalent cation to CheY could play a significant part in CheY activation and consequently in signal transduction in prokaryotes.

Literature references that cite this PDB file's key reference

  PubMed id Reference
20809990 J.V.Møller, C.Olesen, A.M.Winther, and P.Nissen (2010).
The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
  Q Rev Biophys, 43, 501-566.  
17942407 J.King-Scott, E.Nowak, E.Mylonas, S.Panjikar, M.Roessle, D.I.Svergun, and P.A.Tucker (2007).
The structure of a full-length response regulator from Mycobacterium tuberculosis in a stabilized three-dimensional domain-swapped, activated state.
  J Biol Chem, 282, 37717-37729.
PDB code: 2oqr
17172298 M.H.Knaggs, F.R.Salsbury, M.H.Edgell, and J.S.Fetrow (2007).
Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations.
  Biophys J, 92, 2062-2079.  
17182055 R.Arribas-Bosacoma, S.K.Kim, C.Ferrer-Orta, A.G.Blanco, P.J.Pereira, F.X.Gomis-Rüth, B.L.Wanner, M.Coll, and M.Solà (2007).
The X-ray crystal structures of two constitutively active mutants of the Escherichia coli PhoB receiver domain give insights into activation.
  J Mol Biol, 366, 626-641.
PDB codes: 2jb9 2jba
17050923 C.M.Dyer, and F.W.Dahlquist (2006).
Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM.
  J Bacteriol, 188, 7354-7363.
PDB code: 2b1j
16434396 E.Nowak, S.Panjikar, P.Konarev, D.I.Svergun, and P.A.Tucker (2006).
The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis.
  J Biol Chem, 281, 9659-9666.  
16877509 H.Yang, L.Hu, J.Shi, and J.Cui (2006).
Tuning magnesium sensitivity of BK channels by mutations.
  Biophys J, 91, 2892-2900.  
16929106 M.Solà, D.L.Drew, A.G.Blanco, F.X.Gomis-Rüth, and M.Coll (2006).
The cofactor-induced pre-active conformation in PhoB.
  Acta Crystallogr D Biol Crystallogr, 62, 1046-1057.
PDB code: 2iyn
15778956 D.Segal, and M.Eisenstein (2005).
The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking.
  Proteins, 59, 580-591.  
16321923 K.I.Varughese (2005).
Conformational changes of Spo0F along the phosphotransfer pathway.
  J Bacteriol, 187, 8221-8227.  
16154092 P.Bachhawat, G.V.Swapna, G.T.Montelione, and A.M.Stock (2005).
Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states.
  Structure, 13, 1353-1363.
PDB code: 1zes
15741343 T.J.Lowery, M.Doucleff, E.J.Ruiz, S.M.Rubin, A.Pines, and D.E.Wemmer (2005).
Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR.
  Protein Sci, 14, 848-855.
PDB code: 1zdm
15162493 A.Berchanski, B.Shapira, and M.Eisenstein (2004).
Hydrophobic complementarity in protein-protein docking.
  Proteins, 56, 130-142.  
15240481 C.Benda, C.Scheufler, N.Tandeau de Marsac, and W.Gärtner (2004).
Crystal structures of two cyanobacterial response regulators in apo- and phosphorylated form reveal a novel dimerization motif of phytochrome-associated response regulators.
  Biophys J, 87, 476-487.
PDB codes: 1k66 1k68
15039551 D.Mukhopadhyay, U.Sen, J.Zapf, and K.I.Varughese (2004).
Metals in the sporulation phosphorelay: manganese binding by the response regulator Spo0F.
  Acta Crystallogr D Biol Crystallogr, 60, 638-645.
PDB code: 1pey
15291819 Y.Peeraer, A.Rabijns, J.F.Collet, E.Van Schaftingen, and C.De Ranter (2004).
How calcium inhibits the magnesium-dependent enzyme human phosphoserine phosphatase.
  Eur J Biochem, 271, 3421-3427.  
12940980 J.A.Hubbard, L.K.MacLachlan, G.W.King, J.J.Jones, and A.P.Fosberry (2003).
Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli.
  Mol Microbiol, 49, 1191-1200.  
14563873 J.G.Smith, J.A.Latiolais, G.P.Guanga, S.Citineni, R.E.Silversmith, and R.B.Bourret (2003).
Investigation of the role of electrostatic charge in activation of the Escherichia coli response regulator CheY.
  J Bacteriol, 185, 6385-6391.  
12202384 S.Kumar, and R.Nussinov (2002).
Relationship between ion pair geometries and electrostatic strengths in proteins.
  Biophys J, 83, 1595-1612.  
12176983 V.Guillet, N.Ohta, S.Cabantous, A.Newton, and J.P.Samama (2002).
Crystallographic and biochemical studies of DivK reveal novel features of an essential response regulator in Caulobacter crescentus.
  J Biol Chem, 277, 42003-42010.
PDB codes: 1m5t 1m5u 1mav 1mb0 1mb3
11134926 P.Gouet, N.Chinardet, M.Welch, V.Guillet, S.Cabantous, C.Birck, L.Mourey, and J.P.Samama (2001).
Further insights into the mechanism of function of the response regulator CheY from crystallographic studies of the CheY--CheA(124--257) complex.
  Acta Crystallogr D Biol Crystallogr, 57, 44-51.
PDB codes: 1ffg 1ffs 1ffw
11340660 S.Kumar, and R.Nussinov (2001).
Fluctuations in ion pairs and their stabilities in proteins.
  Proteins, 43, 433-454.  
10966457 A.M.Stock, V.L.Robinson, and P.N.Goudreau (2000).
Two-component signal transduction.
  Annu Rev Biochem, 69, 183-215.  
10944400 D.J.Rigden, L.V.Mello, and D.J.Bertioli (2000).
Structural modeling of a plant disease resistance gene product domain.
  Proteins, 41, 133-143.  
10632881 D.S.Shah, S.L.Porter, D.C.Harris, G.H.Wadhams, P.A.Hamblin, and J.P.Armitage (2000).
Identification of a fourth cheY gene in Rhodobacter sphaeroides and interspecies interaction within the bacterial chemotaxis signal transduction pathway.
  Mol Microbiol, 35, 101-112.  
10613863 J.K.Cheung, and J.I.Rood (2000).
The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter.
  J Bacteriol, 182, 57-66.  
10647181 C.Birck, L.Mourey, P.Gouet, B.Fabry, J.Schumacher, P.Rousseau, D.Kahn, and J.P.Samama (1999).
Conformational changes induced by phosphorylation of the FixJ receiver domain.
  Structure, 7, 1505-1515.
PDB code: 1d5w
10393292 M.Kato, T.Shimizu, T.Mizuno, and T.Hakoshima (1999).
Structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor protein ArcB complexed with the chemotaxis response regulator CheY.
  Acta Crystallogr D Biol Crystallogr, 55, 1257-1263.
PDB code: 1bdj
10647182 P.Gouet, B.Fabry, V.Guillet, C.Birck, L.Mourey, D.Kahn, and J.P.Samama (1999).
Structural transitions in the FixJ receiver domain.
  Structure, 7, 1517-1526.
PDB codes: 1dbw 1dck 1dcm
9761905 D.Wilcock, M.T.Pisabarro, E.López-Hernandez, L.Serrano, and M.Coll (1998).
Structure analysis of two CheY mutants: importance of the hydrogen-bond contribution to protein stability.
  Acta Crystallogr D Biol Crystallogr, 54, 378-385.
PDB codes: 1ab5 1ab6
9560213 L.A.Mirny, V.I.Abkevich, and E.I.Shakhnovich (1998).
How evolution makes proteins fold quickly.
  Proc Natl Acad Sci U S A, 95, 4976-4981.  
9636149 M.M.McEvoy, A.C.Hausrath, G.B.Randolph, S.J.Remington, and F.W.Dahlquist (1998).
Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway.
  Proc Natl Acad Sci U S A, 95, 7333-7338.
PDB code: 1eay
10089524 M.Staley, L.C.Zeringue, R.D.Kidd, B.T.Nixon, and G.K.Farber (1998).
Crystallization and preliminary X-ray studies of the Rhizobium meliloti DctD two-component receiver domain.
  Acta Crystallogr D Biol Crystallogr, 54, 1416-1418.  
  9514257 R.Aurora, and G.D.Rose (1998).
Helix capping.
  Protein Sci, 7, 21-38.  
9560203 R.Ramakrishnan, M.Schuster, and R.B.Bourret (1998).
Acetylation at Lys-92 enhances signaling by the chemotaxis response regulator protein CheY.
  Proc Natl Acad Sci U S A, 95, 4918-4923.  
9442881 J.J.Falke, R.B.Bass, S.L.Butler, S.A.Chervitz, and M.A.Danielson (1997).
The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes.
  Annu Rev Cell Dev Biol, 13, 457-512.  
9148959 J.S.Fassler, W.M.Gray, C.L.Malone, W.Tao, H.Lin, and R.J.Deschenes (1997).
Activated alleles of yeast SLN1 increase Mcm1-dependent reporter gene expression and diminish signaling through the Hog1 osmosensing pathway.
  J Biol Chem, 272, 13365-13371.  
9030763 M.Bruix, V.Muñoz, R.Campos-Olivas, J.R.Del Bosque, L.Serrano, and M.Rico (1997).
Characterisation of the isolated Che Y C-terminal fragment (79-129)--Exploring the structure/stability/folding relationship of the alpha/beta parallel protein Che Y.
  Eur J Biochem, 243, 384-392.  
9054511 M.Kato, T.Mizuno, T.Shimizu, and T.Hakoshima (1997).
Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB.
  Cell, 88, 717-723.
PDB code: 1a0b
9335530 M.Madhusudan, J.Zapf, J.A.Hoch, J.M.Whiteley, N.H.Xuong, and K.I.Varughese (1997).
A response regulatory protein with the site of phosphorylation blocked by an arginine interaction: crystal structure of Spo0F from Bacillus subtilis.
  Biochemistry, 36, 12739-12745.
PDB code: 1nat
9275172 R.Balakrishnan, N.Ramasubbu, K.I.Varughese, and R.Parthasarathy (1997).
Crystal structures of the copper and nickel complexes of RNase A: metal-induced interprotein interactions and identification of a novel copper binding motif.
  Proc Natl Acad Sci U S A, 94, 9620-9625.
PDB code: 1aqp
9218420 S.Ma, D.J.Wozniak, and D.E.Ohman (1997).
Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB.
  J Biol Chem, 272, 17952-17960.  
9254596 V.A.Feher, J.W.Zapf, J.A.Hoch, J.M.Whiteley, L.P.McIntosh, M.Rance, N.J.Skelton, F.W.Dahlquist, and J.Cavanagh (1997).
High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition.
  Biochemistry, 36, 10015-10025.
PDB codes: 1fsp 2fsp
8962056 A.Haldimann, M.K.Prahalad, S.L.Fisher, S.K.Kim, C.T.Walsh, and B.L.Wanner (1996).
Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein-protein interactions.
  Proc Natl Acad Sci U S A, 93, 14361-14366.  
  8755904 C.H.Chang, J.Zhu, and S.C.Winans (1996).
Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA protein.
  J Bacteriol, 178, 4710-4716.  
8780507 I.Baikalov, I.Schröder, M.Kaczor-Grzeskowiak, K.Grzeskowiak, R.P.Gunsalus, and R.E.Dickerson (1996).
Structure of the Escherichia coli response regulator NarL.
  Biochemistry, 35, 11053-11061.
PDB code: 1rnl
8800468 M.A.Danielson, and J.J.Falke (1996).
Use of 19F NMR to probe protein structure and conformational changes.
  Annu Rev Biophys Biomol Struct, 25, 163-195.  
8805550 Madhusudan, J.Zapf, J.M.Whiteley, J.A.Hoch, N.H.Xuong, and K.I.Varughese (1996).
Crystal structure of a phosphatase-resistant mutant of sporulation response regulator Spo0F from Bacillus subtilis.
  Structure, 4, 679-690.
PDB code: 1srr
8749361 A.M.Stock, and S.L.Mowbray (1995).
Bacterial chemotaxis: a field in motion.
  Curr Opin Struct Biol, 5, 744-751.  
7479708 E.López-Hernández, and L.Serrano (1995).
Empirical correlation for the replacement of Ala by Gly: importance of amino acid secondary intrinsic propensities.
  Proteins, 22, 340-349.  
7615544 S.Ganguli, H.Wang, P.Matsumura, and K.Volz (1995).
Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.1-A structure of a threonine to isoleucine mutant at position 87 of CheY.
  J Biol Chem, 270, 17386-17393.
PDB code: 1vlz
  8528078 V.A.Feher, J.W.Zapf, J.A.Hoch, F.W.Dahlquist, J.M.Whiteley, and J.Cavanagh (1995).
1H, 15N, and 13C backbone chemical shift assignments, secondary structure, and magnesium-binding characteristics of the Bacillus subtilis response regulator, Spo0F, determined by heteronuclear high-resolution NMR.
  Protein Sci, 4, 1801-1814.  
  8520484 V.Muñoz, F.J.Blanco, and L.Serrano (1995).
The distribution of alpha-helix propensity along the polypeptide chain is not conserved in proteins from the same family.
  Protein Sci, 4, 1577-1586.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.