spacer
spacer

PDBsum entry 1bvq

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1bvq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
139 a.a. *
Ligands
EPE
Waters ×66
* Residue conservation analysis
PDB id:
1bvq
Name: Hydrolase
Title: Three-dimensional structure of 4-hydroxybenzoyl coa thioesterase from pseudomonas sp. Strain cbs-3.
Structure: Protein (4-hydroxybenzoyl coa thioesterase). Chain: a. Ec: 3.8.1.6
Source: Pseudomonas sp. Cbs3. Organism_taxid: 72586. Strain: cbs-3
Biol. unit: Tetramer (from PDB file)
Resolution:
2.00Å     R-factor:   not given    
Authors: H.M.Holden,M.M.Benning,D.Dunaway-Mariano
Key ref:
M.M.Benning et al. (1998). The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. Strain CBS-3. J Biol Chem, 273, 33572-33579. PubMed id: 9837940 DOI: 10.1074/jbc.273.50.33572
Date:
16-Sep-98     Release date:   23-Sep-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P56653  (4HBT_PSEUC) -  4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. (strain CBS-3)
Seq:
Struc:
141 a.a.
139 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.1.2.23  - 4-hydroxybenzoyl-CoA thioesterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 4-hydroxybenzoyl-CoA + H2O = 4-hydroxybenzoate + CoA + H+
4-hydroxybenzoyl-CoA
+ H2O
= 4-hydroxybenzoate
+ CoA
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.273.50.33572 J Biol Chem 273:33572-33579 (1998)
PubMed id: 9837940  
 
 
The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. Strain CBS-3.
M.M.Benning, G.Wesenberg, R.Liu, K.L.Taylor, D.Dunaway-Mariano, H.M.Holden.
 
  ABSTRACT  
 
The soil-dwelling microbe, Pseudomonas sp. strain CBS-3, has attracted recent attention due to its ability to survive on 4-chlorobenzoate as its sole carbon source. The biochemical pathway by which this organism converts 4-chlorobenzoate to 4-hydroxybenzoate consists of three enzymes: 4-chlorobenzoyl-CoA ligase, 4-chlorobenzoyl-CoA dehalogenase, and 4-hydroxybenzoyl-CoA thioesterase. Here we describe the three-dimensional structure of the thioesterase determined to 2.0-A resolution. Each subunit of the homotetramer is characterized by a five-stranded anti-parallel beta-sheet and three major alpha-helices. While previous amino acid sequence analyses failed to reveal any similarity between this thioesterase and other known proteins, the results from this study clearly demonstrate that the molecular architecture of 4-hydroxybenzoyl-CoA thioesterase is topologically equivalent to that observed for beta-hydroxydecanoyl thiol ester dehydrase from Escherichia coli. On the basis of the structural similarity between these two enzymes, the active site of the thioesterase has been identified and a catalytic mechanism proposed.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Ribbon representation of one subunit of the 4-hydroxybenzoyl-CoA thioesterase. This figure and Figs. 3-5 were prepared with the software package, MOLSCRIPT (38). The -strands are labeled A-F.
Figure 4.
Fig. 4. Superposition of the -carbons for 4-hydroxybenzoyl-CoA thioesterase and -hydroxydecanoyl thiol ester dehydrase. X-ray coordinates for the dehydrase were obtained from the Brookhaven Protein Data Bank (1MKA). The dehydrase and the thioesterase are displayed in red and black, respectively. The 3-decynoyl-N-acetylcysteamine suicide inhibitor observed in the dehydrase structure is depicted in a ball-and-stick representation.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (1998, 273, 33572-33579) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20882276 B.E.Alber (2011).
Biotechnological potential of the ethylmalonyl-CoA pathway.
  Appl Microbiol Biotechnol, 89, 17-25.  
20506386 D.C.Cantu, Y.Chen, and P.J.Reilly (2010).
Thioesterases: a new perspective based on their primary and tertiary structures.
  Protein Sci, 19, 1281-1295.  
20430898 M.V.Dias, F.Huang, D.Y.Chirgadze, M.Tosin, D.Spiteller, E.F.Dry, P.F.Leadlay, J.B.Spencer, and T.L.Blundell (2010).
Structural basis for the activity and substrate specificity of fluoroacetyl-CoA thioesterase FlK.
  J Biol Chem, 285, 22495-22504.
PDB codes: 3kuv 3kuw 3kv7 3kv8 3kvi 3kvu 3kvz 3kw1 3kx7 3kx8
19473548 L.S.Pidugu, K.Maity, K.Ramaswamy, N.Surolia, and K.Suguna (2009).
Analysis of proteins with the 'hot dog' fold: prediction of function and identification of catalytic residues of hypothetical proteins.
  BMC Struct Biol, 9, 37.  
19357082 M.Kotaka, R.Kong, I.Qureshi, Q.S.Ho, H.Sun, C.W.Liew, L.P.Goh, P.Cheung, Y.Mu, J.Lescar, and Z.X.Liang (2009).
Structure and catalytic mechanism of the thioesterase CalE7 in enediyne biosynthesis.
  J Biol Chem, 284, 15739-15749.
PDB code: 2w3x
19549600 T.Awakawa, K.Yokota, N.Funa, F.Doi, N.Mori, H.Watanabe, and S.Horinouchi (2009).
Physically discrete beta-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase.
  Chem Biol, 16, 613-623.  
19622860 T.Hosaka, K.Murayama, M.Kato-Murayama, A.Urushibata, R.Akasaka, T.Terada, M.Shirouzu, S.Kuramitsu, and S.Yokoyama (2009).
Structure of the putative thioesterase protein TTHA1846 from Thermus thermophilus HB8 complexed with coenzyme A and a zinc ion.
  Acta Crystallogr D Biol Crystallogr, 65, 767-776.
PDB code: 2cye
19303060 T.Yokoyama, K.J.Choi, A.M.Bosch, and H.J.Yeo (2009).
Structure and function of a Campylobacter jejuni thioesterase Cj0915, a hexameric hot dog fold enzyme.
  Biochim Biophys Acta, 1794, 1073-1081.
PDB code: 3d6l
18338382 A.Angelini, L.Cendron, S.Goncalves, G.Zanotti, and L.Terradot (2008).
Structural and enzymatic characterization of HP0496, a YbgC thioesterase from Helicobacter pylori.
  Proteins, 72, 1212-1221.
PDB code: 2pzh
18192410 H.Geng, J.B.Bruhn, K.F.Nielsen, L.Gram, and R.Belas (2008).
Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters.
  Appl Environ Microbiol, 74, 1535-1545.  
19898606 M.Chruszcz, M.D.Zimmerman, S.Wang, K.D.Koclega, H.Zheng, E.Evdokimova, M.Kudritska, M.Cymborowski, A.Savchenko, A.Edwards, and W.Minor (2008).
Function-biased choice of additives for optimization of protein crystallization - the case of the putative thioesterase PA5185 from Pseudomonas aeruginosa PAO1.
  Cryst Growth Des, 8, 4054-4061.
PDB codes: 2av9 2o5u 2o6b 2o6t 2o6u
18835274 T.Yokoyama, S.Paek, C.P.Ewing, P.Guerry, and H.J.Yeo (2008).
Structure of a sigma28-regulated nonflagellar virulence protein from Campylobacter jejuni.
  J Mol Biol, 384, 364-376.
PDB code: 3bnv
17563367 J.K.Forwood, A.S.Thakur, G.Guncar, M.Marfori, D.Mouradov, W.Meng, J.Robinson, T.Huber, S.Kellie, J.L.Martin, D.A.Hume, and B.Kobe (2007).
Structural basis for recruitment of tandem hotdog domains in acyl-CoA thioesterase 7 and its role in inflammation.
  Proc Natl Acad Sci U S A, 104, 10382-10387.
PDB codes: 2q2b 2v1o
16294310 D.Gully, and E.Bouveret (2006).
A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method in Escherichia coli.
  Proteomics, 6, 282-293.  
16932747 G.E.Schujman, M.Guerin, A.Buschiazzo, F.Schaeffer, L.I.Llarrull, G.Reh, A.J.Vila, P.M.Alzari, and D.de Mendoza (2006).
Structural basis of lipid biosynthesis regulation in Gram-positive bacteria.
  EMBO J, 25, 4074-4083.
PDB codes: 2f3x 2f41
16969373 J.W.Giraldes, D.L.Akey, J.D.Kittendorf, D.H.Sherman, J.L.Smith, and R.A.Fecik (2006).
Structural and mechanistic insights into polyketide macrolactonization from polyketide-based affinity labels.
  Nat Chem Biol, 2, 531-536.
PDB codes: 2h7x 2h7y
16763992 K.H.Chin, C.C.Chou, A.H.Wang, and S.H.Chou (2006).
Crystal structure of a putative acyl-CoA thioesterase from Xanthomonas campestris (XC229) adopts a tetrameric hotdog fold of epsilongamma mode.
  Proteins, 64, 823-826.
PDB code: 2fuj
16963641 P.Johansson, A.Castell, T.A.Jones, and K.Bäckbro (2006).
Structure and function of Rv0130, a conserved hypothetical protein from Mycobacterium tuberculosis.
  Protein Sci, 15, 2300-2309.
PDB code: 2c2i
  16511283 R.Serek, J.K.Forwood, D.A.Hume, J.L.Martin, and B.Kobe (2006).
Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 133-135.  
16309386 D.B.Janssen, I.J.Dinkla, G.J.Poelarends, and P.Terpstra (2005).
Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities.
  Environ Microbiol, 7, 1868-1882.  
15614564 D.H.Pieper (2005).
Aerobic degradation of polychlorinated biphenyls.
  Appl Microbiol Biotechnol, 67, 170-191.  
15930004 D.Kostrewa, F.K.Winkler, G.Folkers, L.Scapozza, and R.Perozzo (2005).
The crystal structure of PfFabZ, the unique beta-hydroxyacyl-ACP dehydratase involved in fatty acid biosynthesis of Plasmodium falciparum.
  Protein Sci, 14, 1570-1580.
PDB code: 1z6b
15841386 M.J.Serrano-Vega, R.Garcés, and E.Martínez-Force (2005).
Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.).
  Planta, 221, 868-880.  
15162493 A.Berchanski, B.Shapira, and M.Eisenstein (2004).
Hydrophobic complementarity in protein-protein docking.
  Proteins, 56, 130-142.  
15529398 B.Sannigrahi, P.McGeady, and I.M.Khan (2004).
Helical poly(3-methyl-4-vinylpyridine)/amino acid complexes: preparation, characterization, and biocompatibility.
  Macromol Biosci, 4, 999.  
15307895 S.C.Dillon, and A.Bateman (2004).
The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases.
  BMC Bioinformatics, 5, 109.  
14997554 Y.Tajika, N.Sakai, Y.Tanaka, M.Yao, N.Watanabe, and I.Tanaka (2004).
Crystal structure of conserved protein PH1136 from Pyrococcus horikoshii.
  Proteins, 55, 210-213.
PDB code: 1ixl
14635124 A.Berchanski, and M.Eisenstein (2003).
Construction of molecular assemblies via docking: modeling of tetramers with D2 symmetry.
  Proteins, 53, 817-829.  
12837387 M.Sosio, S.Stinchi, F.Beltrametti, A.Lazzarini, and S.Donadio (2003).
The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species.
  Chem Biol, 10, 541-549.  
12220180 Z.Zhuang, F.Song, W.Zhang, K.Taylor, A.Archambault, D.Dunaway-Mariano, J.Dong, and P.R.Carey (2002).
Kinetic, Raman, NMR, and site-directed mutagenesis studies of the Pseudomonas sp. strain CBS3 4-hydroxybenzoyl-CoA thioesterase active site.
  Biochemistry, 41, 11152-11160.  
11395407 J.A.Gerlt, and P.C.Babbitt (2001).
Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies.
  Annu Rev Biochem, 70, 209-246.  
10781062 J.J.Bellizzi, J.Widom, C.Kemp, J.Y.Lu, A.K.Das, S.L.Hofmann, and J.Clardy (2000).
The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis.
  Proc Natl Acad Sci U S A, 97, 4573-4578.
PDB codes: 1eh5 1ei9
11080636 Y.Devedjiev, Z.Dauter, S.R.Kuznetsov, T.L.Jones, and Z.S.Derewenda (2000).
Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A.
  Structure, 8, 1137-1146.
PDB code: 1fj2
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer