PDBsum entry 1bup

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
Protein chain
378 a.a. *
__K ×2
_CL ×2
Waters ×431
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: T13s mutant of bovine 70 kilodalton heat shock protein
Structure: Protein (70 kilodalton heat shock protein). Chain: a. Fragment: atpase fragment. Synonym: hsc70. Engineered: yes. Mutation: yes
Source: Bos taurus. Cattle. Organism_taxid: 9913. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
1.70Å     R-factor:   0.189     R-free:   0.220
Authors: M.C.Sousa,D.B.Mckay
Key ref:
M.C.Sousa and D.B.McKay (1998). The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change. Biochemistry, 37, 15392-15399. PubMed id: 9799500 DOI: 10.1021/bi981510x
03-Sep-98     Release date:   09-Sep-98    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P19120  (HSP7C_BOVIN) -  Heat shock cognate 71 kDa protein
650 a.a.
378 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)


DOI no: 10.1021/bi981510x Biochemistry 37:15392-15399 (1998)
PubMed id: 9799500  
The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change.
M.C.Sousa, D.B.McKay.
The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J. Biol. Chem. 270, 26670-26676]. We have mutated the equivalent resitude of the bovine heat shock cognate protein (Hsc70), Thr13, to serine, valine, and glycine. Solution small-angle X-ray scattering experiments on a 60-kDa fragment of Hsc70 show that ATP binding induces a conformational change in the T13S mutant but not the T13V or T13G mutants. The kinetics of ATP-induced tryptophan fluorescence intensity changes in the 60-kDa proteins is biphasic for the T13S mutant but monophasic for T13V or T13G, consistent with a conformational change following initial ATP binding in the T13S mutant but not the other two. Crystallographic structures of the ATPase fragments of the T13S and T13G mutants at 1.7 A resolution show that the mutations do not disrupt the ATP binding site and that the serine hydroxyl mimics the threonine hydroxyl in the wild-type structure. We conclude that the hydroxyl of Thr13 is essential for coupling ATP binding to a conformational change in Hsc70. Molecular modeling suggests this may result from the threonine hydroxyl hydrogen-bonding to a gamma-phosphate oxygen of ATP, thereby inducing a structural shift within the ATPase domain that couples to its interactions with the peptide binding domain.

Literature references that cite this PDB file's key reference

  PubMed id Reference
23202586 C.Leidig, G.Bange, J.Kopp, S.Amlacher, A.Aravind, S.Wickles, G.Witte, E.Hurt, R.Beckmann, and I.Sinning (2013).
Structural characterization of a eukaryotic chaperone-the ribosome-associated complex.
  Nat Struct Mol Biol, 20, 23-28.
PDB codes: 4gmq 4gni
21482798 A.Zhuravleva, and L.M.Gierasch (2011).
Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones.
  Proc Natl Acad Sci U S A, 108, 6987-6992.  
21338918 L.Chang, Y.Miyata, P.M.Ung, E.B.Bertelsen, T.J.McQuade, H.A.Carlson, E.R.Zuiderweg, and J.E.Gestwicki (2011).
Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism.
  Chem Biol, 18, 210-221.  
20018538 A.Bhattacharya, M.Revington, and E.R.Zuiderweg (2010).
Measurement and interpretation of 15N-1H residual dipolar couplings in larger proteins.
  J Magn Reson, 203, 11-28.  
19883127 H.J.Woo, J.Jiang, E.M.Lafer, and R.Sousa (2009).
ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation.
  Biochemistry, 48, 11470-11477.  
18276586 J.Song, L.Bettendorff, M.Tonelli, and J.L.Markley (2008).
Structural basis for the catalytic mechanism of mammalian 25-kDa thiamine triphosphatase.
  J Biol Chem, 283, 10939-10948.
PDB code: 2jmu
17513460 K.A.Morano (2007).
New tricks for an old dog: the evolving world of Hsp70.
  Ann N Y Acad Sci, 1113, 1.  
17259168 K.Moncoq, C.A.Trieber, and H.S.Young (2007).
The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump.
  J Biol Chem, 282, 9748-9757.
PDB codes: 2o9j 2oa0
17718616 T.Ikeda, M.Boero, and K.Terakura (2007).
Hydration properties of magnesium and calcium ions from constrained first principles molecular dynamics.
  J Chem Phys, 127, 074503.  
16763562 A.Scrima, and A.Wittinghofer (2006).
Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element.
  EMBO J, 25, 2940-2951.
PDB codes: 2gj8 2gj9 2gja
16505168 J.R.Levy, C.J.Sumner, J.P.Caviston, M.K.Tokito, S.Ranganathan, L.A.Ligon, K.E.Wallace, B.H.LaMonte, G.G.Harmison, I.Puls, K.H.Fischbeck, and E.L.Holzbaur (2006).
A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation.
  J Cell Biol, 172, 733-745.  
16455491 M.Vogel, B.Bukau, and M.P.Mayer (2006).
Allosteric regulation of Hsp70 chaperones by a proline switch.
  Mol Cell, 21, 359-367.  
17052976 M.Vogel, M.P.Mayer, and B.Bukau (2006).
Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker.
  J Biol Chem, 281, 38705-38711.  
17026666 R.Sousa, and E.M.Lafer (2006).
Keep the traffic moving: mechanism of the Hsp70 motor.
  Traffic, 7, 1596-1603.  
16613854 W.Rist, C.Graf, B.Bukau, and M.P.Mayer (2006).
Amide hydrogen exchange reveals conformational changes in hsp70 chaperones important for allosteric regulation.
  J Biol Chem, 281, 16493-16501.  
16307916 J.Jiang, K.Prasad, E.M.Lafer, and R.Sousa (2005).
Structural basis of interdomain communication in the Hsc70 chaperone.
  Mol Cell, 20, 513-524.
PDB code: 1yuw
15770419 M.P.Mayer, and B.Bukau (2005).
Hsp70 chaperones: cellular functions and molecular mechanism.
  Cell Mol Life Sci, 62, 670-684.  
15273304 J.M.Gruschus, L.E.Greene, E.Eisenberg, and J.A.Ferretti (2004).
Experimentally biased model structure of the Hsc70/auxilin complex: substrate transfer and interdomain structural change.
  Protein Sci, 13, 2029-2044.  
15028727 L.Shaner, A.Trott, J.L.Goeckeler, J.L.Brodsky, and K.A.Morano (2004).
The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family.
  J Biol Chem, 279, 21992-22001.  
15232009 Y.Zhang, and E.R.Zuiderweg (2004).
The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains.
  Proc Natl Acad Sci U S A, 101, 10272-10277.  
12813032 P.Graceffa, and R.Dominguez (2003).
Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics.
  J Biol Chem, 278, 34172-34180.
PDB code: 1nwk
12718534 S.J.Landry (2003).
Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
  Biochemistry, 42, 4926-4936.  
  10585970 A.J.Macario, M.Lange, B.K.Ahring, and E.C.De Macario (1999).
Stress genes and proteins in the archaea.
  Microbiol Mol Biol Rev, 63, 923.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.