spacer
spacer

PDBsum entry 1amp

Go to PDB code: 
protein metals links
Hydrolase(aminopeptidase) PDB id
1amp
Jmol
Contents
Protein chain
291 a.a. *
Metals
_ZN ×2
Waters ×356
* Residue conservation analysis
PDB id:
1amp
Name: Hydrolase(aminopeptidase)
Title: Crystal structure of aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family
Structure: Aminopeptidase. Chain: a. Engineered: yes
Source: Vibrio proteolyticus. Organism_taxid: 671
Biol. unit: Dimer (from PQS)
Resolution:
1.80Å     R-factor:   0.161    
Authors: B.Chevrier,C.Schalk,H.D'Orchymont,J.M.Rondeau,D.Moras, C.Tarnus
Key ref:
B.Chevrier et al. (1994). Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure, 2, 283-291. PubMed id: 8087555 DOI: 10.1016/S0969-2126(00)00030-7
Date:
22-Apr-94     Release date:   31-Aug-94    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q01693  (AMPX_VIBPR) -  Bacterial leucyl aminopeptidase
Seq:
Struc:
504 a.a.
291 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.11.10  - Bacterial leucyl aminopeptidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Release of an N-terminal amino acid, preferentially leucine, but not glutamic or aspartic acids.
      Cofactor: Zinc
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     proteolysis   1 term 
  Biochemical function     peptidase activity     1 term  

 

 
DOI no: 10.1016/S0969-2126(00)00030-7 Structure 2:283-291 (1994)
PubMed id: 8087555  
 
 
Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family.
B.Chevrier, C.Schalk, H.D'Orchymont, J.M.Rondeau, D.Moras, C.Tarnus.
 
  ABSTRACT  
 
BACKGROUND: Aminopeptidases specifically cleave the amino-terminal residue from polypeptide chains and are involved in the metabolism of biologically active peptides. The family includes zinc-dependent enzymes possessing either one or two zinc ions per active site. Structural studies providing a detailed view of the metal environment may reveal whether the one-zinc and two-zinc enzymes constitute structurally and mechanistically distinct subclasses, and what role the metal ions play in the catalytic process. RESULTS: We have solved the crystal structure of the monomeric aminopeptidase from Aeromonas proteolytica at 1.8 A resolution. The protein is folded into a single alpha/beta globular domain. The active site contains two zinc ions (3.5 A apart) with shared ligands and symmetrical coordination spheres. We have compared it with the related bovine lens leucine aminopeptidase and the cobalt-containing Escherichia coli methionine aminopeptidase. CONCLUSIONS: The environment and coordination of the two zinc ions in A. proteolytica aminopeptidase strongly support the view that the two metal ions constitute a co-catalytic unit and play equivalent roles during catalysis. This conflicts with the conclusions drawn from the related bovine leucine aminopeptidase and early biochemical studies. In addition, the known specificity of the aminopeptidase for hydrophobic amino-terminal residues is reflected in the hydrophobicity of the active site cleft.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. (a) Stereoview of the zinc ligands in the metal-binding site. Dashed lines indicate the strong zinc–ligand interactions. (b) Stereoview of the electron density contoured at 1.5 σ level. This view emphasizes the bidendate character of the Zn2– carboxylate interaction with Asp179. A similar interaction is observed between Glu152 (not labeled) and Zn1. Figure 3. (a) Stereoview of the zinc ligands in the metal-binding site. Dashed lines indicate the strong zinc–ligand interactions. (b) Stereoview of the electron density contoured at 1.5 σ level. This view emphasizes the bidendate character of the Zn2– carboxylate interaction with Asp179. A similar interaction is observed between Glu152 (not labeled) and Zn1.
Figure 7.
Figure 7. Histogram plotting the number of water molecules with respect to their distance from the closest polar protein atoms. Figure 7. Histogram plotting the number of water molecules with respect to their distance from the closest polar protein atoms.
 
  The above figures are reprinted by permission from Cell Press: Structure (1994, 2, 283-291) copyright 1994.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20138056 B.P.Nocek, D.M.Gillner, Y.Fan, R.C.Holz, and A.Joachimiak (2010).
Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase.
  J Mol Biol, 397, 617-626.
PDB codes: 3ic1 3isz
  19255468 C.Y.Chang, Y.C.Hsieh, T.Y.Wang, C.J.Chen, and T.K.Wu (2009).
Purification, crystallization and preliminary X-ray analysis of an aminoacylhistidine dipeptidase (PepD) from Vibrio alginolyticus.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 216-218.  
18712420 D.M.Gillner, D.L.Bienvenue, B.P.Nocek, A.Joachimiak, V.Zachary, B.Bennett, and R.C.Holz (2009).
The dapE-encoded N-succinyl-L: ,L: -diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues.
  J Biol Inorg Chem, 14, 1.  
19291145 M.A.Durá, E.Rosenbaum, A.Larabi, F.Gabel, F.M.Vellieux, and B.Franzetti (2009).
The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea.
  Mol Microbiol, 72, 26-40.
PDB codes: 2vpu 2wzn
19359249 M.Y.Zakharova, N.A.Kuznetsov, S.A.Dubiley, A.V.Kozyr, O.S.Fedorova, D.M.Chudakov, D.G.Knorre, I.G.Shemyakin, A.G.Gabibov, and A.V.Kolesnikov (2009).
Substrate Recognition of Anthrax Lethal Factor Examined by Combinatorial and Pre-steady-state Kinetic Approaches.
  J Biol Chem, 284, 17902-17913.  
18688403 A.B.Curtiss, M.Bera, G.T.Musie, and D.R.Powell (2008).
Synthesis and characterization of mono- and micro6-sulfato hexanuclear zinc complexes of a new symmetric dinucleating ligand.
  Dalton Trans, (), 2717-2724.  
18550540 H.Unno, T.Yamashita, S.Ujita, N.Okumura, H.Otani, A.Okumura, K.Nagai, and M.Kusunoki (2008).
Structural Basis for Substrate Recognition and Hydrolysis by Mouse Carnosinase CN2.
  J Biol Chem, 283, 27289-27299.
PDB codes: 2zof 2zog
18083880 O.Rossier, J.Dao, and N.P.Cianciotto (2008).
The type II secretion system of Legionella pneumophila elaborates two aminopeptidases, as well as a metalloprotease that contributes to differential infection among protozoan hosts.
  Appl Environ Microbiol, 74, 753-761.  
17318535 B.Geueke, and H.P.Kohler (2007).
Bacterial beta-peptidyl aminopeptidases: on the hydrolytic degradation of beta-peptides.
  Appl Microbiol Biotechnol, 74, 1197-1204.  
17391648 J.R.Hershfield, N.Pattabiraman, C.N.Madhavarao, and M.A.Namboodiri (2007).
Mutational analysis of aspartoacylase: implications for Canavan disease.
  Brain Res, 1148, 1.  
17333302 W.C.McGregor, S.I.Swierczek, B.Bennett, and R.C.Holz (2007).
Characterization of the catalytically active Mn(II)-loaded argE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli.
  J Biol Inorg Chem, 12, 603-613.  
17608735 Y.F.Hershcovitz, R.Gilboa, V.Reiland, G.Shoham, and Y.Shoham (2007).
Catalytic mechanism of SGAP, a double-zinc aminopeptidase from Streptomyces griseus.
  FEBS J, 274, 3864-3876.  
16973604 G.Schoehn, F.M.Vellieux, M.Asunción Durá, V.Receveur-Bréchot, C.M.Fabry, R.W.Ruigrok, C.Ebel, A.Roussel, and B.Franzetti (2006).
An archaeal peptidase assembles into two different quaternary structures: A tetrahedron and a giant octahedron.
  J Biol Chem, 281, 36327-36337.
PDB code: 2cf4
16456538 H.E.Stimpson, M.J.Lewis, and H.R.Pelham (2006).
Transferrin receptor-like proteins control the degradation of a yeast metal transporter.
  EMBO J, 25, 662-672.  
16080009 J.Arima, Y.Uesugi, M.Iwabuchi, and T.Hatanaka (2006).
Study on peptide hydrolysis by aminopeptidases from Streptomyces griseus, Streptomyces septatus and Aeromonas proteolytica.
  Appl Microbiol Biotechnol, 70, 541-547.  
16751535 J.Arima, Y.Uesugi, M.Uraji, M.Iwabuchi, and T.Hatanaka (2006).
Dipeptide synthesis by an aminopeptidase from Streptomyces septatus TH-2 and its application to synthesis of biologically active peptides.
  Appl Environ Microbiol, 72, 4225-4231.  
16407307 J.Arima, Y.Uesugi, M.Uraji, S.Yatsushiro, S.Tsuboi, M.Iwabuchi, and T.Hatanaka (2006).
Modulation of Streptomyces leucine aminopeptidase by calcium: identification and functional analysis of key residues in activation and stabilization by calcium.
  J Biol Chem, 281, 5885-5894.  
16467855 J.R.Mesters, C.Barinka, W.Li, T.Tsukamoto, P.Majer, B.S.Slusher, J.Konvalinka, and R.Hilgenfeld (2006).
Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer.
  EMBO J, 25, 1375-1384.
PDB codes: 2c6c 2c6g 2c6p
16421726 R.Davis, D.Bienvenue, S.I.Swierczek, D.M.Gilner, L.Rajagopal, B.Bennett, and R.C.Holz (2006).
Kinetic and spectroscopic characterization of the E134A- and E134D-altered dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.
  J Biol Inorg Chem, 11, 206-216.  
16596389 W.Desmarais, D.L.Bienvenue, K.P.Bzymek, G.A.Petsko, D.Ringe, and R.C.Holz (2006).
The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica.
  J Biol Inorg Chem, 11, 398-408.
PDB codes: 1rtq 2dea
15928987 G.Y.Hwang, L.Y.Kuo, M.R.Tsai, S.L.Yang, and L.L.Lin (2005).
Histidines 345 and 378 of Bacillus stearothermophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme.
  Antonie Van Leeuwenhoek, 87, 355-359.  
15852110 G.Yang, R.Miao, Y.Li, J.Hong, C.Zhao, Z.Guo, and L.Zhu (2005).
Synergic effect of two metal centers in catalytic hydrolysis of methionine-containing peptides promoted by dinuclear palladium(II) hexaazacyclooctadecane complex.
  Dalton Trans, (), 1613-1619.  
16135565 K.F.Huang, Y.L.Liu, W.J.Cheng, T.P.Ko, and A.H.Wang (2005).
Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation.
  Proc Natl Acad Sci U S A, 102, 13117-13122.
PDB codes: 2afm 2afo 2afs 2afu 2afw 2afx 2afz
15668014 Y.Fundoiano-Hershcovitz, L.Rabinovitch, S.Shulami, V.Reiland, G.Shoham, and Y.Shoham (2005).
The ywad gene from Bacillus subtilis encodes a double-zinc aminopeptidase.
  FEMS Microbiol Lett, 243, 157-163.  
15206943 C.Barinka, P.Mlcochová, P.Sácha, I.Hilgert, P.Majer, B.S.Slusher, V.Horejsí, and J.Konvalinka (2004).
Amino acids at the N- and C-termini of human glutamate carboxypeptidase II are required for enzymatic activity and proper folding.
  Eur J Biochem, 271, 2782-2790.  
15152093 C.Barinka, P.Sácha, J.Sklenár, P.Man, K.Bezouska, B.S.Slusher, and J.Konvalinka (2004).
Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity.
  Protein Sci, 13, 1627-1635.  
15138277 K.P.Bzymek, and R.C.Holz (2004).
The catalytic role of glutamate 151 in the leucine aminopeptidase from Aeromonas proteolytica.
  J Biol Chem, 279, 31018-31025.  
15009195 M.Ribó, M.Bosch, G.Torrent, A.Benito, B.Beaumelle, and M.Vilanova (2004).
Quantitative analysis, using MALDI-TOF mass spectrometry, of the N-terminal hydrolysis and cyclization reactions of the activation process of onconase.
  Eur J Biochem, 271, 1163-1171.  
15028118 R.E.Booth, S.C.Lovell, S.A.Misquitta, and R.C.Bateman (2004).
Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site.
  BMC Biol, 2, 2.  
15375159 S.Russo, and U.Baumann (2004).
Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase.
  J Biol Chem, 279, 51275-51281.
PDB code: 1xfo
15388919 V.Reiland, R.Gilboa, A.Spungin-Bialik, D.Schomburg, Y.Shoham, S.Blumberg, and G.Shoham (2004).
Binding of inhibitory aromatic amino acids to Streptomyces griseus aminopeptidase.
  Acta Crystallogr D Biol Crystallogr, 60, 1738-1746.
PDB codes: 1tf8 1tf9 1tkf 1tkh 1tkj
15583392 V.Reiland, Y.Fundoiano-Hershcovitz, G.Golan, R.Gilboa, Y.Shoham, and G.Shoham (2004).
Preliminary crystallographic characterization of BSAP, an extracellular aminopeptidase from Bacillus subtilis.
  Acta Crystallogr D Biol Crystallogr, 60, 2371-2376.  
12524301 C.J.Ackerman, M.M.Harnett, W.Harnett, S.M.Kelly, D.I.Svergun, and O.Byron (2003).
19 A solution structure of the filarial nematode immunomodulatory protein, ES-62.
  Biophys J, 84, 489-500.  
12933810 H.A.Lindner, V.V.Lunin, A.Alary, R.Hecker, M.Cygler, and R.Ménard (2003).
Essential roles of zinc ligation and enzyme dimerization for catalysis in the aminoacylase-1/M20 family.
  J Biol Chem, 278, 44496-44504.
PDB code: 1q7l
12632471 M.Elstner, Q.Cui, P.Munih, E.Kaxiras, T.Frauenheim, and M.Karplus (2003).
Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis.
  J Comput Chem, 24, 565-581.  
12405829 B.Bennett, W.E.Antholine, V.M.D'souza, G.Chen, L.Ustinyuk, and R.C.Holz (2002).
Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli.
  J Am Chem Soc, 124, 13025-13034.  
11856302 K.Håkansson, and C.G.Miller (2002).
Structure of peptidase T from Salmonella typhimurium.
  Eur J Biochem, 269, 443-450.
PDB code: 1fno
11533066 R.Cahan, I.Axelrad, M.Safrin, D.E.Ohman, and E.Kessler (2001).
A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases.
  J Biol Chem, 276, 43645-43652.  
11484227 R.Gilboa, A.Spungin-Bialik, G.Wohlfahrt, D.Schomburg, S.Blumberg, and G.Shoham (2001).
Interactions of Streptomyces griseus aminopeptidase with amino acid reaction products and their implications toward a catalytic mechanism.
  Proteins, 44, 490-504.
PDB codes: 1f2o 1f2p
10673442 C.Bompard-Gilles, V.Villeret, G.J.Davies, L.Fanuel, B.Joris, J.M.Frère, and J.Van Beeumen (2000).
A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi.
  Structure, 8, 153-162.
PDB code: 1b65
11209758 M.Abramić, D.Schleuder, L.Dolovcak, W.Schröder, K.Strupat, D.Sagi, J.Peter-Katalini, and L.Vitale (2000).
Human and rat dipeptidyl peptidase III: biochemical and mass spectrometric arguments for similarities and differences.
  Biol Chem, 381, 1233-1243.  
10771423 R.Gilboa, H.M.Greenblatt, M.Perach, A.Spungin-Bialik, U.Lessel, G.Wohlfahrt, D.Schomburg, S.Blumberg, and G.Shoham (2000).
Interactions of Streptomyces griseus aminopeptidase with a methionine product analogue: a structural study at 1.53 A resolution.
  Acta Crystallogr D Biol Crystallogr, 56, 551-558.
PDB codes: 1cp7 1qq9
10413478 C.C.De Paola, B.Bennett, R.C.Holz, D.Ringe, and G.A.Petsko (1999).
1-Butaneboronic acid binding to Aeromonas proteolytica aminopeptidase: a case of arrested development.
  Biochemistry, 38, 9048-9053.
PDB code: 1cp6
  10595564 D.Mahadevan, and J.W.Saldanha (1999).
The extracellular regions of PSMA and the transferrin receptor contain an aminopeptidase domain: implications for drug design.
  Protein Sci, 8, 2546-2549.  
10545093 F.X.Gomis-Rüth, V.Companys, Y.Qian, L.D.Fricker, J.Vendrell, F.X.Avilés, and M.Coll (1999).
Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily.
  EMBO J, 18, 5817-5826.
PDB code: 1qmu
10569943 K.M.Huntington, D.L.Bienvenue, Y.Wei, B.Bennett, R.C.Holz, and D.Pei (1999).
Slow-binding inhibition of the aminopeptidase from Aeromonas proteolytica by peptide thiols: synthesis and spectroscopic characterization.
  Biochemistry, 38, 15587-15596.  
10085079 M.N.Pangalos, J.M.Neefs, M.Somers, P.Verhasselt, M.Bekkers, L.van der Helm, E.Fraiponts, D.Ashton, and R.D.Gordon (1999).
Isolation and expression of novel human glutamate carboxypeptidases with N-acetylated alpha-linked acidic dipeptidase and dipeptidyl peptidase IV activity.
  J Biol Chem, 274, 8470-8483.  
10206990 R.Gingras, C.Richard, M.El-Alfy, C.R.Morales, M.Potier, and A.V.Pshezhetsky (1999).
Purification, cDNA cloning, and expression of a new human blood plasma glutamate carboxypeptidase homologous to N-acetyl-aspartyl-alpha-glutamate carboxypeptidase/prostate-specific membrane antigen.
  J Biol Chem, 274, 11742-11750.  
10545376 U.Ryde (1999).
Carboxylate binding modes in zinc proteins: A theoretical study
  Biophys J, 77, 2777-2787.  
10555963 W.T.Lowther, Y.Zhang, P.B.Sampson, J.F.Honek, and B.W.Matthews (1999).
Insights into the mechanism of Escherichia coli methionine aminopeptidase from the structural analysis of reaction products and phosphorus-based transition-state analogues.
  Biochemistry, 38, 14810-14819.
PDB codes: 1c21 1c22 1c23 1c24 1c27
9666335 A.G.Murzin (1998).
How far divergent evolution goes in proteins.
  Curr Opin Struct Biol, 8, 380-387.  
9427736 F.J.Medrano, J.Alonso, J.L.García, A.Romero, W.Bode, and F.X.Gomis-Rüth (1998).
Structure of proline iminopeptidase from Xanthomonas campestris pv. citri: a prototype for the prolyl oligopeptidase family.
  EMBO J, 17, 1-9.
PDB code: 1azw
  10082367 I.L.Alberts, K.Nadassy, and S.J.Wodak (1998).
Analysis of zinc binding sites in protein crystal structures.
  Protein Sci, 7, 1700-1716.  
9667939 J.E.Coleman (1998).
Zinc enzymes.
  Curr Opin Chem Biol, 2, 222-234.  
  9733678 M.Ghosh, A.M.Grunden, D.M.Dunn, R.Weiss, and M.W.Adams (1998).
Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus.
  J Bacteriol, 180, 4781-4789.  
9730812 S.M.Fabiane, M.K.Sohi, T.Wan, D.J.Payne, J.H.Bateson, T.Mitchell, and B.J.Sutton (1998).
Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
  Biochemistry, 37, 12404-12411.
PDB code: 1bc2
9671518 T.L.Born, R.Zheng, and J.S.Blanchard (1998).
Hydrolysis of N-succinyl-L,L-diaminopimelic acid by the Haemophilus influenzae dapE-encoded desuccinylase: metal activation, solvent isotope effects, and kinetic mechanism.
  Biochemistry, 37, 10478-10487.  
9108146 A.F.Neuwald, J.S.Liu, D.J.Lipman, and C.E.Lawrence (1997).
Extracting protein alignment models from the sequence database.
  Nucleic Acids Res, 25, 1665-1677.  
9245416 B.Bennett, and R.C.Holz (1997).
Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding.
  Biochemistry, 36, 9837-9846.  
9303320 E.Schmitt, Y.Mechulam, M.Fromant, P.Plateau, and S.Blanquet (1997).
Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase.
  EMBO J, 16, 4760-4769.
PDB code: 2pth
9100023 G.Chen, T.Edwards, V.M.D'souza, and R.C.Holz (1997).
Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis.
  Biochemistry, 36, 4278-4286.  
9083113 S.Rowsell, R.A.Pauptit, A.D.Tucker, R.G.Melton, D.M.Blow, and P.Brick (1997).
Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy.
  Structure, 5, 337-347.
PDB code: 1cg2
8647077 B.Chevrier, H.D'Orchymont, C.Schalk, C.Tarnus, and D.Moras (1996).
The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit.
  Eur J Biochem, 237, 393-398.
PDB code: 1igb
8665903 B.Maras, H.M.Greenblatt, G.Shoham, A.Spungin-Bialik, S.Blumberg, and D.Barra (1996).
Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases.
  Eur J Biochem, 236, 843-846.  
8879550 C.Tarnus, J.M.Rémy, and H.d'Orchymont (1996).
3-Amino-2-hydroxy-propionaldehyde and 3-amino-1-hydroxy-propan-2-one derivatives: new classes of aminopeptidase inhibitors.
  Bioorg Med Chem, 4, 1287-1297.  
  8890197 C.Toma, and Y.Honma (1996).
Cloning and genetic analysis of the Vibrio cholerae aminopeptidase gene.
  Infect Immun, 64, 4495-4500.  
8805566 N.O.Concha, B.A.Rasmussen, K.Bush, and O.Herzberg (1996).
Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis.
  Structure, 4, 823-836.
PDB code: 1znb
8703509 T.Gonzales, and J.Robert-Baudouy (1996).
Bacterial aminopeptidases: properties and functions.
  FEMS Microbiol Rev, 18, 319-344.  
8592708 J.F.Chich, P.Rigolet, M.Nardi, J.C.Gripon, B.Ribadeau-Dumas, and S.Brunie (1995).
Purification, crystallization, and preliminary X-ray analysis of PepX, an X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis.
  Proteins, 23, 278-281.  
7629169 W.L.Mock, and Y.Liu (1995).
Hydrolysis of picolinylprolines by prolidase. A general mechanism for the dual-metal ion containing aminopeptidases.
  J Biol Chem, 270, 18437-18446.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.