spacer
spacer

PDBsum entry 1alk

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Alkaline phosphatase PDB id
1alk
Jmol
Contents
Protein chains
449 a.a. *
Ligands
PO4 ×2
Metals
_ZN ×4
_MG ×2
Waters ×6
* Residue conservation analysis
PDB id:
1alk
Name: Alkaline phosphatase
Title: Reaction mechanism of alkaline phosphatase based on crystal structures. Two metal ion catalysis
Structure: Alkaline phosphatase. Chain: a, b. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
2.00Å     R-factor:   0.177    
Authors: E.E.Kim,W.Wyckoff
Key ref: E.E.Kim and H.W.Wyckoff (1991). Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol, 218, 449-464. PubMed id: 2010919
Date:
03-Mar-93     Release date:   31-Jan-94    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00634  (PPB_ECOLI) -  Alkaline phosphatase
Seq:
Struc:
471 a.a.
449 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.1.3.1  - Alkaline phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: A phosphate monoester + H2O = an alcohol + phosphate
phosphate monoester
+ H(2)O
= alcohol
+
phosphate
Bound ligand (Het Group name = PO4)
corresponds exactly
      Cofactor: Mg(2+); Zn(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     periplasmic space   2 terms 
  Biological process     metabolic process   3 terms 
  Biochemical function     catalytic activity     10 terms  

 

 
    reference    
 
 
J Mol Biol 218:449-464 (1991)
PubMed id: 2010919  
 
 
Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis.
E.E.Kim, H.W.Wyckoff.
 
  ABSTRACT  
 
Alkaline phosphatase (AP) is a widely distributed non-specific phosphomonoesterase that functions through formation of a covalent phosphoseryl intermediate (E-P). The enzyme also catalyzes phosphoryl transfer reaction to various alcohols. Escherichia coli AP is a homodimer with 449 residues per monomer. It is a metalloenzyme with two Zn2+ and one Mg2+ at each active site. The crystal structure of native E. coli AP complexed with inorganic phosphate (Pi), which is a strong competitive inhibitor as well as a substrate for the reverse reaction, has been refined at 2.0 A resolution. Some parts of the molecular have been retraced, starting from the previous 2.8 A study. The active site has been modified substantially and is described in this paper. The changes in the active site region suggest the need to reinterpret earlier spectral data, and suggestions are made. Also presented are the structures of the Cd-substituted enzyme complexed with inorganic phosphate at 2.5 A resolution, and the phosphate-free native enzyme at 2.8 A resolution. At pH 7.5, where the X-ray data were collected, the Cd-substituted enzyme is predominantly the covalent phosphoenzyme (E-P) while the native Zn/Mg enzyme exists in predominantly noncovalent (E.P) form. Implication of these results for the catalytic mechanism of the enzyme is discussed. APs from other sources are believed to function in a similar manner.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22785315 T.Nakamura, Y.Zhao, Y.Yamagata, Y.J.Hua, and W.Yang (2012).
Watching DNA polymerase η make a phosphodiester bond.
  Nature, 487, 196-201.
PDB codes: 4ecq 4ecr 4ecs 4ect 4ecu 4ecv 4ecw 4ecx 4ecy 4ecz 4ed0 4ed1 4ed2 4ed3 4ed6 4ed7 4ed8
21190107 I.J.Joye, T.Beliën, K.Brijs, W.Soetaert, and J.A.Delcour (2011).
Mutational analysis of wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase shows the role of six amino acids in the catalytic mechanism.
  Appl Microbiol Biotechnol, 90, 173-180.  
20854710 W.Yang (2011).
Nucleases: diversity of structure, function and mechanism.
  Q Rev Biophys, 44, 1.  
19916164 D.Koutsioulis, A.Lyskowski, S.Mäki, E.Guthrie, G.Feller, V.Bouriotis, and P.Heikinheimo (2010).
Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases.
  Protein Sci, 19, 75-84.
PDB codes: 2w5v 2w5w 2w5x
20135039 D.R.Edwards, W.Y.Tsang, A.A.Neverov, and R.S.Brown (2010).
On the question of stepwise vs. concerted cleavage of RNA models promoted by a synthetic dinuclear Zn(II) complex in methanol: implementation of a noncleavable phosphonate probe.
  Org Biomol Chem, 8, 822-827.  
20057143 H.Tsuruta, B.Mikami, T.Higashi, and Y.Aizono (2010).
Crystal structure of cold-active alkaline phosphatase from the psychrophile Shewanella sp.
  Biosci Biotechnol Biochem, 74, 69-74.
PDB code: 3a52
19931535 L.B.Lai, A.Vioque, L.A.Kirsebom, and V.Gopalan (2010).
Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects.
  FEBS Lett, 584, 287-296.  
19178705 B.Jana, S.Panja, S.Saha, and T.Basu (2009).
Mechanism of protonophores-mediated induction of heat-shock response in Escherichia coli.
  BMC Microbiol, 9, 20.  
19555381 E.D.Orchard, E.A.Webb, and S.T.Dyhrman (2009).
Molecular analysis of the phosphorus starvation response in Trichodesmium spp.
  Environ Microbiol, 11, 2400-2411.  
19404618 H.Matsumiya, H.Nakamura, and M.Hiraide (2009).
Phosphoester hydrolysis by cerium(IV)-thiacalix[4]arene complexes and its application to immunoassay.
  Anal Bioanal Chem, 394, 1471-1476.  
19119812 M.J.Belousoff, P.Ung, C.M.Forsyth, Y.Tor, L.Spiccia, and B.Graham (2009).
New macrocyclic terbium(III) complex for use in RNA footprinting experiments.
  J Am Chem Soc, 131, 1106-1114.  
19349157 W.Li, L.Bi, W.Wang, Y.Li, Y.Zhou, H.Wei, T.Jiang, L.Bai, Y.Chen, Z.Zhang, X.Yuan, J.Xiao, and X.E.Zhang (2009).
Development of a universal phosphorylated peptide-binding protein for simultaneous assay of kinases.
  Biosens Bioelectron, 24, 2871-2877.
PDB code: 3dpc
18365740 A.I.Vovk, A.L.Chuííko, L.A.Kononets, V.I.u.Tanchuk, I.V.Murav'eva, M.O.Lozinskií, and V.P.Kukhar' (2008).
[Inhibition of alkaline phosphatase by thioureido derivatives of methylenebisphosphonic acid].
  Bioorg Khim, 34, 67-74.  
18501204 A.L.Parrill (2008).
Lysophospholipid interactions with protein targets.
  Biochim Biophys Acta, 1781, 540-546.  
17665130 C.Hoffmann, C.Zollfrank, and G.Ziegler (2008).
Enzyme-catalysed synthesis of calcium phosphates.
  J Mater Sci Mater Med, 19, 907-915.  
17951381 C.L.Naessan, W.Egge-Jacobsen, R.W.Heiniger, M.C.Wolfgang, F.E.Aas, A.Røhr, H.C.Winther-Larsen, and M.Koomey (2008).
Genetic and functional analyses of PptA, a phospho-form transferase targeting type IV pili in Neisseria gonorrhoeae.
  J Bacteriol, 190, 387-400.  
18851975 J.G.Zalatan, T.D.Fenn, and D.Herschlag (2008).
Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion.
  J Mol Biol, 384, 1174-1189.
PDB code: 3dyc
18975918 J.K.Lassila, and D.Herschlag (2008).
Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily.
  Biochemistry, 47, 12853-12859.  
18697748 K.Syson, C.Tomlinson, B.R.Chapados, J.R.Sayers, J.A.Tainer, N.H.Williams, and J.A.Grasby (2008).
Three metal ions participate in the reaction catalyzed by t5 flap endonuclease.
  J Biol Chem, 283, 28741-28746.  
18294135 L.P.Xie, G.R.Xu, W.Z.Cao, J.Zhang, and R.Q.Zhang (2008).
An essential tryptophan residue in alkaline phosphatase from pearl oyster (Pinctada fucata).
  Biochemistry (Mosc), 73, 87-91.  
18274677 M.Jarenmark, S.Kappen, M.Haukka, and E.Nordlander (2008).
Symmetrical and unsymmetrical dizinc complexes as models for the active sites of hydrolytic enzymes.
  Dalton Trans, (), 993-996.  
18603593 M.Niemann, M.Brecht, E.Schlüter, K.Weitzel, M.Zacharias, and H.U.Göringer (2008).
TbMP42 is a structure-sensitive ribonuclease that likely follows a metal ion catalysis mechanism.
  Nucleic Acids Res, 36, 4465-4473.  
18627128 P.J.O'Brien, J.K.Lassila, T.D.Fenn, J.G.Zalatan, and D.Herschlag (2008).
Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase.
  Biochemistry, 47, 7663-7672.
PDB code: 3cmr
18759006 X.Ding, Z.M.Lv, Y.Zhao, H.Min, and W.J.Yang (2008).
MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.
  Cell Stress Chaperones, 13, 239-246.  
18216445 Y.Y.Zhang, F.J.Huo, and F.Gao (2008).
A novel O-Zn bridging polymer complex of 2,6-bis[bis(carboxylatomethyl)aminomethyl]-4-methylphenolate.
  Acta Crystallogr C, 64, m67-m69.  
18365148 Y.Zhang, C.Ji, X.Zhang, Z.Yang, J.Peng, R.Qiu, Y.Xie, and Y.Mao (2008).
A moderately thermostable alkaline phosphatase from Geobacillus thermodenitrificans T2: cloning, expression and biochemical characterization.
  Appl Biochem Biotechnol, 151, 81-92.  
17200756 D.J.Doyle, V.C.Gibson, and A.J.White (2007).
Synthesis and structures of bimetallic and polymeric zinc coordination compounds supported by salicylaldiminato and anilido-aldimine ligands.
  Dalton Trans, (), 358-363.  
17916236 E.Mornet (2007).
Hypophosphatasia.
  Orphanet J Rare Dis, 2, 40.  
17411045 I.Catrina, P.J.O'Brien, J.Purcell, I.Nikolic-Hughes, J.G.Zalatan, A.C.Hengge, and D.Herschlag (2007).
Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
  J Am Chem Soc, 129, 5760-5765.  
17256119 I.Helianti, T.Okubo, Y.Morita, and E.Tamiya (2007).
Characterization of thermostable native alkaline phosphatase from an aerobic hyperthermophilic archaeon, Aeropyrum pernix K1.
  Appl Microbiol Biotechnol, 74, 107-112.  
17989875 J.Li, L.Xu, and F.Yang (2007).
Expression and characterization of recombinant thermostable alkaline phosphatase from a novel thermophilic bacterium Thermus thermophilus XM.
  Acta Biochim Biophys Sin (Shanghai), 39, 844-850.  
17156125 J.R.Wu, J.H.Shien, H.K.Shieh, C.C.Hu, S.R.Gong, L.Y.Chen, and P.C.Chang (2007).
Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73.
  FEMS Microbiol Lett, 267, 113-120.  
17220984 J.Tominaga, Y.Kemori, Y.Tanaka, T.Maruyama, N.Kamiya, and M.Goto (2007).
An enzymatic method for site-specific labeling of recombinant proteins with oligonucleotides.
  Chem Commun (Camb), (), 401-403.  
17624576 L.P.Xie, Y.T.Wu, Y.P.Dai, Q.Li, and R.Q.Zhang (2007).
A novel glycosylphosphatidylinositol-anchored alkaline phosphatase dwells in the hepatic duct of the pearl oyster, Pinctada fucata.
  Mar Biotechnol (NY), 9, 613-623.  
17085493 M.Nukui, L.V.Mello, J.E.Littlejohn, B.Setlow, P.Setlow, K.Kim, T.Leighton, and M.J.Jedrzejas (2007).
Structure and molecular mechanism of Bacillus anthracis cofactor-independent phosphoglycerate mutase: a crucial enzyme for spores and growing cells of Bacillus species.
  Biophys J, 92, 977-988.
PDB code: 2ify
17893790 R.Mitra, M.W.Peters, and M.J.Scott (2007).
Synthesis and reactivity of a C3-symmetric trinuclear zinc(II) hydroxide catalyst efficient at phosphate diester transesterification.
  Dalton Trans, (), 3924-3935.  
17581653 S.C.Kamerlin, and J.Wilkie (2007).
The role of metal ions in phosphate ester hydrolysis.
  Org Biomol Chem, 5, 2098-2108.  
17928914 Y.D.Champouret, W.J.Nodes, J.A.Scrimshire, K.Singh, G.A.Solan, and I.Young (2007).
Sterically variable dizinc complexes bearing bis(iminopyridyl)phenolate ligands: synthesis, structures and reactivity studies.
  Dalton Trans, (), 4565-4575.  
16433548 J.G.Zalatan, and D.Herschlag (2006).
Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis.
  J Am Chem Soc, 128, 1293-1303.  
17008720 J.Wang, and E.R.Kantrowitz (2006).
Trapping the tetrahedral intermediate in the alkaline phosphatase reaction by substitution of the active site serine with threonine.
  Protein Sci, 15, 2395-2401.
PDB codes: 2g9y 2ga3
16716945 M.Toyama, M.Sasaki, N.Hirayama, Y.Murooka, and M.Yamashita (2006).
Construction of an additional metal-binding site in human metallothionein-2.
  J Biosci Bioeng, 101, 354-360.  
16938895 P.Lin, L.C.Pedersen, V.K.Batra, W.A.Beard, S.H.Wilson, and L.G.Pedersen (2006).
Energy analysis of chemistry for correct insertion by DNA polymerase beta.
  Proc Natl Acad Sci U S A, 103, 13294-13299.  
16815919 P.Llinas, M.Masella, T.Stigbrand, A.Ménez, E.A.Stura, and M.H.Le Du (2006).
Structural studies of human alkaline phosphatase in complex with strontium: implication for its secondary effect in bones.
  Protein Sci, 15, 1691-1700.
PDB code: 2glq
16463017 S.Chaudhuri, B.Jana, and T.Basu (2006).
Why does ethanol induce cellular heat-shock response?
  Cell Biol Toxicol, 22, 29-37.  
16600865 W.Yang, J.Y.Lee, and M.Nowotny (2006).
Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.
  Mol Cell, 22, 5.  
15833276 H.T.Chen, L.P.Xie, Z.Y.Yu, G.R.Xu, and R.Q.Zhang (2005).
Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site.
  Int J Biochem Cell Biol, 37, 1446-1457.  
16147995 L.Zhang, M.Balcerzak, J.Radisson, C.Thouverey, S.Pikula, G.Azzar, and R.Buchet (2005).
Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca(2+) and phosphate deposition in isolated chicken matrix vesicles.
  J Biol Chem, 280, 37289-37296.  
15885097 T.Harada, I.Koyama, T.Matsunaga, A.Kikuno, T.Kasahara, M.Hassimoto, D.H.Alpers, and T.Komoda (2005).
Characterization of structural and catalytic differences in rat intestinal alkaline phosphatase isozymes.
  FEBS J, 272, 2477-2486.  
15725663 Y.Suzuki, Y.Mizutani, T.Tsuji, N.Ohtani, K.Takano, M.Haruki, M.Morikawa, and S.Kanaya (2005).
Gene cloning, overproduction, and characterization of thermolabile alkaline phosphatase from a psychrotrophic bacterium.
  Biosci Biotechnol Biochem, 69, 364-373.  
15930776 Y.Wang, and N.Okabe (2005).
Crystal structures and spectroscopic properties of zinc(II) ternary complexes of vitamin L, H' and their isomer m-aminobenzoic acid with bipyridine.
  Chem Pharm Bull (Tokyo), 53, 645-652.  
16328740 Y.Zhu, X.Y.Song, W.H.Zhao, and Y.X.Zhang (2005).
Effects of magnesium ions on thermal inactivation of alkaline phosphatase.
  Protein J, 24, 479-485.  
15560800 D.L.Dupuy, D.V.Rial, and E.A.Ceccarelli (2004).
Inhibition of pea ferredoxin-NADP(H) reductase by Zn-ferrocyanide.
  Eur J Biochem, 271, 4582-4593.  
14705018 I.Ivanov, and M.L.Klein (2004).
First principles computational study of the active site of arginase.
  Proteins, 54, 1-7.  
15189884 L.Zhang, R.Buchet, and G.Azzar (2004).
Phosphate binding in the active site of alkaline phosphatase and the interactions of 2-nitrosoacetophenone with alkaline phosphatase-induced small structural changes.
  Biophys J, 86, 3873-3881.  
15333925 M.M.de Backer, S.McSweeney, P.F.Lindley, and E.Hough (2004).
Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase.
  Acta Crystallogr D Biol Crystallogr, 60, 1555-1561.
PDB codes: 1shn 1shq
12777773 C.Forleo, M.Benvenuti, V.Calderone, S.Schippa, J.D.Docquier, M.C.Thaller, G.M.Rossolini, and S.Mangani (2003).
Expression, purification, crystallization and preliminary X-ray characterization of the class B acid phosphatase (AphA) from Escherichia coli.
  Acta Crystallogr D Biol Crystallogr, 59, 1058-1060.  
14557260 C.Zambonelli, M.Casali, and M.F.Roberts (2003).
Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities.
  J Biol Chem, 278, 52282-52289.  
12632471 M.Elstner, Q.Cui, P.Munih, E.Kaxiras, T.Frauenheim, and M.Karplus (2003).
Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis.
  J Comput Chem, 24, 565-581.  
12606565 M.R.Tock, E.Frary, J.R.Sayers, and J.A.Grasby (2003).
Dynamic evidence for metal ion catalysis in the reaction mediated by a flap endonuclease.
  EMBO J, 22, 995.  
12586391 N.A.Desai, and V.Shankar (2003).
Single-strand-specific nucleases.
  FEMS Microbiol Rev, 26, 457-491.  
11937510 A.Kozlenkov, T.Manes, M.F.Hoylaerts, and J.L.Millán (2002).
Function assignment to conserved residues in mammalian alkaline phosphatases.
  J Biol Chem, 277, 22992-22999.  
11818032 C.C.Denier, A.A.Brisson-Lougarre, G.G.Biasini, J.J.Grozdea, and D.D.Fournier (2002).
Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome.
  BMC Biochem, 3, 2.  
12399456 C.L.Wojciechowski, and E.R.Kantrowitz (2002).
Altering of the metal specificity of Escherichia coli alkaline phosphatase.
  J Biol Chem, 277, 50476-50481.  
11910033 C.L.Wojciechowski, J.P.Cardia, and E.R.Kantrowitz (2002).
Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity.
  Protein Sci, 11, 903-911.  
12032090 K.J.Newberry, Y.M.Hou, and J.J.Perona (2002).
Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase.
  EMBO J, 21, 2778-2787.
PDB codes: 1li5 1li7
11985615 K.Mavromatis, I.Tsigos, M.Tzanodaskalaki, M.Kokkinidis, and V.Bouriotis (2002).
Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphatase.
  Eur J Biochem, 269, 2330-2335.  
12372831 M.H.Le Du, and J.L.Millan (2002).
Structural evidence of functional divergence in human alkaline phosphatases.
  J Biol Chem, 277, 49808-49814.  
11863460 P.J.O'Brien, and D.Herschlag (2002).
Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.
  Biochemistry, 41, 3207-3225.  
12127574 Y.X.Zhang, Y.Zhu, H.W.Xi, Y.L.Liu, and H.M.Zhou (2002).
Refolding and reactivation of calf intestinal alkaline phosphatase with excess magnesium ions.
  Int J Biochem Cell Biol, 34, 1241-1247.  
11828484 B.H.Muller, C.Lamoure, M.H.Le Du, L.Cattolico, E.Lajeunesse, F.Lemaître, A.Pearson, F.Ducancel, A.Ménez, and J.C.Boulain (2001).
Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket.
  Chembiochem, 2, 517-523.  
11745997 C.Sergi, E.Mornet, J.Troeger, and T.Voigtlaender (2001).
Perinatal hypophosphatasia: radiology, pathology and molecular biology studies in a family harboring a splicing mutation (648+1A) and a novel missense mutation (N400S) in the tissue-nonspecific alkaline phosphatase (TNSALP) gene.
  Am J Med Genet, 103, 235-240.  
11441810 E.A.Doherty, and J.A.Doudna (2001).
Ribozyme structures and mechanisms.
  Annu Rev Biophys Biomol Struct, 30, 457-475.  
11266592 H.C.Hung, and G.G.Chang (2001).
Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase.
  Protein Sci, 10, 34-45.  
11721007 H.C.Hung, and G.G.Chang (2001).
Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.
  Biophys J, 81, 3456-3471.  
12483555 H.Kadokura, H.Kawasaki, K.Yoda, M.Yamasaki, and K.Kitamoto (2001).
Efficient export of alkaline phosphatase overexpressed from a multicopy plasmid requires degP, a gene encoding a periplasmic protease of Escherichia coli.
  J Gen Appl Microbiol, 47, 133-141.  
11435113 I.Boltes, H.Czapinska, A.Kahnert, R.von Bülow, T.Dierks, B.Schmidt, K.von Figura, M.A.Kertesz, and I.Usón (2001).
1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
  Structure, 9, 483-491.
PDB code: 1hdh
11322548 I.O.Fritsky, R.Ott, H.Pritzkow, and R.Krämer (2001).
An allosteric synthetic catalyst: metal ions tune the activity of an artificial phosphodiesterase.
  Chemistry, 7, 1221-1231.  
11589698 I.Tsigos, K.Mavromatis, M.Tzanodaskalaki, C.Pozidis, M.Kokkinidis, and V.Bouriotis (2001).
Engineering the properties of a cold active enzyme through rational redesign of the active site.
  Eur J Biochem, 268, 5074-5080.  
11170378 K.A.Johnson, L.Chen, H.Yang, M.F.Roberts, and B.Stec (2001).
Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities.
  Biochemistry, 40, 618-630.
PDB codes: 1g0h 1g0i
11746679 M.Y.Galperin, and M.J.Jedrzejas (2001).
Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes.
  Proteins, 45, 318-324.  
11342026 R.Q.Zhang, Q.X.Chen, R.Xiao, L.P.Xie, X.G.Zeng, and H.M.Zhou (2001).
Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase by zinc ions: a new type of complexing inhibition.
  Biochim Biophys Acta, 1545, 6.  
11566134 S.Shin, N.C.Ha, B.C.Oh, T.K.Oh, and B.H.Oh (2001).
Enzyme mechanism and catalytic property of beta propeller phytase.
  Structure, 9, 851-858.
PDB code: 1h6l
11333021 V.Tereshko, S.T.Wallace, N.Usman, F.E.Wincott, and M.Egli (2001).
X-ray crystallographic observation of "in-line" and "adjacent" conformations in a bulged self-cleaving RNA/DNA hybrid.
  RNA, 7, 405-420.
PDB codes: 1i2x 1i2y
11093265 W.S.Valdar, and J.M.Thornton (2001).
Protein-protein interfaces: analysis of amino acid conservation in homodimers.
  Proteins, 42, 108-124.  
11800017 Y.D.Park, Y.Yang, Q.X.Chen, H.N.Lin, Q.Liu, and H.M.Zhou (2001).
Kinetics of complexing activation by the magnesium ion on green crab (Scylla serrata) alkaline phosphatase.
  Biochem Cell Biol, 79, 765-772.  
10774735 A.Fayyazuddin, A.Villarroel, A.Le Goff, J.Lerma, and J.Neyton (2000).
Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors.
  Neuron, 25, 683-694.  
11029583 B.Asgeirsson, J.B.Hauksson, and G.H.Gunnarsson (2000).
Dissociation and unfolding of cold-active alkaline phosphatase from atlantic cod in the presence of guanidinium chloride.
  Eur J Biochem, 267, 6403-6412.  
10966470 E.A.Doherty, and J.A.Doudna (2000).
Ribozyme structures and mechanisms.
  Annu Rev Biochem, 69, 597-615.  
10890158 H.Kurosaki, T.Tawada, S.Kawasoe, Y.Ohashi, and M.Goto (2000).
A model for ZnII-containing-beta-lactamase: synthesis, X-ray crystal structure of a zinc(II) complex bearing thiol group and hydrolysis of phosphate diester.
  Bioorg Med Chem Lett, 10, 1333-1337.  
10944393 H.Ponstingl, K.Henrick, and J.M.Thornton (2000).
Discriminating between homodimeric and monomeric proteins in the crystalline state.
  Proteins, 41, 47-57.  
11028068 I.O.Fritsky, R.Ott, and R.Krämer (2000).
Allosteric Regulation of Artificial Phosphoesterase Activity by Metal Ions This work was funded by the DFG (Gerhard Hess Programm).
  Angew Chem Int Ed Engl, 39, 3255-3258.  
11087399 J.J.Tesmer, C.W.Dessauer, R.K.Sunahara, L.D.Murray, R.A.Johnson, A.G.Gilman, and S.R.Sprang (2000).
Molecular basis for P-site inhibition of adenylyl cyclase.
  Biochemistry, 39, 14464-14471.
PDB codes: 1cs4 1cul
  10850800 K.M.Holtz, B.Stec, J.K.Myers, S.M.Antonelli, T.S.Widlanski, and E.R.Kantrowitz (2000).
Alternate modes of binding in two crystal structures of alkaline phosphatase-inhibitor complexes.
  Protein Sci, 9, 907-915.
PDB codes: 1ew8 1ew9
10924140 K.M.Holtz, I.E.Catrina, A.C.Hengge, and E.R.Kantrowitz (2000).
Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases.
  Biochemistry, 39, 9451-9458.  
10672035 M.Rina, C.Pozidis, K.Mavromatis, M.Tzanodaskalaki, M.Kokkinidis, and V.Bouriotis (2000).
Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations.
  Eur J Biochem, 267, 1230-1238.  
10691985 N.Chevalier, D.J.Rigden, J.Van Roy, F.R.Opperdoes, and P.A.Michels (2000).
Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglycerate mutase.
  Eur J Biochem, 267, 1464-1472.  
10746749 P.Bourin, A.Servat, J.J.Lataillade, M.Goyffon, D.Vaux, and P.Billiald (2000).
Immunolabeling of CD3-positive lymphocytes with a recombinant single-chain antibody/alkaline phosphatase conjugate.
  Biol Chem, 381, 173-178.  
10940645 Q.X.Chen, W.Z.Zheng, J.Y.Lin, Y.Shi, W.Z.Xie, and H.M.Zhou (2000).
Effect of metal ions on the activity of green crab (Scylla serrata) alkaline phosphatase.
  Int J Biochem Cell Biol, 32, 879-885.  
10940643 R.Q.Zhang, Q.X.Chen, W.Z.Zheng, J.Y.Lin, Z.L.Zhuang, and H.M.Zhou (2000).
Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase activity by dithiothreitol or 2-mercaptoethanol.
  Int J Biochem Cell Biol, 32, 865-872.  
10940646 Y.X.Zhang, Y.Zhu, and H.M.Zhou (2000).
Conformational changes and inactivation of calf intestinal alkaline phosphatase in trifluoroethanol solutions.
  Int J Biochem Cell Biol, 32, 887-894.  
9888810 C.A.Brautigam, S.Sun, J.A.Piccirilli, and T.A.Steitz (1999).
Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
  Biochemistry, 38, 696-704.
PDB codes: 2kfn 2kfz 2kzm 2kzz
  10338026 D.C.Martin, S.C.Pastra-Landis, and E.R.Kantrowitz (1999).
Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability.
  Protein Sci, 8, 1152-1159.  
9988686 E.Dirnbach, D.G.Steel, and A.Gafni (1999).
Proline isomerization is unlikely to be the cause of slow annealing and reactivation during the folding of alkaline phosphatase.
  J Biol Chem, 274, 4532-4536.  
10427002 J.J.Tesmer, R.K.Sunahara, R.A.Johnson, G.Gosselin, A.G.Gilman, and S.R.Sprang (1999).
Two-metal-Ion catalysis in adenylyl cyclase.
  Science, 285, 756-760.
PDB codes: 1cjk 1cjt 1cju 1cjv
10037778 J.L.McMurry, and D.A.Kendall (1999).
An artificial transmembrane segment directs SecA, SecB, and electrochemical potential-dependent translocation of a long amino-terminal tail.
  J Biol Chem, 274, 6776-6782.  
10085061 K.M.Holtz, B.Stec, and E.R.Kantrowitz (1999).
A model of the transition state in the alkaline phosphatase reaction.
  J Biol Chem, 274, 8351-8354.
PDB code: 1b8j
10052956 L.Sun, D.C.Martin, and E.R.Kantrowitz (1999).
Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center.
  Biochemistry, 38, 2842-2848.  
10584076 M.Bortolato, F.Besson, and B.Roux (1999).
Role of metal ions on the secondary and quaternary structure of alkaline phosphatase from bovine intestinal mucosa.
  Proteins, 37, 310-318.  
10350476 M.D.Sam, and J.J.Perona (1999).
Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease.
  Biochemistry, 38, 6576-6586.  
  10482522 M.H.Lee, A.Nittayajarn, R.P.Ross, C.B.Rothschild, D.Parsonage, A.Claiborne, and C.E.Rubens (1999).
Characterization of Enterococcus faecalis alkaline phosphatase and use in identifying Streptococcus agalactiae secreted proteins.
  J Bacteriol, 181, 5790-5799.  
10099128 P.J.O'Brien, and D.Herschlag (1999).
Catalytic promiscuity and the evolution of new enzymatic activities.
  Chem Biol, 6, R91.  
10194360 S.F.Martin, and P.J.Hergenrother (1999).
Catalytic cycle of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus. Solvent viscosity, deuterium isotope effects, and proton inventory studies.
  Biochemistry, 38, 4403-4408.  
10556703 T.Park, J.H.Lee, H.K.Kim, H.S.Hoe, and S.T.Kwon (1999).
Nucleotide sequence of the gene for alkaline phosphatase of Thermus caldophilus GK24 and characteristics of the deduced primary structure of the enzyme.
  FEMS Microbiol Lett, 180, 133-139.  
9521684 G.Lukatela, N.Krauss, K.Theis, T.Selmer, V.Gieselmann, K.von Figura, and W.Saenger (1998).
Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
  Biochemistry, 37, 3654-3664.
PDB code: 1auk
9741844 H.C.Hung, and G.G.Chang (1998).
Biphasic denaturation of human placental alkaline phosphatase in guanidinium chloride.
  Proteins, 33, 49-61.  
  10082367 I.L.Alberts, K.Nadassy, and S.J.Wodak (1998).
Analysis of zinc binding sites in protein crystal structures.
  Protein Sci, 7, 1700-1716.  
9667939 J.E.Coleman (1998).
Zinc enzymes.
  Curr Opin Chem Biol, 2, 222-234.  
9699462 K.von Figura, B.Schmidt, T.Selmer, and T.Dierks (1998).
A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
  Bioessays, 20, 505-510.  
9497327 M.Recksiek, T.Selmer, T.Dierks, B.Schmidt, and K.von Figura (1998).
Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
  J Biol Chem, 273, 6096-6103.  
  10082381 M.Y.Galperin, A.Bairoch, and E.V.Koonin (1998).
A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases.
  Protein Sci, 7, 1829-1835.  
9811827 N.C.Horton, K.J.Newberry, and J.J.Perona (1998).
Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases.
  Proc Natl Acad Sci U S A, 95, 13489-13494.
PDB code: 1bss
9548962 S.F.Martin, and P.J.Hergenrother (1998).
General base catalysis by the phosphatidylcholine-preferring phospholipase C from Bacillus cereus: the role of Glu4 and Asp55.
  Biochemistry, 37, 5755-5760.  
9722569 T.Manes, M.F.Hoylaerts, R.Müller, F.Lottspeich, W.Hölke, and J.L.Millán (1998).
Genetic complexity, structure, and characterization of highly active bovine intestinal alkaline phosphatases.
  J Biol Chem, 273, 23353-23360.  
9245416 B.Bennett, and R.C.Holz (1997).
Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding.
  Biochemistry, 36, 9837-9846.  
9222514 D.M.Perreault, L.A.Cabell, and E.V.Anslyn (1997).
Using guanidinium groups for the recognition of RNA and as catalysts for the hydrolysis of RNA.
  Bioorg Med Chem, 5, 1209-1220.  
9253408 J.E.Murphy, B.Stec, L.Ma, and E.R.Kantrowitz (1997).
Trapping and visualization of a covalent enzyme-phosphate intermediate.
  Nat Struct Biol, 4, 618-622.
PDB code: 1hjk
9207058 J.G.Arnez, J.G.Augustine, D.Moras, and C.S.Francklyn (1997).
The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 94, 7144-7149.
PDB codes: 1kmm 1kmn
9128721 L.Sun, E.R.Kantrowitz, and W.C.Galley (1997).
Room temperature phosphorescence study of phosphate binding in Escherichia coli alkaline phosphatase.
  Eur J Biochem, 245, 32-39.  
9278439 M.F.Hoylaerts, T.Manes, and J.L.Millán (1997).
Mammalian alkaline phosphatases are allosteric enzymes.
  J Biol Chem, 272, 22781-22787.  
9045630 M.Sone, S.Kishigami, T.Yoshihisa, and K.Ito (1997).
Roles of disulfide bonds in bacterial alkaline phosphatase.
  J Biol Chem, 272, 6174-6178.  
9062928 S.Brown (1997).
Metal-recognition by repeating polypeptides.
  Nat Biotechnol, 15, 269-272.  
9130695 S.Rüdiger, L.Germeroth, J.Schneider-Mergener, and B.Bukau (1997).
Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries.
  EMBO J, 16, 1501-1507.  
9245420 S.T.Huang, W.E.Choi, C.Bloom, M.Leuenberger, and M.F.Dunn (1997).
Carboxylate ions are strong allosteric ligands for the HisB10 sites of the R-state insulin hexamer.
  Biochemistry, 36, 9878-9888.  
9054547 Y.Chen, X.Li, and P.Gegenheimer (1997).
Ribonuclease P catalysis requires Mg2+ coordinated to the pro-RP oxygen of the scissile bond.
  Biochemistry, 36, 2425-2438.  
  8889542 A.R.Mushegian, and E.V.Koonin (1996).
Sequence analysis of eukaryotic developmental proteins: ancient and novel domains.
  Genetics, 144, 817-828.  
8702535 E.B.Fauman, C.Yuvaniyama, H.L.Schubert, J.A.Stuckey, and M.A.Saper (1996).
The X-ray crystal structures of Yersinia tyrosine phosphatase with bound tungstate and nitrate. Mechanistic implications.
  J Biol Chem, 271, 18780-18788.
PDB codes: 1ytn 1ytw
8652582 L.Ma, and E.R.Kantrowitz (1996).
Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
  Biochemistry, 35, 2394-2402.
PDB code: 1hqa
8805566 N.O.Concha, B.A.Rasmussen, K.Bush, and O.Herzberg (1996).
Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis.
  Structure, 4, 823-836.
PDB code: 1znb
8994974 P.Heikinheimo, J.Lehtonen, A.Baykov, R.Lahti, B.S.Cooperman, and A.Goldman (1996).
The structural basis for pyrophosphatase catalysis.
  Structure, 4, 1491-1508.
PDB codes: 1wgi 1wgj
8819010 Q.X.Chen, W.Zhang, W.Z.Zheng, H.Zhao, S.X.Yan, H.R.Wang, and H.M.Zhou (1996).
Kinetics of inhibition of alkaline phosphatase from green crab (Scylla serrata) by N-bromosuccinimide.
  J Protein Chem, 15, 345-350.  
8819012 Q.X.Chen, W.Zhang, W.Z.Zheng, Z.Zhang, S.X.Yan, T.Zhang, and H.M.Zhou (1996).
Comparison of inactivation and unfolding of green crab (Scylla serrata) alkaline phosphatase during denaturation by guanidinium chloride.
  J Protein Chem, 15, 359-365.  
8797857 R.K.Airas (1996).
Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
  Eur J Biochem, 240, 223-231.  
8702602 R.T.Pickard, X.G.Chiou, B.A.Strifler, M.R.DeFelippis, P.A.Hyslop, A.L.Tebbe, Y.K.Yee, L.J.Reynolds, E.A.Dennis, R.M.Kramer, and J.D.Sharp (1996).
Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine.
  J Biol Chem, 271, 19225-19231.  
8841144 S.F.Martin, M.R.Spaller, and P.J.Hergenrother (1996).
Expression and site-directed mutagenesis of the phosphatidylcholine-preferring phospholipase C of Bacillus cereus: probing the role of the active site Glu146.
  Biochemistry, 35, 12970-12977.  
8874031 S.Kumar, and M.Bansal (1996).
Structural and sequence characteristics of long alpha helices in globular proteins.
  Biophys J, 71, 1574-1586.  
8909292 X.Wang, C.R.Randall, A.E.True, and L.Que (1996).
X-ray absorption spectroscopic studies of the FeZn derivative of uteroferrin.
  Biochemistry, 35, 13946-13954.  
7559424 B.D.Schlyer, D.G.Steel, and A.Gafni (1995).
Direct kinetic evidence for triplet state energy transfer from Escherichia coli alkaline phosphatase tryptophan 109 to bound terbium.
  J Biol Chem, 270, 22890-22894.  
7541135 C.A.Brennan, K.Christianson, M.A.La Fleur, and W.Mandecki (1995).
A molecular sensor system based on genetically engineered alkaline phosphatase.
  Proc Natl Acad Sci U S A, 92, 5783-5787.  
  7592405 C.M.Joyce, and T.A.Steitz (1995).
Polymerase structures and function: variations on a theme?
  J Bacteriol, 177, 6321-6329.  
7731962 G.J.Narlikar, V.Gopalakrishnan, T.S.McConnell, N.Usman, and D.Herschlag (1995).
Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization.
  Proc Natl Acad Sci U S A, 92, 3668-3672.  
7775472 H.Chen, and D.A.Kendall (1995).
Artificial transmembrane segments. Requirements for stop transfer and polypeptide orientation.
  J Biol Chem, 270, 14115-14122.  
8867850 H.Etspüler, Y.Kaup, E.M.Bailyes, J.P.Luzio, and U.Weser (1995).
Monoclonal antibodies recognize 2300 years aged alkaline phosphatase.
  Immunol Lett, 48, 187-191.  
  7768873 H.Kadokura, K.Watanabe, K.Tsuneizumi, K.Yoda, and M.Yamasaki (1995).
Physiological and biochemical analysis of the effects of alkaline phosphatase overproduction in Escherichia coli.
  J Bacteriol, 177, 3596-3600.  
  8563025 K.Crawford, H.Weissig, F.Binette, J.L.Millán, and P.F.Goetinck (1995).
Tissue-nonspecific alkaline phosphatase participates in the establishment and growth of feather germs in embryonic chick skin cultures.
  Dev Dyn, 204, 48-56.  
7744838 K.J.Lei, C.J.Pan, J.L.Liu, L.L.Shelly, and J.Y.Chou (1995).
Structure-function analysis of human glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a.
  J Biol Chem, 270, 11882-11886.  
7836417 K.Kim, S.Y.Namgoong, M.Jayaram, and R.M.Harshey (1995).
Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer.
  J Biol Chem, 270, 1472-1479.  
  8520475 L.Ma, T.T.Tibbitts, and E.R.Kantrowitz (1995).
Escherichia coli alkaline phosphatase: X-ray structural studies of a mutant enzyme (His-412-->Asn) at one of the catalytically important zinc binding sites.
  Protein Sci, 4, 1498-1506.
PDB codes: 1ali 1alj
7706447 M.P.Whyte, M.Landt, L.M.Ryan, R.A.Mulivor, P.S.Henthorn, K.N.Fedde, J.D.Mahuren, and S.P.Coburn (1995).
Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5'-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy.
  J Clin Invest, 95, 1440-1445.  
7875572 P.F.Gomez, and L.O.Ingram (1995).
Cloning, sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis.
  FEMS Microbiol Lett, 125, 237-245.  
8539245 R.H.Stote, and M.Karplus (1995).
Zinc binding in proteins and solution: a simple but accurate nonbonded representation.
  Proteins, 23, 12-31.  
7716164 T.F.Jenny, D.L.Gerloff, M.A.Cohen, and S.A.Benner (1995).
Predicted secondary and supersecondary structure for the serine-threonine-specific protein phosphatase family.
  Proteins, 21, 1.  
8143740 G.G.Chang, and S.L.Shiao (1994).
Possible kinetic mechanism of human placental alkaline phosphatase in vivo as implemented in reverse micelles.
  Eur J Biochem, 220, 861-870.  
8119291 G.J.Barton, P.T.Cohen, and D.Barford (1994).
Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases.
  Eur J Biochem, 220, 225-237.  
8306992 H.W.Huang, and J.A.Cowan (1994).
Metallobiochemistry of the magnesium ion. Characterization of the essential metal-binding site in Escherichia coli ribonuclease H.
  Eur J Biochem, 219, 253-260.  
8065256 J.E.Murphy, and E.R.Kantrowitz (1994).
Why are mammalian alkaline phosphatases much more active than bacterial alkaline phosphatases?
  Mol Microbiol, 12, 351-357.  
7809124 M.Vihinen, D.Vetrie, H.S.Maniar, H.D.Ochs, Q.Zhu, I.Vorechovský, A.D.Webster, L.D.Notarangelo, L.Nilsson, and J.M.Sowadski (1994).
Structural basis for chromosome X-linked agammaglobulinemia: a tyrosine kinase disease.
  Proc Natl Acad Sci U S A, 91, 12803-12807.  
8016062 S.J.Pollack, J.R.Atack, M.R.Knowles, G.McAllister, C.I.Ragan, R.Baker, S.R.Fletcher, L.L.Iversen, and H.B.Broughton (1994).
Mechanism of inositol monophosphatase, the putative target of lithium therapy.
  Proc Natl Acad Sci U S A, 91, 5766-5770.  
  7703848 T.T.Tibbitts, X.Xu, and E.R.Kantrowitz (1994).
Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site.
  Protein Sci, 3, 2005-2014.
PDB code: 1alh
8464881 B.L.Vallee, and D.S.Auld (1993).
Cocatalytic zinc motifs in enzyme catalysis.
  Proc Natl Acad Sci U S A, 90, 2715-2718.  
8227182 K.N.Fedde, M.P.Michel, and M.P.Whyte (1993).
Evidence against a role for alkaline phosphatase in the dephosphorylation of plasma membrane proteins: hypophosphatasia fibroblast study.
  J Cell Biochem, 53, 43-50.  
8341661 T.A.Steitz, and J.A.Steitz (1993).
A general two-metal-ion mechanism for catalytic RNA.
  Proc Natl Acad Sci U S A, 90, 6498-6502.  
8378326 X.Tao, and J.R.Murphy (1993).
Cysteine-102 is positioned in the metal binding activation site of the Corynebacterium diphtheriae regulatory element DtxR.
  Proc Natl Acad Sci U S A, 90, 8524-8528.  
1357657 H.T.Langen, and J.W.Taylor (1992).
Alkaline phosphatase-somatostatin hybrid proteins as probes for somatostatin-14 receptors.
  Proteins, 14, 1-9.  
1593644 H.W.Sun, and B.V.Plapp (1992).
Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family.
  J Mol Evol, 34, 522-535.  
1368439 J.A.Tainer, V.A.Roberts, and E.D.Getzoff (1992).
Protein metal-binding sites.
  Curr Opin Biotechnol, 3, 378-387.  
1412693 J.B.Vincent, M.W.Crowder, and B.A.Averill (1992).
Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions.
  Trends Biochem Sci, 17, 105-110.  
1518817 S.Kazakov, and S.Altman (1992).
A trinucleotide can promote metal ion-dependent specific cleavage of RNA.
  Proc Natl Acad Sci U S A, 89, 7939-7943.  
1542663 T.C.Bruice, H.Y.Mei, G.X.He, and V.Lopez (1992).
Rational design of substituted tripyrrole peptides that complex with DNA by both selective minor-groove binding and electrostatic interaction with the phosphate backbone.
  Proc Natl Acad Sci U S A, 89, 1700-1704.  
  1938970 A.I.Derman, and J.Beckwith (1991).
Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm.
  J Bacteriol, 173, 7719-7722.  
1934062 J.C.Bardwell, K.McGovern, and J.Beckwith (1991).
Identification of a protein required for disulfide bond formation in vivo.
  Cell, 67, 581-589.  
1718000 S.Kazakov, and S.Altman (1991).
Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli.
  Proc Natl Acad Sci U S A, 88, 9193-9197.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.