PDBsum entry 1aj3

Go to PDB code: 
protein links
Cytoskeleton PDB id
Protein chain
98 a.a. *
* Residue conservation analysis
PDB id:
Name: Cytoskeleton
Title: Solution structure of the spectrin repeat, nmr, 20 structures
Structure: Alpha spectrin. Chain: a. Fragment: 16th repeat, residues 1772 - 1869. Engineered: yes
Source: Gallus gallus. Chicken. Organism_taxid: 9031. Cell_line: bl21. Organ: brain. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
NMR struc: 20 models
Authors: J.Pascual,M.Pfuhl,D.Walther,M.Saraste,M.Nilges
Key ref:
J.Pascual et al. (1997). Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. J Mol Biol, 273, 740-751. PubMed id: 9356261 DOI: 10.1006/jmbi.1997.1344
14-May-97     Release date:   07-Jul-97    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P07751  (SPTA2_CHICK) -  Spectrin alpha chain, non-erythrocytic 1
2477 a.a.
98 a.a.
Key:    PfamA domain  Secondary structure  CATH domain


DOI no: 10.1006/jmbi.1997.1344 J Mol Biol 273:740-751 (1997)
PubMed id: 9356261  
Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil.
J.Pascual, M.Pfuhl, D.Walther, M.Saraste, M.Nilges.
Cytoskeletal proteins belonging to the spectrin family have an elongated structure composed of repetitive units. The three-dimensional solution structure of the 16th repeat from chicken brain alpha-spectrin (R16) has been determined by NMR spectroscopy and distance geometry-simulated annealing calculations. We used a total of 1035 distance restraints, which included 719 NOE-based values obtained by applying the ambiguous restraints for iterative assignment (ARIA) method. In addition, we performed a direct refinement against 1H-chemical shifts. The final ensemble of 20 structures shows an average RMSD of 1.52 A from the mean for the backbone atoms, excluding loops and N and C termini. R16 is made up of three antiparallel alpha-helices separated by two loops, and folds into a left-handed coiled-coil. The basic unit of spectrin is an antiparallel heterodimer composed of two homologous chains, beta and alpha. These assemble a tetramer via a mechanism that relies on the completion of a single repeat by association of the partial repeats located at the C terminus of the beta-chain (two helices) and at the N terminus of the alpha-chain (one helix). This tetramer is the assemblage able to cross-link actin filaments. Model building by homology of the "tetramerization" repeat from human erythrocyte spectrin illuminates the possible role of point mutations which cause hemolytic anemias.
  Selected figure(s)  
Figure 2.
Figure 2. View of the backbone average structure of R16 (from His10 to Gln107). From the N to the C terminus, helix A is colored green, the AB loop red, helix B yellow, the BC turn red, and helix C cyan. Some of the side-chains of residues implicated in interhelical contacts are shown in white and labeled according to the one letter code for amino acid residues and in parenthesis according to the helices nomenclature.
Figure 8.
Figure 8. Model of the arrangement of the conserved side-chains A29, B7, and C25 of the “tetramerization” repeat colored in green interacting via an intermolecular salt bridge as well as a model for the effect of the Arg to Ser (colored in red) mutation in C25 that prevents the tetramerization. The inset the backbone of the model for the tetramerization repeat; helices A and B from the β-chain are in white and helix C from the α-chain is in cyan. Notice the absence of the BC loop. Each triangle points towards the C terminus of its respective helix.
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1997, 273, 740-751) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21412925 Y.Song, C.Antoniou, A.Memic, B.K.Kay, and L.W.Fung (2011).
Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs.
  Protein Sci, 20, 867-879.  
20833645 C.S.Clemen, K.Tangavelou, K.H.Strucksberg, S.Just, L.Gaertner, H.Regus-Leidig, M.Stumpf, J.Reimann, R.Coras, R.O.Morgan, M.P.Fernandez, A.Hofmann, S.Müller, B.Schoser, F.G.Hanisch, W.Rottbauer, I.Blümcke, S.von Hörsten, L.Eichinger, and R.Schröder (2010).
Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases.
  Brain, 133, 2920-2941.  
20647036 F.Saletta, Y.S.Rahmanto, and D.R.Richardson (2010).
The translational regulator eIF3a: the tricky eIF3 subunit!
  Biochim Biophys Acta, 1806, 275-286.  
20502633 G.B.Banks, L.M.Judge, J.M.Allen, and J.S.Chamberlain (2010).
The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins.
  PLoS Genet, 6, e1000958.  
20197550 J.J.Ipsaro, S.L.Harper, T.E.Messick, R.Marmorstein, A.Mondragón, and D.W.Speicher (2010).
Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex.
  Blood, 115, 4843-4852.
PDB code: 3lbx
20446344 S.H.Lee, and R.Dominguez (2010).
Regulation of actin cytoskeleton dynamics in cells.
  Mol Cells, 29, 311-325.  
19445951 B.G.Wensley, M.Gärtner, W.X.Choo, S.Batey, and J.Clarke (2009).
Different members of a simple three-helix bundle protein family have very different folding rate constants and fold by different mechanisms.
  J Mol Biol, 390, 1074-1085.  
18785251 D.Megías, R.Marrero, B.Martínez Del Peso, M.A.García, J.J.Bravo-Cordero, A.García-Grande, A.Santos, and M.C.Montoya (2009).
Novel lambda FRET spectral confocal microscopy imaging method.
  Microsc Res Tech, 72, 1.  
19072330 Q.Li, and L.W.Fung (2009).
Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance.
  Biochemistry, 48, 206-215.  
17890397 L.G.Randles, S.Batey, A.Steward, and J.Clarke (2008).
Distinguishing specific and nonspecific interdomain interactions in multidomain proteins.
  Biophys J, 94, 622-628.  
19436439 S.Batey, A.A.Nickson, and J.Clarke (2008).
Studying the folding of multidomain proteins.
  HFSP J, 2, 365-377.  
18815288 X.An, E.Gauthier, X.Zhang, X.Guo, D.J.Anstee, N.Mohandas, and J.A.Chasis (2008).
Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin.
  Blood, 112, 5212-5218.  
17085494 L.G.Randles, R.W.Rounsevell, and J.Clarke (2007).
Spectrin domains lose cooperativity in forced unfolding.
  Biophys J, 92, 571-577.  
17867784 S.Paramore, G.S.Ayton, and G.A.Voth (2007).
Transient violations of the second law of thermodynamics in protein unfolding examined using synthetic atomic force microscopy and the fluctuation theorem.
  J Chem Phys, 127, 105105.  
17029004 A.Chakrabarti, D.A.Kelkar, and A.Chattopadhyay (2006).
Spectrin organization and dynamics: new insights.
  Biosci Rep, 26, 369-386.  
16214858 D.K.West, D.J.Brockwell, P.D.Olmsted, S.E.Radford, and E.Paci (2006).
Mechanical resistance of proteins explained using simple molecular models.
  Biophys J, 90, 287-297.  
16407147 M.Salomao, X.An, X.Guo, W.B.Gratzer, N.Mohandas, and A.J.Baines (2006).
Mammalian alpha I-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes.
  Proc Natl Acad Sci U S A, 103, 643-648.  
17108086 S.Batey, and J.Clarke (2006).
Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains.
  Proc Natl Acad Sci U S A, 103, 18113-18118.  
16387757 S.Batey, K.A.Scott, and J.Clarke (2006).
Complex folding kinetics of a multidomain protein.
  Biophys J, 90, 2120-2130.  
16891371 S.Paramore, and G.A.Voth (2006).
Examining the influence of linkers and tertiary structure in the forced unfolding of multiple-repeat spectrin molecules.
  Biophys J, 91, 3436-3445.  
16227506 S.Paramore, G.S.Ayton, D.T.Mirijanian, and G.A.Voth (2006).
Extending a spectrin repeat unit. I: linear force-extension response.
  Biophys J, 90, 92.  
16227505 S.Paramore, G.S.Ayton, and G.A.Voth (2006).
Extending a spectrin repeat unit. II: rupture behavior.
  Biophys J, 90, 101-111.  
15648086 D.A.Kelkar, A.Chattopadhyay, A.Chakrabarti, and M.Bhattacharyya (2005).
Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
  Biopolymers, 77, 325-334.  
15930007 K.A.Scott, and J.Clarke (2005).
Spectrin R16: broad energy barrier or sequential transition states?
  Protein Sci, 14, 1617-1629.  
15711878 S.Ray, M.Bhattacharyya, and A.Chakrabarti (2005).
Conformational study of spectrin in presence of submolar concentrations of denaturants.
  J Fluoresc, 15, 61-70.  
15062087 H.Kusunoki, R.I.MacDonald, and A.Mondragón (2004).
Structural insights into the stability and flexibility of unusual erythroid spectrin repeats.
  Structure, 12, 645-656.
PDB code: 1s35
15492010 M.Bhattacharyya, S.Ray, S.Bhattacharya, and A.Chakrabarti (2004).
Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin.
  J Biol Chem, 279, 55080-55088.  
14573853 A.Chattopadhyay, S.S.Rawat, D.A.Kelkar, S.Ray, and A.Chakrabarti (2003).
Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
  Protein Sci, 12, 2389-2403.  
12480947 E.Le Rumeur, Y.Fichou, S.Pottier, F.Gaboriau, C.Rondeau-Mouro, M.Vincent, J.Gallay, and A.Bondon (2003).
Interaction of dystrophin rod domain with membrane phospholipids. Evidence of a close proximity between tryptophan residues and lipids.
  J Biol Chem, 278, 5993-6001.  
12672815 S.Park, M.S.Caffrey, M.E.Johnson, and L.W.Fung (2003).
Solution structural studies on human erythrocyte alpha-spectrin tetramerization site.
  J Biol Chem, 278, 21837-21844.
PDB code: 1owa
12038451 B.H.Luo, S.Mehboob, M.G.Hurtuk, N.H.Pipalia, and L.W.Fung (2002).
Important region in the beta-spectrin C-terminus for spectrin tetramer formation.
  Eur J Haematol, 68, 73-79.  
11799131 K.Watanabe, P.Nair, D.Labeit, M.S.Kellermayer, M.Greaser, S.Labeit, and H.Granzier (2002).
Molecular mechanics of cardiac titin's PEVK and N2B spring elements.
  J Biol Chem, 277, 11549-11558.  
10823892 E.Paci, and M.Karplus (2000).
Unfolding proteins by external forces and temperature: the importance of topology and energetics.
  Proc Natl Acad Sci U S A, 97, 6521-6526.  
10866978 L.Cherry, L.W.Fung, and N.Menhart (2000).
Flexibility of the alpha-spectrin N-terminus by EPR and fluorescence polarization.
  Biophys J, 79, 526-535.  
9890967 L.Cherry, N.Menhart, and L.W.Fung (1999).
Interactions of the alpha-spectrin N-terminal region with beta-spectrin. Implications for the spectrin tetramerization reaction.
  J Biol Chem, 274, 2077-2084.  
9631289 A.McGough (1998).
F-actin-binding proteins.
  Curr Opin Struct Biol, 8, 166-176.  
9843421 D.Lusitani, N.Menhart, T.A.Keiderling, and L.W.Fung (1998).
Ionic strength effect on the thermal unfolding of alpha-spectrin peptides.
  Biochemistry, 37, 16546-16554.  
9818269 R.A.Laskowski, M.W.MacArthur, and J.M.Thornton (1998).
Validation of protein models derived from experiment.
  Curr Opin Struct Biol, 8, 631-639.  
9817844 S.Bañuelos, M.Saraste, and K.Djinović Carugo (1998).
Structural comparisons of calponin homology domains: implications for actin binding.
  Structure, 6, 1419-1431.
PDB code: 1bkr
9484592 Y.A.Puius, N.M.Mahoney, and S.C.Almo (1998).
The modular structure of actin-regulatory proteins.
  Curr Opin Cell Biol, 10, 23-34.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.