PDBsum entry 1ain

Go to PDB code: 
protein metals links
Calcium/phospholipid binding PDB id
Protein chain
314 a.a.* *
_CA ×6
* Residue conservation analysis
* C-alpha coords only
PDB id:
Name: Calcium/phospholipid binding
Title: Crystal structure of human annexin i at 2.5 angstroms resolution
Structure: Annexin i. Chain: a. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606
2.50Å     R-factor:   0.163    
Authors: S.-H.Kim
Key ref:
X.Weng et al. (1993). Crystal structure of human annexin I at 2.5 A resolution. Protein Sci, 2, 448-458. PubMed id: 8453382 DOI: 10.1002/pro.5560020317
03-Jun-92     Release date:   15-Jul-93    

Protein chain
Pfam   ArchSchema ?
P04083  (ANXA1_HUMAN) -  Annexin A1
346 a.a.
314 a.a.
Key:    PfamA domain  Secondary structure

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   19 terms 
  Biological process     cellular component movement   41 terms 
  Biochemical function     structural molecule activity     16 terms  


    Key reference    
DOI no: 10.1002/pro.5560020317 Protein Sci 2:448-458 (1993)
PubMed id: 8453382  
Crystal structure of human annexin I at 2.5 A resolution.
X.Weng, H.Luecke, I.S.Song, D.S.Kang, S.H.Kim, R.Huber.
cDNA coding for N-terminally truncated human annexin I, a member of the family of Ca(2+)-dependent phospholipid binding proteins, has been cloned and expressed in Escherichia coli. The expressed protein is biologically active, and has been purified and crystallized in space group P2(1)2(1)2(1) with cell dimensions a = 139.36 A, b = 67.50 A, and c = 42.11 A. The crystal structure has been determined by molecular replacement at 3.0 A resolution using the annexin V core structure as the search model. The average backbone deviation between these two structures is 2.34 A. The structure has been refined to an R-factor of 17.7% at 2.5 A resolution. Six calcium sites have been identified in the annexin I structure. Each is located in the loop region of the helix-loop-helix motif. Two of the six calcium sites in annexin I are not occupied in the annexin V structure. The superpositions of the corresponding loop regions in the four domains show that the calcium binding loops in annexin I can be divided into two classes: type II and type III. Both classes are different from the well-known EF-hand motif (type I).
  Selected figure(s)  
Figure 2.
Fig. 2. 2F0 - F, electron density map of the type I1 (A) and type (B) calcium bindingsitesin domain IV. Map contoured at 1.0~. Calciums and their ligands are labeled.
Figure 3.
Fig. 3. Comparison of three types of calcium binding site, A: Type I (EF-hand) calcium binding site of parvalbumin (extracted from Protein Data Bank file 3pal.pdb). B: Type II. C: Type III calcium binding site in domain IV of annexin I.
  The above figures are reprinted by permission from the Protein Society: Protein Sci (1993, 2, 448-458) copyright 1993.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21370880 T.Horlacher, C.Noti, Paz, P.BindschaŐądler, M.L.Hecht, D.F.Smith, M.N.Fukuda, and P.H.Seeberger (2011).
Characterization of Annexin A1 Glycan Binding Reveals Binding to Highly Sulfated Glycans with Preference for Highly Sulfated Heparan Sulfate and Heparin.
  Biochemistry, 50, 2650-2659.  
  20180991 J.Zhang, C.A.King, K.Dalby, and P.Ren (2010).
Conformational preference of ChaK1 binding peptides: a molecular dynamics study.
  PMC Biophys, 3, 2.  
19381436 K.Monastyrskaya, E.B.Babiychuk, and A.Draeger (2009).
The annexins: spatial and temporal coordination of signaling events during cellular stress.
  Cell Mol Life Sci, 66, 2623-2642.  
18795951 A.C.Rintala-Dempsey, A.Rezvanpour, and G.S.Shaw (2008).
S100-annexin complexes--structural insights.
  FEBS J, 275, 4956-4966.  
17521420 J.L.Jiménez, B.Hegemann, J.R.Hutchins, J.M.Peters, and R.Durbin (2007).
A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database.
  Genome Biol, 8, R90.  
17440717 O.Zschörnig, F.Opitz, and M.Müller (2007).
Annexin A4 binding to anionic phospholipid vesicles modulated by pH and calcium.
  Eur Biophys J, 36, 415-424.  
17552907 Y.Zhang, K.H.Wang, Y.J.Guo, Y.M.Lu, H.L.Yan, Y.L.Song, F.Wang, F.X.Ding, and S.H.Sun (2007).
Annexin B1 from Taenia solium metacestodes is a newly characterized member of the annexin family.
  Biol Chem, 388, 601-610.  
16352566 M.R.Jagannath, M.M.Kesavulu, R.Deepa, P.N.Sastri, S.S.Kumar, K.Suguna, and C.D.Rao (2006).
N- and C-terminal cooperation in rotavirus enterotoxin: novel mechanism of modulation of the properties of a multifunctional protein by a structurally and functionally overlapping conformational domain.
  J Virol, 80, 412-425.  
15928709 V.Gerke, C.E.Creutz, and S.E.Moss (2005).
Annexins: linking Ca2+ signalling to membrane dynamics.
  Nat Rev Mol Cell Biol, 6, 449-461.  
15340925 D.M.Standley, H.Toh, and H.Nakamura (2004).
Detecting local structural similarity in proteins by maximizing number of equivalent residues.
  Proteins, 57, 381-391.  
14529272 C.Y.Kim, Y.D.Koo, J.B.Jin, B.C.Moon, C.H.Kang, S.T.Kim, B.O.Park, S.Y.Lee, M.L.Kim, I.Hwang, K.Y.Kang, J.D.Bahk, S.Y.Lee, and M.J.Cho (2003).
Rice C2-domain proteins are induced and translocated to the plasma membrane in response to a fungal elicitor.
  Biochemistry, 42, 11625-11633.  
11910038 F.Ochsenbein, J.M.Neumann, E.Guittet, and C.van Heijenoort (2002).
Dynamical characterization of residual and non-native structures in a partially folded protein by (15)N NMR relaxation using a model based on a distribution of correlation times.
  Protein Sci, 11, 957-964.  
11814339 J.M.Isas, R.Langen, H.T.Haigler, and W.L.Hubbell (2002).
Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study.
  Biochemistry, 41, 1464-1473.  
12351837 J.T.Tran, A.Rosengarth, and H.Luecke (2002).
Cloning, purification and crystallization of full-length human annexin 2.
  Acta Crystallogr D Biol Crystallogr, 58, 1854-1857.  
12124256 T.Huynh, J.C.Smith, and A.Sanson (2002).
Protein unfolding transitions in an intrinsically unstable annexin domain: molecular dynamics simulation and comparison with nuclear magnetic resonance data.
  Biophys J, 83, 681-698.  
11828493 A.Janshoff, M.Ross, V.Gerke, and C.Steinem (2001).
Visualization of annexin I binding to calcium-induced phosphatidylserine domains.
  Chembiochem, 2, 587-590.  
11350857 E.Solito, Coupade, S.Canaider, N.J.Goulding, and M.Perretti (2001).
Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation.
  Br J Pharmacol, 133, 217-228.  
11053851 A.Rosengarth, and H.Luecke (2000).
Crystallization and preliminary X-ray analysis of full-length annexin I comprising the core and N-terminal domain.
  Acta Crystallogr D Biol Crystallogr, 56, 1459-1461.  
11063583 E.Bitto, M.Li, A.M.Tikhonov, M.L.Schlossman, and W.Cho (2000).
Mechanism of annexin I-mediated membrane aggregation.
  Biochemistry, 39, 13469-13477.  
11106498 J.Ayala-Sanmartin, P.Gouache, and J.P.Henry (2000).
N-Terminal domain of annexin 2 regulates Ca(2+)-dependent membrane aggregation by the core domain: a site directed mutagenesis study.
  Biochemistry, 39, 15190-15198.  
10704197 J.P.Cartailler, H.T.Haigler, and H.Luecke (2000).
Annexin XII E105K crystal structure: identification of a pH-dependent switch for mutant hexamerization.
  Biochemistry, 39, 2475-2483.
PDB code: 1dm5
11087353 J.Sopkova-De Oliveira Santos, S.Fischer, C.Guilbert, A.Lewit-Bentley, and J.C.Smith (2000).
Pathway for large-scale conformational change in annexin V.
  Biochemistry, 39, 14065-14074.  
10353474 F.Russo-Marie (1999).
Annexin V and phospholipid metabolism.
  Clin Chem Lab Med, 37, 287-291.  
10220332 J.Sopkova, M.Vincent, M.Takahashi, A.Lewit-Bentley, and J.Gallay (1999).
Conformational flexibility of domain III of annexin V at membrane/water interfaces.
  Biochemistry, 38, 5447-5458.  
9890889 L.Silvestro, and P.H.Axelsen (1999).
Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding.
  Biochemistry, 38, 113-121.  
9665730 E.Bitto, and W.Cho (1998).
Roles of individual domains of annexin I in its vesicle binding and vesicle aggregation: a comprehensive mutagenesis study.
  Biochemistry, 37, 10231-10237.  
8994623 la Fuente, and C.G.Ossa (1997).
Binding to phosphatidyl serine membranes causes a conformational change in the concave face of annexin I.
  Biophys J, 72, 383-387.  
9220993 W.S.Mailliard, H.Luecke, and H.T.Haigler (1997).
Annexin XII forms calcium-dependent multimers in solution and on phospholipid bilayers: a chemical cross-linking study.
  Biochemistry, 36, 9045-9050.  
8919042 A.S.Ma, and L.J.Ozers (1996).
Annexins I and II show differences in subcellular localization and differentiation-related changes in human epidermal keratinocytes.
  Arch Dermatol Res, 288, 596-603.  
8639653 B.Favier-Perron, A.Lewit-Bentley, and F.Russo-Marie (1996).
The high-resolution crystal structure of human annexin III shows subtle differences with annexin V.
  Biochemistry, 35, 1740-1744.
PDB code: 1axn
8756690 F.Cordier-Ochsenbein, R.Guerois, F.Baleux, T.Huynh-Dinh, A.Chaffotte, J.M.Neumann, and A.Sanson (1996).
Folding properties of an annexin I domain: a 1H-15N NMR and CD study.
  Biochemistry, 35, 10347-10357.  
  8885232 J.Seemann, K.Weber, M.Osborn, R.G.Parton, and V.Gerke (1996).
The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain.
  Mol Biol Cell, 7, 1359-1374.  
8706680 M.T.Alvarez-Martinez, J.C.Mani, F.Porte, C.Faivre-Sarrailh, J.P.Liautard, and J.Sri Widada (1996).
Characterization of the interaction between annexin I and profilin.
  Eur J Biochem, 238, 777-784.  
  8732291 S.A.Kang, Y.J.Cho, H.B.Moon, and D.S.Na (1996).
Translocation of lipocortin (annexin) 1 to the membrane of U937 cells induced by phorbol ester, but not by dexamethasone.
  Br J Pharmacol, 117, 1780-1784.  
8569746 D.M.Waisman (1995).
Annexin II tetramer: structure and function.
  Mol Cell Biochem, 149, 301-322.  
7477411 H.Luecke, B.T.Chang, W.S.Mailliard, D.D.Schlaepfer, and H.T.Haigler (1995).
Crystal structure of the annexin XII hexamer and implications for bilayer insertion.
  Nature, 378, 512-515.
PDB code: 1aei
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.