PDBsum entry 1ahg

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase (aminotransferase) PDB id
Protein chains
396 a.a. *
Waters ×510
* Residue conservation analysis
PDB id:
Name: Transferase (aminotransferase)
Title: Aspartate aminotransferase hexamutant
Structure: Aspartate aminotransferase. Chain: a, b. Engineered: yes. Phospho-5'-pyridoxyl tyrosine. Chain: c, d. Synonym: aspartate transaminase. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562. Organism_taxid: 562
Biol. unit: Dimer (from PQS)
2.50Å     R-factor:   0.250    
Authors: V.N.Malashkevich,J.N.Jansonius
Key ref: V.N.Malashkevich et al. (1995). Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase. Nat Struct Biol, 2, 548-553. PubMed id: 7664122
22-Feb-95     Release date:   15-Sep-95    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P00509  (AAT_ECOLI) -  Aspartate aminotransferase
396 a.a.
396 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.  - Aspartate transaminase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-aspartate + 2-oxoglutarate = oxaloacetate + L-glutamate
+ 2-oxoglutarate
= oxaloacetate
Bound ligand (Het Group name = TYR)
matches with 53.33% similarity
      Cofactor: Pyridoxal 5'-phosphate
Pyridoxal 5'-phosphate
Bound ligand (Het Group name = PLP) matches with 93.75% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   2 terms 
  Biological process     biosynthetic process   4 terms 
  Biochemical function     catalytic activity     8 terms  


Nat Struct Biol 2:548-553 (1995)
PubMed id: 7664122  
Alternating arginine-modulated substrate specificity in an engineered tyrosine aminotransferase.
V.N.Malashkevich, J.J.Onuffer, J.F.Kirsch, J.N.Jansonius.
Mutation of six residues of Escherichia coli aspartate aminotransferase results in substantial acquisition of the transamination properties of tyrosine amino-transferase without loss of aspartate transaminase activity. X-ray crystallographic analysis of key inhibitor complexes of the hexamutant reveals the structural basis for this substrate selectivity. It appears that tyrosine aminotransferase achieves nearly equal affinities for a wide range of amino acids by an unusual conformational switch. An active-site arginine residue either shifts its position to electrostatically interact with charged substrates or moves aside to allow access of aromatic ligands.

Literature references that cite this PDB file's key reference

  PubMed id Reference
17680656 B.K.Cho, H.Y.Park, J.H.Seo, J.Kim, T.J.Kang, B.S.Lee, and B.G.Kim (2008).
Redesigning the substrate specificity of omega-aminotransferase for the kinetic resolution of aliphatic chiral amines.
  Biotechnol Bioeng, 99, 275-284.  
18560156 J.Marienhagen, T.Sandalova, H.Sahm, L.Eggeling, and G.Schneider (2008).
Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum.
  Acta Crystallogr D Biol Crystallogr, 64, 675-685.
PDB codes: 3cq4 3cq5 3cq6
15889412 K.Hirotsu, M.Goto, A.Okamoto, and I.Miyahara (2005).
Dual substrate recognition of aminotransferases.
  Chem Rec, 5, 160-172.  
15189147 A.C.Eliot, and J.F.Kirsch (2004).
Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations.
  Annu Rev Biochem, 73, 383-415.  
14767072 S.C.Rothman, M.Voorhies, and J.F.Kirsch (2004).
Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase.
  Protein Sci, 13, 763-772.  
12717026 V.R.Sobrado, M.Montemartini-Kalisz, H.M.Kalisz, M.C.De La Fuente, H.J.Hecht, and C.Nowicki (2003).
Involvement of conserved asparagine and arginine residues from the N-terminal region in the catalytic mechanism of rat liver and Trypanosoma cruzi tyrosine aminotransferases.
  Protein Sci, 12, 1039-1050.  
11294630 K.Haruyama, T.Nakai, I.Miyahara, K.Hirotsu, H.Mizuguchi, H.Hayashi, and H.Kagamiyama (2001).
Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme.
  Biochemistry, 40, 4633-4644.
PDB codes: 1gew 1gex 1gey
11344326 T.N.Luong, and J.F.Kirsch (2001).
A general method for the quantitative analysis of functional chimeras: applications from site-directed mutagenesis and macromolecular association.
  Protein Sci, 10, 581-591.  
11447278 V.N.Malashkevich, M.Singh, and P.S.Kim (2001).
The trimer-of-hairpins motif in membrane fusion: Visna virus.
  Proc Natl Acad Sci U S A, 98, 8502-8506.
PDB code: 1jek
10858450 J.Ishijima, T.Nakai, S.Kawaguchi, K.Hirotsu, and S.Kuramitsu (2000).
Free energy requirement for domain movement of an enzyme.
  J Biol Chem, 275, 18939-18945.
PDB codes: 1c9c 1cq6 1cq7 1cq8
11112527 M.M.Islam, H.Hayashi, H.Mizuguchi, and H.Kagamiyama (2000).
The substrate activation process in the catalytic reaction of Escherichia coli aromatic amino acid aminotransferase.
  Biochemistry, 39, 15418-15428.  
9880502 B.Mouratou, P.Kasper, H.Gehring, and P.Christen (1999).
Conversion of tyrosine phenol-lyase to dicarboxylic amino acid beta-lyase, an enzyme not found in nature.
  J Biol Chem, 274, 1320-1325.  
10099128 P.J.O'Brien, and D.Herschlag (1999).
Catalytic promiscuity and the evolution of new enzymatic activities.
  Chem Biol, 6, R91.  
9891001 S.Oue, A.Okamoto, T.Yano, and H.Kagamiyama (1999).
Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues.
  J Biol Chem, 274, 2344-2349.
PDB code: 1yoo
  10595543 W.Blankenfeldt, C.Nowicki, M.Montemartini-Kalisz, H.M.Kalisz, and H.J.Hecht (1999).
Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.
  Protein Sci, 8, 2406-2417.
PDB code: 1bw0
9660802 S.Kawaguchi, and S.Kuramitsu (1998).
Thermodynamics and molecular simulation analysis of hydrophobic substrate recognition by aminotransferases.
  J Biol Chem, 273, 18353-18364.  
9576913 T.Yano, S.Oue, and H.Kagamiyama (1998).
Directed evolution of an aspartate aminotransferase with new substrate specificities.
  Proc Natl Acad Sci U S A, 95, 5511-5515.  
9265632 Y.Park, J.Luo, P.G.Schultz, and J.F.Kirsch (1997).
Noncoded amino acid replacement probes of the aspartate aminotransferase mechanism.
  Biochemistry, 36, 10517-10525.  
8639626 H.Hayashi, K.Inoue, H.Mizuguchi, and H.Kagamiyama (1996).
Analysis of the substrate-recognition mode of aromatic amino acid aminotransferase by combined use of quasisubstrates and site-directed mutagenesis: systematic hydroxy-group addition/deletion studies to probe the enzyme-substrate interactions.
  Biochemistry, 35, 6754-6761.  
  8636014 R.A.Jensen, and W.Gu (1996).
Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases.
  J Bacteriol, 178, 2161-2171.  
  8528072 J.J.Onuffer, B.T.Ton, I.Klement, and J.F.Kirsch (1995).
The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases.
  Protein Sci, 4, 1743-1749.  
  8528073 J.J.Onuffer, and J.F.Kirsch (1995).
Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis.
  Protein Sci, 4, 1750-1757.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.