spacer
spacer

PDBsum entry 1a8v

Go to PDB code: 
protein metals Protein-protein interface(s) links
Transcription termination PDB id
1a8v

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
115 a.a. *
Metals
_CU ×2
Waters ×88
* Residue conservation analysis
PDB id:
1a8v
Name: Transcription termination
Title: Structure of the RNA-binding domain of the rho transcription terminator
Structure: Transcription termination factor rho. Chain: a, b. Fragment: RNA-binding domain. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Strain: dh5-alpha. Cell_line: bl21. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.00Å     R-factor:   0.193     R-free:   0.261
Authors: D.Fass,C.Bogden,J.M.Berger
Key ref:
C.E.Bogden et al. (1999). The structural basis for terminator recognition by the Rho transcription termination factor. Mol Cell, 3, 487-493. PubMed id: 10230401 DOI: 10.1016/S1097-2765(00)80476-1
Date:
28-Mar-98     Release date:   04-May-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0AG30  (RHO_ECOLI) -  Transcription termination factor Rho from Escherichia coli (strain K12)
Seq:
Struc:
419 a.a.
115 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.6.4.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S1097-2765(00)80476-1 Mol Cell 3:487-493 (1999)
PubMed id: 10230401  
 
 
The structural basis for terminator recognition by the Rho transcription termination factor.
C.E.Bogden, D.Fass, N.Bergman, M.D.Nichols, J.M.Berger.
 
  ABSTRACT  
 
The E. coli Rho protein disengages newly transcribed RNA from its DNA template, helping terminate certain transcripts. We have determined the X-ray crystal structure of the RNA-binding domain of Rho complexed to an RNA ligand. Filters that screen both ligand size and chemical functionality line the primary nucleic acid-binding site, imparting sequence specificity to a generic single-stranded nucleic acid-binding fold and explaining the preference of Rho for cytosine-rich RNA. The crystal packing reveals two Rho domain protomers bound to a single RNA with a single base spacer, suggesting that the strong RNA-binding sites of Rho may arise from pairing of RNA-binding modules. Dimerization of symmetric subunits on an asymmetric ligand is developed as a model for allosteric control in the action of the intact Rho hexamer.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of Rho13N Bound to RNA(a) Experimental electron density map superposed on a ball-and-stick model of the refined RNA. The map was generated using phases from the 3-fold-averaged poly-serine molecular replacement solution and the observed structure factors. Gold contours are at 1.0 σ and cyan at 2.5 σ.(b) Refined 2F[o] − F[c], model-phased map of the same region. Gold contours are at 1.3 σ.(c) Front view of the secondary structure of Rho13N monomer (green) shown with bound oligoribocytidine (ball-and-stick) in the OB-fold cleft. The cleft is formed on the surface of strands β2 and β3, with the β1–β2 and β4–β5 loops forming parts of the lower and upper walls, respectively. Helices and strands are labeled.(d) View as in (c), rotated 90° about the vertical axis ([a] and [b] generated by BOBSCRIPT and RASTER3D [[40 and 22]]; (c) and (d) generated by RIBBONS [ [12]]).
Figure 2.
Figure 2. Specific Interactions of Rho13N with Its Target RNA(a) The RNA moiety (blue sticks) is shown on a surface representation of the Rho13N C-terminal subdomain. The C[α] path of Rho13N is marked by a gold coil, while residues and atoms that interact directly with the RNA are colored black and labeled.(b) Stereo view of the environment around the first RNA cytosine. A Van der Waals dot surface is drawn about the protein atoms. Hydrogen bonds are indicated by dashed lines.(c) Stereo view of the Watson/Crick-like recognition of the hydrogen bond donor/acceptor groups of the second RNA cytosine by Arg-66 and Asp-78; the cytidine base stacks on the ring of Phe-64. The orientation of these side chains with respect to the cytosine base is tilted slightly, analogous to a “propeller twist.”(d) Stereo view of a DNA C·G base pair (from PDB accession number 126D [[29]]); the cytosine base is stacked on the ring of a second cytosine (figure generated by RIBBONS [ [12]]).
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (1999, 3, 487-493) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20348261 J.Li, J.Liu, L.Zhou, H.Pei, J.Zhou, and H.Xiang (2010).
Two distantly homologous DnaG primases from Thermoanaerobacter tengcongensis exhibit distinct initiation specificities and priming activities.
  J Bacteriol, 192, 2670-2681.  
19915588 A.Schwartz, M.Rabhi, F.Jacquinot, E.Margeat, A.R.Rahmouni, and M.Boudvillain (2009).
A stepwise 2'-hydroxyl activation mechanism for the bacterial transcription termination factor Rho helicase.
  Nat Struct Mol Biol, 16, 1309-1316.  
19608746 E.M.Warren, H.Huang, E.Fanning, W.J.Chazin, and B.F.Eichman (2009).
Physical interactions between Mcm10, DNA, and DNA polymerase alpha.
  J Biol Chem, 284, 24662-24672.
PDB code: 3h15
18250086 A.M.Eldridge, and D.S.Wuttke (2008).
Probing the mechanism of recognition of ssDNA by the Cdc13-DBD.
  Nucleic Acids Res, 36, 1624-1633.  
17910059 J.J.Ellis, and S.Jones (2008).
Evaluating conformational changes in protein structures binding RNA.
  Proteins, 70, 1518-1526.  
18353859 R.P.Bahadur, M.Zacharias, and J.Janin (2008).
Dissecting protein-RNA recognition sites.
  Nucleic Acids Res, 36, 2705-2716.  
17599352 J.Chalissery, S.Banerjee, I.Bandey, and R.Sen (2007).
Transcription termination defective mutants of Rho: role of different functions of Rho in releasing RNA from the elongation complex.
  J Mol Biol, 371, 855-872.  
16829521 B.Pani, S.Banerjee, J.Chalissery, M.Abishek, R.M.Loganathan, R.B.Suganthan, and R.Sen (2006).
Mechanism of inhibition of Rho-dependent transcription termination by bacteriophage P4 protein Psu.
  J Biol Chem, 281, 26491-26500.  
17081977 E.Skordalakes, and J.M.Berger (2006).
Structural insights into RNA-dependent ring closure and ATPase activation by the Rho termination factor.
  Cell, 127, 553-564.
PDB code: 2ht1
  16554712 S.Banerjee, J.Chalissery, I.Bandey, and R.Sen (2006).
Rho-dependent transcription termination: more questions than answers.
  J Microbiol, 44, 11-22.  
16908525 T.K.Hitchens, Y.Zhan, L.V.Richardson, J.P.Richardson, and G.S.Rule (2006).
Sequence-specific interactions in the RNA-binding domain of Escherichia coli transcription termination factor Rho.
  J Biol Chem, 281, 33697-33703.  
16234235 M.Nakanishi, N.Tanaka, Y.Mizutani, M.Mochizuki, Y.Ueno, K.T.Nakamura, and Y.Kitade (2005).
Functional characterization of 2',5'-linked oligoadenylate binding determinant of human RNase L.
  J Biol Chem, 280, 41694-41699.  
16192572 T.Kumarevel, H.Mizuno, and P.K.Kumar (2005).
Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis.
  Nucleic Acids Res, 33, 5494-5502.
PDB codes: 1wpt 1wrn 1wro
15758992 T.Kumarevel, H.Mizuno, and P.K.Kumar (2005).
Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand.
  Nature, 434, 183-191.
PDB codes: 1wmq 1wps 1wpv
15155766 C.Butan, H.Van Der Zandt, and P.A.Tucker (2004).
Structure and assembly of the RNA binding domain of bluetongue virus non-structural protein 2.
  J Biol Chem, 279, 37613-37621.
PDB code: 1uty
14761943 X.Chen, and B.L.Stitt (2004).
The binding of C10 oligomers to Escherichia coli transcription termination factor Rho.
  J Biol Chem, 279, 16301-16310.  
14970217 Y.J.Jeong, D.E.Kim, and S.S.Patel (2004).
Nucleotide binding induces conformational changes in Escherichia coli transcription termination factor Rho.
  J Biol Chem, 279, 18370-18376.  
14583607 Y.W.Chen, M.D.Allen, D.B.Veprintsev, J.Löwe, and M.Bycroft (2004).
The structure of the AXH domain of spinocerebellar ataxin-1.
  J Biol Chem, 279, 3758-3765.
PDB code: 1oa8
12766171 A.Brevet, J.Chen, S.Commans, C.Lazennec, S.Blanquet, and P.Plateau (2003).
Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.
  J Biol Chem, 278, 30927-30935.  
14615801 A.Lingel, B.Simon, E.Izaurralde, and M.Sattler (2003).
Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain.
  Nature, 426, 465-469.
PDB codes: 1upo 1vyn
12657633 C.A.Plambeck, A.H.Kwan, D.J.Adams, B.J.Westman, L.van der Weyden, R.L.Medcalf, B.J.Morris, and J.P.Mackay (2003).
The structure of the zinc finger domain from human splicing factor ZNF265 fold.
  J Biol Chem, 278, 22805-22811.
PDB code: 1n0z
12598368 D.L.Theobald, R.M.Mitton-Fry, and D.S.Wuttke (2003).
Nucleic acid recognition by OB-fold proteins.
  Annu Rev Biophys Biomol Struct, 32, 115-133.  
12912928 D.L.Theobald, and S.C.Schultz (2003).
Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end-binding protein complexes.
  EMBO J, 22, 4314-4324.
PDB codes: 1pa6 1ph1 1ph2 1ph3 1ph4 1ph5 1ph6 1ph7 1ph8 1ph9 1phj
12859904 E.Skordalakes, and J.M.Berger (2003).
Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading.
  Cell, 114, 135-146.
PDB codes: 1pv4 1pvo
12888498 H.Meka, G.Daoust, K.B.Arnvig, F.Werner, P.Brick, and S.Onesti (2003).
Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F.
  Nucleic Acids Res, 31, 4391-4400.  
12887917 J.P.Richardson (2003).
Loading Rho to terminate transcription.
  Cell, 114, 157-159.  
12421303 A.A.Diwa, X.Jiang, M.Schapira, and J.G.Belasco (2002).
Two distinct regions on the surface of an RNA-binding domain are crucial for RNase E function.
  Mol Microbiol, 46, 959-969.  
12112691 A.Teplyakov, G.Obmolova, M.Tordova, N.Thanki, N.Bonander, E.Eisenstein, A.J.Howard, and G.L.Gilliland (2002).
Crystal structure of the YjeE protein from Haemophilus influenzae: a putative Atpase involved in cell wall synthesis.
  Proteins, 48, 220-226.
PDB codes: 1fl9 1htw
12167155 E.Nudler, and M.E.Gottesman (2002).
Transcription termination and anti-termination in E. coli.
  Genes Cells, 7, 755-768.  
11788718 J.C.Shiels, J.B.Tuite, S.J.Nolan, and A.M.Baranger (2002).
Investigation of a conserved stacking interaction in target site recognition by the U1A protein.
  Nucleic Acids Res, 30, 550-558.  
11953318 Y.Yang, N.Declerck, X.Manival, S.Aymerich, and M.Kochoyan (2002).
Solution structure of the LicT-RNA antitermination complex: CAT clamping RAT.
  EMBO J, 21, 1987-1997.
PDB code: 1l1c
11329297 B.L.Stitt (2001).
Escherichia coli transcription termination factor Rho binds and hydrolyzes ATP using a single class of three sites.
  Biochemistry, 40, 2276-2281.  
11483577 L.Aravind, and E.V.Koonin (2001).
Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system.
  Genome Res, 11, 1365-1374.  
11713307 S.Jäger, O.Fuhrmann, C.Heck, M.Hebermehl, E.Schiltz, R.Rauhut, and G.Klug (2001).
An mRNA degrading complex in Rhodobacter capsulatus.
  Nucleic Acids Res, 29, 4581-4588.  
10679466 A.A.Antson (2000).
Single-stranded-RNA binding proteins.
  Curr Opin Struct Biol, 10, 87-94.  
10851193 A.D.Frankel (2000).
Fitting peptides into the RNA world.
  Curr Opin Struct Biol, 10, 332-340.  
10676814 H.A.Lewis, K.Musunuru, K.B.Jensen, C.Edo, H.Chen, R.B.Darnell, and S.K.Burley (2000).
Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome.
  Cell, 100, 323-332.
PDB code: 1ec6
10745010 H.Pan, and D.B.Wigley (2000).
Structure of the zinc-binding domain of Bacillus stearothermophilus DNA primase.
  Structure, 8, 231-239.
PDB code: 1d0q
10679457 P.Soultanas, and D.B.Wigley (2000).
DNA helicases: 'inching forward'.
  Curr Opin Struct Biol, 10, 124-128.  
10966472 S.S.Patel, and K.M.Picha (2000).
Structure and function of hexameric helicases.
  Annu Rev Biochem, 69, 651-697.  
10404598 D.Fass, C.E.Bogden, and J.M.Berger (1999).
Crystal structure of the N-terminal domain of the DnaB hexameric helicase.
  Structure, 7, 691-698.
PDB code: 1b79
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer