PDBsum entry 1a6d

Go to PDB code: 
protein Protein-protein interface(s) links
Chaperonin PDB id
Protein chains
503 a.a. *
502 a.a. *
* Residue conservation analysis
PDB id:
Name: Chaperonin
Title: Thermosome from t. Acidophilum
Structure: Thermosome (alpha subunit). Chain: a. Thermosome (beta subunit). Chain: b
Source: Thermoplasma acidophilum. Organism_taxid: 2303. Collection: atcc 25905. Cellular_location: cytoplasm. Atcc: atcc 25905. Cellular_location: cytoplasm
Biol. unit: 60mer (from PDB file)
2.60Å     R-factor:   0.215     R-free:   0.298
Authors: L.Ditzel,J.Loewe,D.Stock,K.-O.Stetter,H.Huber,R.Huber,S.Stei
Key ref:
L.Ditzel et al. (1998). Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell, 93, 125-138. PubMed id: 9546398 DOI: 10.1016/S0092-8674(00)81152-6
24-Feb-98     Release date:   23-Mar-99    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P48424  (THSA_THEAC) -  Thermosome subunit alpha
545 a.a.
503 a.a.*
Protein chain
Pfam   ArchSchema ?
P48425  (THSB_THEAC) -  Thermosome subunit beta
543 a.a.
502 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     cellular protein metabolic process   2 terms 
  Biochemical function     nucleotide binding     3 terms  


DOI no: 10.1016/S0092-8674(00)81152-6 Cell 93:125-138 (1998)
PubMed id: 9546398  
Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT.
L.Ditzel, J.Löwe, D.Stock, K.O.Stetter, H.Huber, R.Huber, S.Steinbacher.
We have determined to 2.6 A resolution the crystal structure of the thermosome, the archaeal group II chaperonin from T. acidophilum. The hexadecameric homolog of the eukaryotic chaperonin CCT/TRiC shows an (alphabeta)4(alphabeta)4 subunit assembly. Domain folds are homologous to GroEL but form a novel type of inter-ring contact. The domain arrangement resembles the GroEL-GroES cis-ring. Parts of the apical domains form a lid creating a closed conformation. The lid substitutes for a GroES-like cochaperonin that is absent in the CCT/TRiC system. The central cavity has a polar surface implicated in protein folding. Binding of the transition state analog Mg-ADP-AIF3 suggests that the closed conformation corresponds to the ATP form.
  Selected figure(s)  
Figure 1.
Figure 1. General Architecture of Chaperonins(A) Side view of the hexadecameric thermosome structure.(B) Side view of the asymmetric GroEL-GroES-(ADP)[7] complex ([77]).Domains are colored in red (equatorial), green (intermediate), and yellow (apical). Within each complex domains of aligned subunits are highlighted in blue (equatorial), light blue (intermediate), and violet (apical). Bound ADP is drawn in yellow.(C) Top view of the thermosome α (red/violet) and β (yellow) apical domains. β strands S12 and S13 and the N-terminal half of helix H10 (lid segments) form the lid domain that seals off the central chamber. Helices H10 and H11 and loop L topologically correspond to helices H and I and the loop connecting β strands 6 and 7 in GroEL that are involved in substrate and/or GroES binding.Figure 1A Figure 1B Figure 3 Figure 5, and Figure 6A were generated using BOBSCRIPT ( [18]) and RASTER3D ( [3 and 54]). Figure 1C was prepared with MOLSCRIPT ( [41]) as modified by D. Peisach and E. Peisach and with POVRAY.
Figure 3.
Figure 3. Subunit Structure and Contacts(A) Schematic drawing of the secondary structural elements of a thermosome α subunit. Helices and strands are labeled and colored as in Figure 2. With respect to Figure 1A the view corresponds to a 90° rotation around the pseudo 8-fold axis.(B) Intra-ring contacts between two thermosome subunits as viewed from the inside of the particle. The α and β monomers are color coded as in Figure 1A, and the bound nucleotides are shown in yellow.(C) Inter-ring contacts between two thermosome α subunits related by 2-fold symmetry.(D) GroEL inter-ring contacts. One subunit in the upper ring is related to two subunits in the lower ring by 2-fold axes at the right and left edge of the upper subunit.
  The above figures are reprinted by permission from Cell Press: Cell (1998, 93, 125-138) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21151115 I.G.Muñoz, H.Yébenes, M.Zhou, P.Mesa, M.Serna, A.Y.Park, E.Bragado-Nilsson, A.Beloso, Cárcer, M.Malumbres, C.V.Robinson, J.M.Valpuesta, and G.Montoya (2011).
Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin.
  Nat Struct Mol Biol, 18, 14-19.
PDB code: 2xsm
20981710 K.M.Knee, D.R.Goulet, J.Zhang, B.Chen, W.Chiu, and J.A.King (2011).
The group II chaperonin Mm-Cpn binds and refolds human γD crystallin.
  Protein Sci, 20, 30-41.  
21241893 N.R.Douglas, S.Reissmann, J.Zhang, B.Chen, J.Jakana, R.Kumar, W.Chiu, and J.Frydman (2011).
Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber.
  Cell, 144, 240-252.
PDB codes: 3izh 3izi 3izj 3izk 3izl 3izm 3izn
21265753 P.Lund (2011).
Insights into chaperonin function from studies on archaeal thermosomes.
  Biochem Soc Trans, 39, 94-98.  
21382496 Z.Yu, and A.S.Frangakis (2011).
Classification of electron sub-tomograms with neural networks and its application to template-matching.
  J Struct Biol, 174, 494-504.  
20421484 B.J.Baker, L.R.Comolli, G.J.Dick, L.J.Hauser, D.Hyatt, B.D.Dill, M.L.Land, N.C.Verberkmoes, R.L.Hettich, and J.F.Banfield (2010).
Enigmatic, ultrasmall, uncultivated Archaea.
  Proc Natl Acad Sci U S A, 107, 8806-8811.  
20090755 J.Zhang, M.L.Baker, G.F.Schröder, N.R.Douglas, S.Reissmann, J.Jakana, M.Dougherty, C.J.Fu, M.Levitt, S.J.Ludtke, J.Frydman, and W.Chiu (2010).
Mechanism of folding chamber closure in a group II chaperonin.
  Nature, 463, 379-383.
PDB codes: 3iye 3iyf 3los
20193073 K.Mukherjee, E.Conway de Macario, A.J.Macario, and L.Brocchieri (2010).
Chaperonin genes on the rise: new divergent classes and intense duplication in human and other vertebrate genomes.
  BMC Evol Biol, 10, 64.  
19950366 M.Jayasinghe, C.Tewmey, and G.Stan (2010).
Versatile substrate protein recognition mechanism of the eukaryotic chaperonin CCT.
  Proteins, 78, 1254-1265.  
21057109 S.M.Techtmann, and F.T.Robb (2010).
Archaeal-like chaperonins in bacteria.
  Proc Natl Acad Sci U S A, 107, 20269-20274.  
20080638 S.Seo, L.M.Baye, N.P.Schulz, J.S.Beck, Q.Zhang, D.C.Slusarski, and V.C.Sheffield (2010).
BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly.
  Proc Natl Acad Sci U S A, 107, 1488-1493.  
20173200 T.Kanzaki, S.Ushioku, A.Nakagawa, T.Oka, K.Takahashi, T.Nakamura, K.Kuwajima, A.Yamagishi, and M.Yohda (2010).
Adaptation of a hyperthermophilic group II chaperonin to relatively moderate temperatures.
  Protein Eng Des Sel, 23, 393-402.  
20194787 Y.Cong, M.L.Baker, J.Jakana, D.Woolford, E.J.Miller, S.Reissmann, R.N.Kumar, A.M.Redding-Johanson, T.S.Batth, A.Mukhopadhyay, S.J.Ludtke, J.Frydman, and W.Chiu (2010).
4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement.
  Proc Natl Acad Sci U S A, 107, 4967-4972.
PDB codes: 3iyg 3ktt
19843217 A.M.Hirtreiter, G.Calloni, F.Forner, B.Scheibe, M.Puype, J.Vandekerckhove, M.Mann, F.U.Hartl, and M.Hayer-Hartl (2009).
Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei.
  Mol Microbiol, 74, 1152-1168.  
19031045 C.Weiss, A.Bonshtien, O.Farchi-Pisanty, A.Vitlin, and A.Azem (2009).
Cpn20: Siamese twins of the chaperonin world.
  Plant Mol Biol, 69, 227-238.  
19333686 K.Beblo, E.Rabbow, R.Rachel, H.Huber, and P.Rettberg (2009).
Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation.
  Extremophiles, 13, 521-531.  
19622546 T.A.Whitehead, L.M.Bergeron, and D.S.Clark (2009).
Tying up the loose ends: circular permutation decreases the proteolytic susceptibility of recombinant proteins.
  Protein Eng Des Sel, 22, 607-613.  
19536198 Y.Gong, Y.Kakihara, N.Krogan, J.Greenblatt, A.Emili, Z.Zhang, and W.A.Houry (2009).
An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell.
  Mol Syst Biol, 5, 275.  
19011634 A.Y.Yam, Y.Xia, H.T.Lin, A.Burlingame, M.Gerstein, and J.Frydman (2008).
Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies.
  Nat Struct Mol Biol, 15, 1255-1262.  
18536725 C.R.Booth, A.S.Meyer, Y.Cong, M.Topf, A.Sali, S.J.Ludtke, W.Chiu, and J.Frydman (2008).
Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT.
  Nat Struct Mol Biol, 15, 746-753.  
18400175 D.K.Clare, S.Stagg, J.Quispe, G.W.Farr, A.L.Horwich, and H.R.Saibil (2008).
Multiple states of a nucleotide-bound group 2 chaperonin.
  Structure, 16, 528-534.  
17876827 E.Kurimoto, Y.Nishi, Y.Yamaguchi, T.Zako, R.Iizuka, N.Ide, M.Yohda, and K.Kato (2008).
Dynamics of group II chaperonin and prefoldin probed by 13C NMR spectroscopy.
  Proteins, 70, 1257-1263.  
18708324 G.M.Altschuler, and K.R.Willison (2008).
Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin.
  J R Soc Interface, 5, 1391-1408.  
18647240 N.D.Thomsen, and J.M.Berger (2008).
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
  Mol Microbiol, 69, 1071-1090.  
18584152 T.Burghardt, M.Saller, S.Gürster, D.Müller, C.Meyer, U.Jahn, E.Hochmuth, R.Deutzmann, F.Siedler, P.Babinger, R.Wirth, H.Huber, and R.Rachel (2008).
Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins.
  Arch Microbiol, 190, 379-394.  
18854314 T.Kanzaki, R.Iizuka, K.Takahashi, K.Maki, R.Masuda, M.Sahlan, H.Yébenes, J.M.Valpuesta, T.Oka, M.Furutani, N.Ishii, K.Kuwajima, and M.Yohda (2008).
Sequential action of ATP-dependent subunit conformational change and interaction between helical protrusions in the closure of the built-in lid of group II chaperonins.
  J Biol Chem, 283, 34773-34784.  
  19823693 Y.Jiang, Q.Wang, A.E.Cohen, N.Douglas, J.Frydman, and W.E.Moerner (2008).
Hardware-based anti-Brownian electrokinetic trap (ABEL trap) for single molecules: Control loop simulations and application to ATP binding stoichiometry in multi-subunit enzymes.
  Proc Soc Photo Opt Instrum Eng, 7038, 1.  
17489689 A.L.Horwich, W.A.Fenton, E.Chapman, and G.W.Farr (2007).
Two families of chaperonin: physiology and mechanism.
  Annu Rev Cell Dev Biol, 23, 115-145.  
17973910 A.Large, C.Stamme, C.Lange, Z.Duan, T.Allers, J.Soppa, and P.A.Lund (2007).
Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene.
  Mol Microbiol, 66, 1092-1106.  
17160889 C.Stoetzel, J.Muller, V.Laurier, E.E.Davis, N.A.Zaghloul, S.Vicaire, C.Jacquelin, F.Plewniak, C.C.Leitch, P.Sarda, C.Hamel, Ravel, R.A.Lewis, E.Friederich, C.Thibault, J.M.Danse, A.Verloes, D.Bonneau, N.Katsanis, O.Poch, J.L.Mandel, and H.Dollfus (2007).
Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome.
  Am J Hum Genet, 80, 1.  
17106446 D.R.White, A.Ganesh, D.Nishimura, E.Rattenberry, S.Ahmed, U.M.Smith, S.Pasha, S.Raeburn, R.C.Trembath, A.Rajab, F.Macdonald, E.Banin, E.M.Stone, C.A.Johnson, V.C.Sheffield, and E.R.Maher (2007).
Autozygosity mapping of Bardet-Biedl syndrome to 12q21.2 and confirmation of FLJ23560 as BBS10.
  Eur J Hum Genet, 15, 173-178.  
17440915 H.Y.Chen, Z.M.Chu, Y.H.Ma, Y.Zhang, and S.L.Yang (2007).
Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus.
  J Basic Microbiol, 47, 132-137.  
17304242 J.Martín-Benito, J.Grantham, J.Boskovic, K.I.Brackley, J.L.Carrascosa, K.R.Willison, and J.M.Valpuesta (2007).
The inter-ring arrangement of the cytosolic chaperonin CCT.
  EMBO Rep, 8, 252-257.  
17533155 M.Takaine, and I.Mabuchi (2007).
Properties of actin from the fission yeast Schizosaccharomyces pombe and interaction with fission yeast profilin.
  J Biol Chem, 282, 21683-21694.  
18160044 P.Wendler, J.Shorter, C.Plisson, A.G.Cashikar, S.Lindquist, and H.R.Saibil (2007).
Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104.
  Cell, 131, 1366-1377.  
17460696 S.Reissmann, C.Parnot, C.R.Booth, W.Chiu, and J.Frydman (2007).
Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins.
  Nat Struct Mol Biol, 14, 432-440.  
17072688 T.Yoshida, R.Iizuka, K.Itami, T.Yasunaga, H.Sakuraba, T.Ohshima, M.Yohda, and T.Maruyama (2007).
Comparative analysis of the protein folding activities of two chaperonin subunits of Thermococcus strain KS-1: the effects of beryllium fluoride.
  Extremophiles, 11, 225-235.  
16754671 B.W.Ying, H.Taguchi, and T.Ueda (2006).
Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding.
  J Biol Chem, 281, 21813-21819.  
17018290 C.Spiess, E.J.Miller, A.J.McClellan, and J.Frydman (2006).
Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins.
  Mol Cell, 24, 25-37.  
16582908 C.Stoetzel, V.Laurier, E.E.Davis, J.Muller, S.Rix, J.L.Badano, C.C.Leitch, N.Salem, E.Chouery, S.Corbani, N.Jalk, S.Vicaire, P.Sarda, C.Hamel, D.Lacombe, M.Holder, S.Odent, S.Holder, A.S.Brooks, N.H.Elcioglu, E.D.Silva, E.Da Silva, B.Rossillion, S.Sigaudy, Ravel, R.A.Lewis, B.Leheup, A.Verloes, P.Amati-Bonneau, A.Mégarbané, O.Poch, D.Bonneau, P.L.Beales, J.L.Mandel, N.Katsanis, and H.Dollfus (2006).
BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus.
  Nat Genet, 38, 521-524.  
16672233 E.J.Miller, A.S.Meyer, and J.Frydman (2006).
Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC.
  Protein Sci, 15, 1522-1526.  
16713559 E.Lorentzen, and E.Conti (2006).
The exosome and the proteasome: nano-compartments for degradation.
  Cell, 125, 651-654.  
16968228 G.Kapatai, A.Large, J.L.Benesch, C.V.Robinson, J.L.Carrascosa, J.M.Valpuesta, P.Gowrinathan, and P.A.Lund (2006).
All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable.
  Mol Microbiol, 61, 1583-1597.  
16717193 S.Kubota, H.Kubota, and K.Nagata (2006).
Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands.
  Proc Natl Acad Sci U S A, 103, 8360-8365.  
16770691 S.Pucciarelli, S.K.Parker, H.W.Detrich, and R.Melki (2006).
Characterization of the cytoplasmic chaperonin containing TCP-1 from the Antarctic fish Notothenia coriiceps.
  Extremophiles, 10, 537-549.  
16685467 T.Yoshida, T.Kanzaki, R.Iizuka, T.Komada, T.Zako, R.Suzuki, T.Maruyama, and M.Yohda (2006).
Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1.
  Extremophiles, 10, 451-459.  
15696173 D.Rivenzon-Segal, S.G.Wolf, L.Shimon, K.R.Willison, and A.Horovitz (2005).
Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis.
  Nat Struct Mol Biol, 12, 233-237.  
15704212 M.A.Kabir, J.Kaminska, G.B.Segel, G.Bethlendy, P.Lin, F.Della Seta, C.Blegen, K.M.Swiderek, T.Zoładek, K.T.Arndt, and F.Sherman (2005).
Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae.
  Yeast, 22, 219-239.  
15659368 M.Furutani, J.Hata, Y.Shomura, K.Itami, T.Yoshida, Y.Izumoto, A.Togi, A.Ideno, T.Yasunaga, K.Miki, and T.Maruyama (2005).
An engineered chaperonin caging a guest protein: Structural insights and potential as a protein expression tool.
  Protein Sci, 14, 341-350.  
15538645 M.Okochi, H.Matsuzaki, T.Nomura, N.Ishii, and M.Yohda (2005).
Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3.
  Extremophiles, 9, 127-134.  
16183634 R.Iizuka, T.Yoshida, N.Ishii, T.Zako, K.Takahashi, K.Maki, T.Inobe, K.Kuwajima, and M.Yohda (2005).
Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine".
  J Biol Chem, 280, 40375-40383.  
15902656 S.Li, L.Tiab, X.Jiao, F.L.Munier, L.Zografos, B.E.Frueh, Y.Sergeev, J.Smith, B.Rubin, M.A.Meallet, R.K.Forster, J.F.Hejtmancik, and D.F.Schorderet (2005).
Mutations in PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy.
  Am J Hum Genet, 77, 54-63.  
15475965 B.T.Sewell, R.B.Best, S.Chen, A.M.Roseman, G.W.Farr, A.L.Horwich, and H.R.Saibil (2004).
A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation.
  Nat Struct Mol Biol, 11, 1128-1133.  
15519848 C.Spiess, A.S.Meyer, S.Reissmann, and J.Frydman (2004).
Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets.
  Trends Cell Biol, 14, 598-604.  
15459659 J.C.Young, V.R.Agashe, K.Siegers, and F.U.Hartl (2004).
Pathways of chaperone-mediated protein folding in the cytosol.
  Nat Rev Mol Cell Biol, 5, 781-791.  
15036203 J.M.Barral, S.A.Broadley, G.Schaffar, and F.U.Hartl (2004).
Roles of molecular chaperones in protein misfolding diseases.
  Semin Cell Dev Biol, 15, 17-29.  
15583139 J.Martín-Benito, S.Bertrand, T.Hu, P.J.Ludtke, J.N.McLaughlin, B.M.Willardson, J.L.Carrascosa, and J.M.Valpuesta (2004).
Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein.
  Proc Natl Acad Sci U S A, 101, 17410-17415.  
15145959 M.Okochi, T.Nomura, T.Zako, T.Arakawa, R.Iizuka, H.Ueda, T.Funatsu, M.Leroux, and M.Yohda (2004).
Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin: contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin.
  J Biol Chem, 279, 31788-31795.  
15044803 P.Aloy, B.Böttcher, H.Ceulemans, C.Leutwein, C.Mellwig, S.Fischer, A.C.Gavin, P.Bork, G.Superti-Furga, L.Serrano, and R.B.Russell (2004).
Structure-based assembly of protein complexes in yeast.
  Science, 303, 2026-2029.  
15031730 P.Laksanalamai, T.A.Whitehead, and F.T.Robb (2004).
Minimal protein-folding systems in hyperthermophilic archaea.
  Nat Rev Microbiol, 2, 315-324.  
15099733 R.Aroul-Selvam, T.Hubbard, and R.Sasidharan (2004).
Domain insertions in protein structures.
  J Mol Biol, 338, 633-641.  
15254043 R.F.Collins, S.A.Frye, A.Kitmitto, R.C.Ford, T.Tønjum, and J.P.Derrick (2004).
Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 A resolution.
  J Biol Chem, 279, 39750-39756.  
14978026 R.Iizuka, S.So, T.Inobe, T.Yoshida, T.Zako, K.Kuwajima, and M.Yohda (2004).
Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin.
  J Biol Chem, 279, 18834-18839.  
14517228 C.Chaudhry, G.W.Farr, M.J.Todd, H.S.Rye, A.T.Brunger, P.D.Adams, A.L.Horwich, and P.B.Sigler (2003).
Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
  EMBO J, 22, 4877-4887.
PDB codes: 1pcq 1pf9
12796498 D.Klunker, B.Haas, A.Hirtreiter, L.Figueiredo, D.J.Naylor, G.Pfeifer, V.Müller, U.Deppenmeier, G.Gottschalk, F.U.Hartl, and M.Hayer-Hartl (2003).
Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei.
  J Biol Chem, 278, 33256-33267.  
12381724 G.Vierke, A.Engelmann, C.Hebbeln, and M.Thomm (2003).
A novel archaeal transcriptional regulator of heat shock response.
  J Biol Chem, 278, 18-26.  
12657051 H.K.Kagawa, T.Yaoi, L.Brocchieri, R.A.McMillan, T.Alton, and J.D.Trent (2003).
The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon.
  Mol Microbiol, 48, 143-156.  
12837779 J.M.Johnston, V.L.Arcus, C.J.Morton, M.W.Parker, and E.N.Baker (2003).
Crystal structure of a putative methyltransferase from Mycobacterium tuberculosis: misannotation of a genome clarified by protein structural analysis.
  J Bacteriol, 185, 4057-4065.
PDB code: 1nxj
12920124 R.Iizuka, T.Yoshida, Y.Shomura, K.Miki, T.Maruyama, M.Odaka, and M.Yohda (2003).
ATP binding is critical for the conformational change from an open to closed state in archaeal group II chaperonin.
  J Biol Chem, 278, 44959-44965.  
12009903 A.Hierro, J.M.Arizmendi, S.Bañuelos, A.Prado, and A.Muga (2002).
Electrostatic interactions at the C-terminal domain of nucleoplasmin modulate its chromatin decondensation activity.
  Biochemistry, 41, 6408-6413.  
12468232 H.R.Saibil, and N.A.Ranson (2002).
The chaperonin folding machine.
  Trends Biochem Sci, 27, 627-632.  
11904409 J.A.Márquez, S.Hasenbein, B.Koch, S.Fieulaine, S.Nessler, R.B.Russell, W.Hengstenberg, and K.Scheffzek (2002).
Structure of the full-length HPr kinase/phosphatase from Staphylococcus xylosus at 1.95 A resolution: Mimicking the product/substrate of the phospho transfer reactions.
  Proc Natl Acad Sci U S A, 99, 3458-3463.
PDB code: 1ko7
11939802 J.Martin (2002).
Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding.
  Biochemistry, 41, 5050-5055.  
11994156 T.Yoshida, A.Ideno, R.Suzuki, M.Yohda, and T.Maruyama (2002).
Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1.
  Mol Microbiol, 44, 761-769.  
11959502 X.Zhang, F.Beuron, and P.S.Freemont (2002).
Machinery of protein folding and unfolding.
  Curr Opin Struct Biol, 12, 231-238.  
12351828 Y.Shomura, T.Yoshida, T.Maruyama, M.Yohda, and K.Miki (2002).
Crystallization and preliminary X-ray characterization of archaeal group II chaperonin alpha-subunit from Thermococcus strain KS-1.
  Acta Crystallogr D Biol Crystallogr, 58, 1830-1832.  
11525836 A.M.Slavotinek, and L.G.Biesecker (2001).
Unfolding the role of chaperones and chaperonins in human disease.
  Trends Genet, 17, 528-535.  
11266630 G.Kafri, K.R.Willison, and A.Horovitz (2001).
Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1.
  Protein Sci, 10, 445-449.  
11395418 J.Frydman (2001).
Folding of newly translated proteins in vivo: the role of molecular chaperones.
  Annu Rev Biochem, 70, 603-647.  
11483510 O.Llorca, J.Martín-Benito, J.Grantham, M.Ritco-Vonsovici, K.R.Willison, J.L.Carrascosa, and J.M.Valpuesta (2001).
The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin.
  EMBO J, 20, 4065-4075.  
11251854 T.Yoshida, A.Ideno, S.Hiyamuta, M.Yohda, and T.Maruyama (2001).
Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition.
  Mol Microbiol, 39, 1406-1413.  
10745098 C.Klanner, W.Neupert, and T.Langer (2000).
The chaperonin-related protein Tcm62p ensures mitochondrial gene expression under heat stress.
  FEBS Lett, 470, 365-369.  
10753750 I.Gutsche, J.Holzinger, M.Rössle, H.Heumann, W.Baumeister, and R.P.May (2000).
Conformational rearrangements of an archaeal chaperonin upon ATPase cycling.
  Curr Biol, 10, 405-408.  
10671484 J.Grantham, O.Llorca, J.M.Valpuesta, and K.R.Willison (2000).
Partial occlusion of both cavities of the eukaryotic chaperonin with antibody has no effect upon the rates of beta-actin or alpha-tubulin folding.
  J Biol Chem, 275, 4587-4591.  
10747787 J.K.Dobrzynski, M.L.Sternlicht, I.Peng, G.W.Farr, and H.Sternlicht (2000).
Evidence that beta-tubulin induces a conformation change in the cytosolic chaperonin which stabilizes binding: implications for the mechanism of action.
  Biochemistry, 39, 3988-4003.  
10873854 K.Braig, R.I.Menz, M.G.Montgomery, A.G.Leslie, and J.E.Walker (2000).
Structure of bovine mitochondrial F(1)-ATPase inhibited by Mg(2+) ADP and aluminium fluoride.
  Structure, 8, 567-573.
PDB codes: 1e1q 1e1r
10753735 M.R.Leroux, and F.U.Hartl (2000).
Protein folding: versatility of the cytosolic chaperonin TRiC/CCT.
  Curr Biol, 10, R260-R264.  
11080144 O.Llorca, J.Martín-Benito, M.Ritco-Vonsovici, J.Grantham, G.M.Hynes, K.R.Willison, J.L.Carrascosa, and J.M.Valpuesta (2000).
Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations.
  EMBO J, 19, 5971-5979.  
11106732 R.Siegert, M.R.Leroux, C.Scheufler, F.U.Hartl, and I.Moarefi (2000).
Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins.
  Cell, 103, 621-632.
PDB code: 1fxk
10736260 V.R.Agashe, and F.U.Hartl (2000).
Roles of molecular chaperones in cytoplasmic protein folding.
  Semin Cell Dev Biol, 11, 15-25.  
  10585970 A.J.Macario, M.Lange, B.K.Ahring, and E.C.De Macario (1999).
Stress genes and proteins in the archaea.
  Microbiol Mol Biol Rev, 63, 923.  
10500119 A.L.Horwich, E.U.Weber-Ban, and D.Finley (1999).
Chaperone rings in protein folding and degradation.
  Proc Natl Acad Sci U S A, 96, 11033-11040.  
10383429 A.Roobol, J.Grantham, H.C.Whitaker, and M.J.Carden (1999).
Disassembly of the cytosolic chaperonin in mammalian cell extracts at intracellular levels of K+ and ATP.
  J Biol Chem, 274, 19220-19227.  
10508614 J.M.Archibald, J.M.Logsdon, and W.F.Doolittle (1999).
Recurrent paralogy in the evolution of archaeal chaperonins.
  Curr Biol, 9, 1053-1056.  
9878052 K.Siegers, T.Waldmann, M.R.Leroux, K.Grein, A.Shevchenko, E.Schiebel, and F.U.Hartl (1999).
Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system.
  EMBO J, 18, 75-84.  
10581246 M.R.Leroux, M.Fändrich, D.Klunker, K.Siegers, A.N.Lupas, J.R.Brown, E.Schiebel, C.M.Dobson, and F.U.Hartl (1999).
MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.
  EMBO J, 18, 6730-6743.  
10047582 R.J.Ellis, and F.U.Hartl (1999).
Principles of protein folding in the cellular environment.
  Curr Opin Struct Biol, 9, 102-110.  
10339435 R.J.Ellis (1999).
  Curr Biol, 9, R352.  
10064137 T.Minuth, M.Henn, K.Rutkat, S.Andrä, G.Frey, R.Rachel, K.O.Stetter, and R.Jaenicke (1999).
The recombinant thermosome from the hyperthermophilic archaeon Methanopyrus kandleri: in vitro analysis of its chaperone activity.
  Biol Chem, 380, 55-62.  
9878053 V.Thulasiraman, C.F.Yang, and J.Frydman (1999).
In vivo newly translated polypeptides are sequestered in a protected folding environment.
  EMBO J, 18, 85-95.  
9586988 A.L.Horwich, and H.R.Saibil (1998).
The thermosome: chaperonin with a built-in lid.
  Nat Struct Biol, 5, 333-336.  
9724628 D.M.Rubin, M.H.Glickman, C.N.Larsen, S.Dhruvakumar, and D.Finley (1998).
Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome.
  EMBO J, 17, 4909-4919.  
9808043 F.Weber, F.Keppel, C.Georgopoulos, M.K.Hayer-Hartl, and F.U.Hartl (1998).
The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
  Nat Struct Biol, 5, 977-985.  
9770457 J.D.Wang, M.D.Michelitsch, and J.S.Weissman (1998).
GroEL-GroES-mediated protein folding requires an intact central cavity.
  Proc Natl Acad Sci U S A, 95, 12163-12168.  
9783741 M.Nitsch, J.Walz, D.Typke, M.Klumpp, L.O.Essen, and W.Baumeister (1998).
Group II chaperonin in an open conformation examined by electron tomography.
  Nat Struct Biol, 5, 855-857.  
9914256 R.Jaenicke, and G.Böhm (1998).
The stability of proteins in extreme environments.
  Curr Opin Struct Biol, 8, 738-748.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.