PDBsum entry 1zeq

Go to PDB code: 
protein links
Metal binding protein PDB id
Protein chain
84 a.a. *
Waters ×80
* Residue conservation analysis
PDB id:
Name: Metal binding protein
Title: 1.5 a structure of apo-cusf residues 6-88 from escherichia coli
Structure: Cation efflux system protein cusf. Chain: x. Fragment: residues 6-88. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: cusf, cusx. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
1.50Å     R-factor:   0.186     R-free:   0.207
Authors: I.R.Loftin,S.Franke,S.A.Roberts,A.Weichsel,A.Heroux, W.R.Montfort,C.Rensing,M.M.Mcevoy
Key ref:
I.R.Loftin et al. (2005). A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry, 44, 10533-10540. PubMed id: 16060662 DOI: 10.1021/bi050827b
19-Apr-05     Release date:   02-Aug-05    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P77214  (CUSF_ECOLI) -  Cation efflux system protein CusF
110 a.a.
84 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     periplasmic space   2 terms 
  Biological process     response to zinc ion   5 terms 
  Biochemical function     metallochaperone activity     5 terms  


DOI no: 10.1021/bi050827b Biochemistry 44:10533-10540 (2005)
PubMed id: 16060662  
A novel copper-binding fold for the periplasmic copper resistance protein CusF.
I.R.Loftin, S.Franke, S.A.Roberts, A.Weichsel, A.Héroux, W.R.Montfort, C.Rensing, M.M.McEvoy.
We have determined the crystal structure of apo-CusF, a periplasmic protein involved in copper and silver resistance in Escherichia coli. The protein forms a five-stranded beta-barrel, classified as an OB-fold, which is a unique topology for a copper-binding protein. NMR chemical shift mapping experiments suggest that Cu(I) is bound by conserved residues H36, M47, and M49 located in beta-strands 2 and 3. These residues are clustered at one end of the beta-barrel, and their side chains are oriented toward the interior of the barrel. Cu(I) can be modeled into the apo-CusF structure with only minimal structural changes using H36, M47, and M49 as ligands. The unique structure and metal binding site of CusF are distinct from those of previously characterized copper-binding proteins.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21221942 B.Y.Yun, Y.Xu, S.Piao, N.Kim, J.H.Yoon, H.S.Cho, K.Lee, and N.C.Ha (2010).
Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites.
  J Microbiol, 48, 829-835.  
20442961 E.H.Kim, C.Rensing, and M.M.McEvoy (2010).
Chaperone-mediated copper handling in the periplasm.
  Nat Prod Rep, 27, 711-719.  
20205585 N.J.Robinson, and D.R.Winge (2010).
Copper metallochaperones.
  Annu Rev Biochem, 79, 537-562.  
19824702 A.K.Boal, and A.C.Rosenzweig (2009).
Structural biology of copper trafficking.
  Chem Rev, 109, 4760-4779.  
19666734 C.A.Navarro, L.H.Orellana, C.Mauriaca, and C.A.Jerez (2009).
Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.
  Appl Environ Microbiol, 75, 6102-6109.  
19381697 I.R.Loftin, N.J.Blackburn, and M.M.McEvoy (2009).
Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF.
  J Biol Inorg Chem, 14, 905-912.
PDB code: 3e6z
18847219 I.Bagai, C.Rensing, N.J.Blackburn, and M.M.McEvoy (2008).
Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone.
  Biochemistry, 47, 11408-11414.  
18539744 K.Helbig, C.Bleuel, G.J.Krauss, and D.H.Nies (2008).
Glutathione and transition-metal homeostasis in Escherichia coli.
  J Bacteriol, 190, 5431-5438.  
18202673 K.J.Franz (2008).
Copper shares a piece of the pi.
  Nat Chem Biol, 4, 85-86.  
18551497 O.Kühl, and W.Hinrichs (2008).
Tryptophan pi-electron system capping a copper(I) binding site--a new organometallic bonding mode in proteins.
  Chembiochem, 9, 1697-1699.  
18687870 Y.Kuwahara, A.Ohno, T.Morii, H.Yokoyama, I.Matsui, H.Tochio, M.Shirakawa, and H.Hiroaki (2008).
The solution structure of the C-terminal domain of NfeD reveals a novel membrane-anchored OB-fold.
  Protein Sci, 17, 1915-1924.
PDB code: 2exd
18157124 Y.Xue, A.V.Davis, G.Balakrishnan, J.P.Stasser, B.M.Staehlin, P.Focia, T.G.Spiro, J.E.Penner-Hahn, and T.V.O'Halloran (2008).
Cu(I) recognition via cation-pi and methionine interactions in CusF.
  Nat Chem Biol, 4, 107-109.
PDB codes: 2vb2 2vb3
17637984 D.P.Giedroc, and A.I.Arunkumar (2007).
Metal sensor proteins: nature's metalloregulated allosteric switches.
  Dalton Trans, (), 3107-3120.  
17893365 I.R.Loftin, S.Franke, N.J.Blackburn, and M.M.McEvoy (2007).
Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy.
  Protein Sci, 16, 2287-2293.
PDB code: 2qcp
17189367 L.Macomber, C.Rensing, and J.A.Imlay (2007).
Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli.
  J Bacteriol, 189, 1616-1626.  
16761169 S.Silver, l.e. .T.Phung, and G.Silver (2006).
Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds.
  J Ind Microbiol Biotechnol, 33, 627-634.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.