 |
PDBsum entry 1pls
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Phosphorylation
|
PDB id
|
|
|
|
1pls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nature
369:672-675
(1994)
|
|
PubMed id:
|
|
|
|
|
| |
|
Solution structure of a pleckstrin-homology domain.
|
|
H.S.Yoon,
P.J.Hajduk,
A.M.Petros,
E.T.Olejniczak,
R.P.Meadows,
S.W.Fesik.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Pleckstrin, the major protein kinase C substrate of platelets, contains domains
of about 100 amino acids at the amino and carboxy termini that have been found
in a number of proteins, including serine/threonine kinases, GTPase-activating
proteins, phospholipases and cytoskeletal proteins. These conserved sequences,
termed pleckstrin-homology (PH) domains, are thought to be involved in signal
transduction. But the details of the function and binding partners of the PH
domains have not been characterized. Here we report the solution structure of
the N-terminal pleckstrin-homology domain of pleckstrin determined using
heteronuclear three-dimensional nuclear magnetic resonance spectroscopy. The
structure consists of an up-and-down beta-barrel of seven antiparallel
beta-strands and a C-terminal amphiphilic alpha-helix that caps one end of the
barrel. The overall topology of the domain is similar to that of the
retinol-binding protein family of structures.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.A.Clump,
J.J.Yu,
Y.Cho,
R.Gao,
J.Jett,
H.Zot,
J.M.Cunnick,
B.Snyder,
A.C.Clump,
M.Dodrill,
P.Gannett,
J.E.Coad,
R.Shurina,
W.D.Figg,
E.Reed,
and
D.C.Flynn
(2010).
A Polymorphic Variant of AFAP-110 Enhances cSrc Activity.
|
| |
Transl Oncol,
3,
276-285.
|
 |
|
|
|
|
 |
Q.Xu,
A.Bateman,
R.D.Finn,
P.Abdubek,
T.Astakhova,
H.L.Axelrod,
C.Bakolitsa,
D.Carlton,
C.Chen,
H.J.Chiu,
M.Chiu,
T.Clayton,
D.Das,
M.C.Deller,
L.Duan,
K.Ellrott,
D.Ernst,
C.L.Farr,
J.Feuerhelm,
J.C.Grant,
A.Grzechnik,
G.W.Han,
L.Jaroszewski,
K.K.Jin,
H.E.Klock,
M.W.Knuth,
P.Kozbial,
S.S.Krishna,
A.Kumar,
D.Marciano,
D.McMullan,
M.D.Miller,
A.T.Morse,
E.Nigoghossian,
A.Nopakun,
L.Okach,
C.Puckett,
R.Reyes,
C.L.Rife,
N.Sefcovic,
H.J.Tien,
C.B.Trame,
H.van den Bedem,
D.Weekes,
T.Wooten,
K.O.Hodgson,
J.Wooley,
M.A.Elsliger,
A.M.Deacon,
A.Godzik,
S.A.Lesley,
and
I.A.Wilson
(2010).
Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain.
|
| |
J Mol Biol,
396,
31-46.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.H.Huang,
and
K.Sauer
(2010).
Lipid signaling in T-cell development and function.
|
| |
Cold Spring Harb Perspect Biol,
2,
a002428.
|
 |
|
|
|
|
 |
J.L.Wilsbacher,
S.L.Moores,
and
J.S.Brugge
(2006).
An active form of Vav1 induces migration of mammary epithelial cells by stimulating secretion of an epidermal growth factor receptor ligand.
|
| |
Cell Commun Signal,
4,
5.
|
 |
|
|
|
|
 |
S.G.Jackson,
Y.Zhang,
X.Bao,
K.Zhang,
R.Summerfield,
R.J.Haslam,
and
M.S.Junop
(2006).
Structure of the carboxy-terminal PH domain of pleckstrin at 2.1 Angstroms.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
324-330.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Wen,
J.Yan,
and
M.Zhang
(2006).
Structural characterization of the split pleckstrin homology domain in phospholipase C-gamma1 and its interaction with TRPC3.
|
| |
J Biol Chem,
281,
12060-12068.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Edlich,
G.Stier,
B.Simon,
M.Sattler,
and
C.Muhle-Goll
(2005).
Structure and phosphatidylinositol-(3,4)-bisphosphate binding of the C-terminal PH domain of human pleckstrin.
|
| |
Structure,
13,
277-286.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Yan,
W.Wen,
W.Xu,
J.F.Long,
M.E.Adams,
S.C.Froehner,
and
M.Zhang
(2005).
Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of alpha-syntrophin.
|
| |
EMBO J,
24,
3985-3995.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Balaji,
M.M.Babu,
L.M.Iyer,
and
L.Aravind
(2005).
Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains.
|
| |
Nucleic Acids Res,
33,
3994-4006.
|
 |
|
|
|
|
 |
W.Cho,
and
R.V.Stahelin
(2005).
Membrane-protein interactions in cell signaling and membrane trafficking.
|
| |
Annu Rev Biophys Biomol Struct,
34,
119-151.
|
 |
|
|
|
|
 |
G.E.Cozier,
D.Bouyoucef,
and
P.J.Cullen
(2003).
Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain.
|
| |
J Biol Chem,
278,
39489-39496.
|
 |
|
|
|
|
 |
K.S.Yan,
and
M.M.Zhou
(2003).
Examining both sides of a Janus PTB domain.
|
| |
Structure,
11,
482-484.
|
 |
|
|
|
|
 |
J.S.Chang,
H.Seok,
T.K.Kwon,
D.S.Min,
B.H.Ahn,
Y.H.Lee,
J.W.Suh,
J.W.Kim,
S.Iwashita,
A.Omori,
S.Ichinose,
O.Numata,
J.K.Seo,
Y.S.Oh,
and
P.G.Suh
(2002).
Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity.
|
| |
J Biol Chem,
277,
19697-19702.
|
 |
|
|
|
|
 |
B.Vanhaesebroeck,
S.J.Leevers,
K.Ahmadi,
J.Timms,
R.Katso,
P.C.Driscoll,
R.Woscholski,
P.J.Parker,
and
M.D.Waterfield
(2001).
Synthesis and function of 3-phosphorylated inositol lipids.
|
| |
Annu Rev Biochem,
70,
535-602.
|
 |
|
|
|
|
 |
C.V.Carman,
L.S.Barak,
C.Chen,
L.Y.Liu-Chen,
J.J.Onorato,
S.P.Kennedy,
M.G.Caron,
and
J.L.Benovic
(2000).
Mutational analysis of Gbetagamma and phospholipid interaction with G protein-coupled receptor kinase 2.
|
| |
J Biol Chem,
275,
10443-10452.
|
 |
|
|
|
|
 |
J.Beneken,
J.C.Tu,
B.Xiao,
M.Nuriya,
J.P.Yuan,
P.F.Worley,
and
D.J.Leahy
(2000).
Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition.
|
| |
Neuron,
26,
143-154.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Hurley,
and
S.Misra
(2000).
Signaling and subcellular targeting by membrane-binding domains.
|
| |
Annu Rev Biophys Biomol Struct,
29,
49-79.
|
 |
|
|
|
|
 |
K.Hamada,
T.Shimizu,
T.Matsui,
S.Tsukita,
and
T.Hakoshima
(2000).
Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain.
|
| |
EMBO J,
19,
4449-4462.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.M.Ferguson,
J.M.Kavran,
V.G.Sankaran,
E.Fournier,
S.J.Isakoff,
E.Y.Skolnik,
and
M.A.Lemmon
(2000).
Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains.
|
| |
Mol Cell,
6,
373-384.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Blomberg,
E.Baraldi,
M.Sattler,
M.Saraste,
and
M.Nilges
(2000).
Structure of a PH domain from the C. elegans muscle protein UNC-89 suggests a novel function.
|
| |
Structure,
8,
1079-1087.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Galetic,
M.Andjelkovic,
R.Meier,
D.Brodbeck,
J.Park,
and
B.A.Hemmings
(1999).
Mechanism of protein kinase B activation by insulin/insulin-like growth factor-1 revealed by specific inhibitors of phosphoinositide 3-kinase--significance for diabetes and cancer.
|
| |
Pharmacol Ther,
82,
409-425.
|
 |
|
|
|
|
 |
J.D.Forman-Kay,
and
T.Pawson
(1999).
Diversity in protein recognition by PTB domains.
|
| |
Curr Opin Struct Biol,
9,
690-695.
|
 |
|
|
|
|
 |
K.E.Prehoda,
D.J.Lee,
and
W.A.Lim
(1999).
Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly.
|
| |
Cell,
97,
471-480.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Yao,
P.Janmey,
L.G.Frigeri,
W.Han,
J.Fujita,
Y.Kawakami,
J.R.Apgar,
and
T.Kawakami
(1999).
Pleckstrin homology domains interact with filamentous actin.
|
| |
J Biol Chem,
274,
19752-19761.
|
 |
|
|
|
|
 |
N.Blomberg,
R.R.Gabdoulline,
M.Nilges,
and
R.C.Wade
(1999).
Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity.
|
| |
Proteins,
37,
379-387.
|
 |
|
|
|
|
 |
D.J.Burks,
J.Wang,
H.Towery,
O.Ishibashi,
D.Lowe,
H.Riedel,
and
M.F.White
(1998).
IRS pleckstrin homology domains bind to acidic motifs in proteins.
|
| |
J Biol Chem,
273,
31061-31067.
|
 |
|
|
|
|
 |
J.A.Pitcher,
N.J.Freedman,
and
R.J.Lefkowitz
(1998).
G protein-coupled receptor kinases.
|
| |
Annu Rev Biochem,
67,
653-692.
|
 |
|
|
|
|
 |
J.M.Kavran,
D.E.Klein,
A.Lee,
M.Falasca,
S.J.Isakoff,
E.Y.Skolnik,
and
M.A.Lemmon
(1998).
Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains.
|
| |
J Biol Chem,
273,
30497-30508.
|
 |
|
|
|
|
 |
M.J.Bottomley,
K.Salim,
and
G.Panayotou
(1998).
Phospholipid-binding protein domains.
|
| |
Biochim Biophys Acta,
1436,
165-183.
|
 |
|
|
|
|
 |
M.J.Rebecchi,
and
S.Scarlata
(1998).
Pleckstrin homology domains: a common fold with diverse functions.
|
| |
Annu Rev Biophys Biomol Struct,
27,
503-528.
|
 |
|
|
|
|
 |
T.F.Martin
(1998).
Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking.
|
| |
Annu Rev Cell Dev Biol,
14,
231-264.
|
 |
|
|
|
|
 |
X.Liu,
H.Wang,
M.Eberstadt,
A.Schnuchel,
E.T.Olejniczak,
R.P.Meadows,
J.M.Schkeryantz,
D.A.Janowick,
J.E.Harlan,
E.A.Harris,
D.E.Staunton,
and
S.W.Fesik
(1998).
NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio.
|
| |
Cell,
95,
269-277.
|
 |
|
|
|
|
 |
A.D.Ma,
L.F.Brass,
and
C.S.Abrams
(1997).
Pleckstrin associates with plasma membranes and induces the formation of membrane projections: requirements for phosphorylation and the NH2-terminal PH domain.
|
| |
J Cell Biol,
136,
1071-1079.
|
 |
|
|
|
|
 |
C.R.Artalejo,
M.A.Lemmon,
J.Schlessinger,
and
H.C.Palfrey
(1997).
Specific role for the PH domain of dynamin-1 in the regulation of rapid endocytosis in adrenal chromaffin cells.
|
| |
EMBO J,
16,
1565-1574.
|
 |
|
|
|
|
 |
D.E.Clapham,
and
E.J.Neer
(1997).
G protein beta gamma subunits.
|
| |
Annu Rev Pharmacol Toxicol,
37,
167-203.
|
 |
|
|
|
|
 |
L.E.Rameh,
A.Arvidsson,
K.L.Carraway,
A.D.Couvillon,
G.Rathbun,
A.Crompton,
B.VanRenterghem,
M.P.Czech,
K.S.Ravichandran,
S.J.Burakoff,
D.S.Wang,
C.S.Chen,
and
L.C.Cantley
(1997).
A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains.
|
| |
J Biol Chem,
272,
22059-22066.
|
 |
|
|
|
|
 |
L.Yao,
H.Suzuki,
K.Ozawa,
J.Deng,
C.Lehel,
H.Fukamachi,
W.B.Anderson,
Y.Kawakami,
and
T.Kawakami
(1997).
Interactions between protein kinase C and pleckstrin homology domains. Inhibition by phosphatidylinositol 4,5-bisphosphate and phorbol 12-myristate 13-acetate.
|
| |
J Biol Chem,
272,
13033-13039.
|
 |
|
|
|
|
 |
M.Hyvönen,
and
M.Saraste
(1997).
Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia.
|
| |
EMBO J,
16,
3396-3404.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.M.Cooke
(1997).
Protein NMR extends into new fields of structural biology.
|
| |
Curr Opin Chem Biol,
1,
359-364.
|
 |
|
|
|
|
 |
R.M.Scaife,
and
R.L.Margolis
(1997).
The role of the PH domain and SH3 binding domains in dynamin function.
|
| |
Cell Signal,
9,
395-401.
|
 |
|
|
|
|
 |
T.T.Chuang,
E.Pompili,
L.Paolucci,
M.Sallese,
L.De Gioia,
M.Salmona,
and
A.De Blasi
(1997).
Identification of a short sequence highly divergent between beta-adrenergic-receptor kinases 1 and 2 that determines the affinity of binding to betagamma subunits of heterotrimeric guanine-nucleotide-binding regulatory proteins.
|
| |
Eur J Biochem,
245,
533-540.
|
 |
|
|
|
|
 |
W.D.Singer,
H.A.Brown,
and
P.C.Sternweis
(1997).
Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D.
|
| |
Annu Rev Biochem,
66,
475-509.
|
 |
|
|
|
|
 |
A.Dietrich,
D.Brazil,
O.N.Jensen,
M.Meister,
M.Schrader,
J.F.Moomaw,
M.Mann,
D.Illenberger,
and
P.Gierschik
(1996).
Isoprenylation of the G protein gamma subunit is both necessary and sufficient for beta gamma dimer-mediated stimulation of phospholipase C.
|
| |
Biochemistry,
35,
15174-15182.
|
 |
|
|
|
|
 |
A.H.Ahn,
C.A.Freener,
E.Gussoni,
M.Yoshida,
E.Ozawa,
and
L.M.Kunkel
(1996).
The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives.
|
| |
J Biol Chem,
271,
2724-2730.
|
 |
|
|
|
|
 |
A.Viel,
and
D.Branton
(1996).
Spectrin: on the path from structure to function.
|
| |
Curr Opin Cell Biol,
8,
49-55.
|
 |
|
|
|
|
 |
C.S.Abrams,
W.Zhao,
and
L.F.Brass
(1996).
A site of interaction between pleckstrin's PH domains and G beta gamma.
|
| |
Biochim Biophys Acta,
1314,
233-238.
|
 |
|
|
|
|
 |
G.Shaw
(1996).
The pleckstrin homology domain: an intriguing multifunctional protein module.
|
| |
Bioessays,
18,
35-46.
|
 |
|
|
|
|
 |
H.Konishi,
H.Matsuzaki,
M.Tanaka,
Y.Ono,
C.Tokunaga,
S.Kuroda,
and
U.Kikkawa
(1996).
Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase.
|
| |
Proc Natl Acad Sci U S A,
93,
7639-7643.
|
 |
|
|
|
|
 |
J.A.Pitcher,
Z.L.Fredericks,
W.C.Stone,
R.T.Premont,
R.H.Stoffel,
W.J.Koch,
and
R.J.Lefkowitz
(1996).
Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies.
|
| |
J Biol Chem,
271,
24907-24913.
|
 |
|
|
|
|
 |
J.Font de Mora,
C.Guerrero,
D.Mahadevan,
J.J.Coque,
J.M.Rojas,
L.M.Esteban,
M.Rebecchi,
and
E.Santos
(1996).
Isolated Sos1 PH domain exhibits germinal vesicle breakdown-inducing activity in Xenopus oocytes.
|
| |
J Biol Chem,
271,
18272-18276.
|
 |
|
|
|
|
 |
J.W.Lomasney,
H.F.Cheng,
L.P.Wang,
Y.Kuan,
S.Liu,
S.W.Fesik,
and
K.King
(1996).
Phosphatidylinositol 4,5-bisphosphate binding to the pleckstrin homology domain of phospholipase C-delta1 enhances enzyme activity.
|
| |
J Biol Chem,
271,
25316-25326.
|
 |
|
|
|
|
 |
K.Paz,
H.Voliovitch,
Y.R.Hadari,
C.T.Roberts,
D.LeRoith,
and
Y.Zick
(1996).
Interaction between the insulin receptor and its downstream effectors. Use of individually expressed receptor domains for structure/function analysis.
|
| |
J Biol Chem,
271,
6998-7003.
|
 |
|
|
|
|
 |
K.Salim,
M.J.Bottomley,
E.Querfurth,
M.J.Zvelebil,
I.Gout,
R.Scaife,
R.L.Margolis,
R.Gigg,
C.I.Smith,
P.C.Driscoll,
M.D.Waterfield,
and
G.Panayotou
(1996).
Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase.
|
| |
EMBO J,
15,
6241-6250.
|
 |
|
|
|
|
 |
K.Schulz,
S.Danner,
P.Bauer,
S.Schröder,
and
M.J.Lohse
(1996).
Expression of phosducin in a phosducin-negative cell line reveals functions of a Gbetagamma-binding protein.
|
| |
J Biol Chem,
271,
22546-22551.
|
 |
|
|
|
|
 |
L.W.Runnels,
J.Jenco,
A.Morris,
and
S.Scarlata
(1996).
Membrane binding of phospholipases C-beta 1 and C-beta 2 is independent of phosphatidylinositol 4,5-bisphosphate and the alpha and beta gamma subunits of G proteins.
|
| |
Biochemistry,
35,
16824-16832.
|
 |
|
|
|
|
 |
M.M.Zhou,
B.Huang,
E.T.Olejniczak,
R.P.Meadows,
S.B.Shuker,
M.Miyazaki,
T.Trüb,
S.E.Shoelson,
and
S.W.Fesik
(1996).
Structural basis for IL-4 receptor phosphopeptide recognition by the IRS-1 PTB domain.
|
| |
Nat Struct Biol,
3,
388-393.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.J.Daly,
G.M.Sanderson,
P.W.Janes,
and
R.L.Sutherland
(1996).
Cloning and characterization of GRB14, a novel member of the GRB7 gene family.
|
| |
J Biol Chem,
271,
12502-12510.
|
 |
|
|
|
|
 |
S.C.Hwang,
D.Y.Jhon,
Y.S.Bae,
J.H.Kim,
and
S.G.Rhee
(1996).
Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid.
|
| |
J Biol Chem,
271,
18342-18349.
|
 |
|
|
|
|
 |
Y.Kawakami,
L.Yao,
W.Han,
and
T.Kawakami
(1996).
Tec family protein-tyrosine kinases and pleckstrin homology domains in mast cells.
|
| |
Immunol Lett,
54,
113-117.
|
 |
|
|
|
|
 |
Y.Zheng,
D.Zangrilli,
R.A.Cerione,
and
A.Eva
(1996).
The pleckstrin homology domain mediates transformation by oncogenic dbl through specific intracellular targeting.
|
| |
J Biol Chem,
271,
19017-19020.
|
 |
|
|
|
|
 |
C.A.Orengo,
M.B.Swindells,
A.D.Michie,
M.J.Zvelebil,
P.C.Driscoll,
M.D.Waterfield,
and
J.M.Thornton
(1995).
Structural similarity between the pleckstrin homology domain and verotoxin: the problem of measuring and evaluating structural similarity.
|
| |
Protein Sci,
4,
1977-1983.
|
 |
|
|
|
|
 |
C.S.Abrams,
H.Wu,
W.Zhao,
E.Belmonte,
D.White,
and
L.F.Brass
(1995).
Pleckstrin inhibits phosphoinositide hydrolysis initiated by G-protein-coupled and growth factor receptors. A role for pleckstrin's PH domains.
|
| |
J Biol Chem,
270,
14485-14492.
|
 |
|
|
|
|
 |
C.S.Abrams,
W.Zhao,
E.Belmonte,
and
L.F.Brass
(1995).
Protein kinase C regulates pleckstrin by phosphorylation of sites adjacent to the N-terminal pleckstrin homology domain.
|
| |
J Biol Chem,
270,
23317-23321.
|
 |
|
|
|
|
 |
D.Fushman,
S.Cahill,
M.A.Lemmon,
J.Schlessinger,
and
D.Cowburn
(1995).
Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
92,
816-820.
|
 |
|
|
|
|
 |
D.L.Gerloff,
G.Chelvanayagam,
and
S.A.Benner
(1995).
A predicted consensus structure for the protein kinase C2 homology (C2H) domain, the repeating unit of synaptotagmin.
|
| |
Proteins,
22,
299-310.
|
 |
|
|
|
|
 |
G.B.Cohen,
R.Ren,
and
D.Baltimore
(1995).
Modular binding domains in signal transduction proteins.
|
| |
Cell,
80,
237-248.
|
 |
|
|
|
|
 |
H.Voliovitch,
D.G.Schindler,
Y.R.Hadari,
S.I.Taylor,
D.Accili,
and
Y.Zick
(1995).
Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region.
|
| |
J Biol Chem,
270,
18083-18087.
|
 |
|
|
|
|
 |
J.A.Pitcher,
K.Touhara,
E.S.Payne,
and
R.J.Lefkowitz
(1995).
Pleckstrin homology domain-mediated membrane association and activation of the beta-adrenergic receptor kinase requires coordinate interaction with G beta gamma subunits and lipid.
|
| |
J Biol Chem,
270,
11707-11710.
|
 |
|
|
|
|
 |
J.D.Kerner,
M.W.Appleby,
R.N.Mohr,
S.Chien,
D.J.Rawlings,
C.R.Maliszewski,
O.N.Witte,
and
R.M.Perlmutter
(1995).
Impaired expansion of mouse B cell progenitors lacking Btk.
|
| |
Immunity,
3,
301-312.
|
 |
|
|
|
|
 |
K.Datta,
T.F.Franke,
T.O.Chan,
A.Makris,
S.I.Yang,
D.R.Kaplan,
D.K.Morrison,
E.A.Golemis,
and
P.N.Tsichlis
(1995).
AH/PH domain-mediated interaction between Akt molecules and its potential role in Akt regulation.
|
| |
Mol Cell Biol,
15,
2304-2310.
|
 |
|
|
|
|
 |
K.M.Ferguson,
M.A.Lemmon,
J.Schlessinger,
and
P.B.Sigler
(1995).
Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain.
|
| |
Cell,
83,
1037-1046.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.M.Ferguson,
M.A.Lemmon,
P.B.Sigler,
and
J.Schlessinger
(1995).
Scratching the surface with the PH domain.
|
| |
Nat Struct Biol,
2,
715-718.
|
 |
|
|
|
|
 |
K.Touhara,
W.J.Koch,
B.E.Hawes,
and
R.J.Lefkowitz
(1995).
Mutational analysis of the pleckstrin homology domain of the beta-adrenergic receptor kinase. Differential effects on G beta gamma and phosphatidylinositol 4,5-bisphosphate binding.
|
| |
J Biol Chem,
270,
17000-17005.
|
 |
|
|
|
|
 |
L.M.Luttrell,
B.E.Hawes,
K.Touhara,
T.van Biesen,
W.J.Koch,
and
R.J.Lefkowitz
(1995).
Effect of cellular expression of pleckstrin homology domains on Gi-coupled receptor signaling.
|
| |
J Biol Chem,
270,
12984-12989.
|
 |
|
|
|
|
 |
M.A.Lemmon,
K.M.Ferguson,
R.O'Brien,
P.B.Sigler,
and
J.Schlessinger
(1995).
Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain.
|
| |
Proc Natl Acad Sci U S A,
92,
10472-10476.
|
 |
|
|
|
|
 |
M.G.Myers,
T.C.Grammer,
J.Brooks,
E.M.Glasheen,
L.M.Wang,
X.J.Sun,
J.Blenis,
J.H.Pierce,
and
M.F.White
(1995).
The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signaling.
|
| |
J Biol Chem,
270,
11715-11718.
|
 |
|
|
|
|
 |
M.Hyvönen,
M.J.Macias,
M.Nilges,
H.Oschkinat,
M.Saraste,
and
M.Wilmanns
(1995).
Structure of the binding site for inositol phosphates in a PH domain.
|
| |
EMBO J,
14,
4676-4685.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Saraste,
and
M.Hyvönen
(1995).
Pleckstrin homology domains: a fact file.
|
| |
Curr Opin Struct Biol,
5,
403-408.
|
 |
|
|
|
|
 |
P.Zhang,
S.Talluri,
H.Deng,
D.Branton,
and
G.Wagner
(1995).
Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin.
|
| |
Structure,
3,
1185-1195.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.A.Langhans-Rajasekaran,
Y.Wan,
and
X.Y.Huang
(1995).
Activation of Tsk and Btk tyrosine kinases by G protein beta gamma subunits.
|
| |
Proc Natl Acad Sci U S A,
92,
8601-8605.
|
 |
|
|
|
|
 |
S.K.DebBurman,
J.Ptasienski,
E.Boetticher,
J.W.Lomasney,
J.L.Benovic,
and
M.M.Hosey
(1995).
Lipid-mediated regulation of G protein-coupled receptor kinases 2 and 3.
|
| |
J Biol Chem,
270,
5742-5747.
|
 |
|
|
|
|
 |
T.Li,
S.Tsukada,
A.Satterthwaite,
M.H.Havlik,
H.Park,
K.Takatsu,
and
O.N.Witte
(1995).
Activation of Bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain.
|
| |
Immunity,
2,
451-460.
|
 |
|
|
|
|
 |
A.K.Downing,
P.C.Driscoll,
I.Gout,
K.Salim,
M.J.Zvelebil,
and
M.D.Waterfield
(1994).
Three-dimensional solution structure of the pleckstrin homology domain from dynamin.
|
| |
Curr Biol,
4,
884-891.
|
 |
|
|
|
|
 |
D.Timm,
K.Salim,
I.Gout,
L.Guruprasad,
M.Waterfield,
and
T.Blundell
(1994).
Crystal structure of the pleckstrin homology domain from dynamin.
|
| |
Nat Struct Biol,
1,
782-788.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Ingley,
and
B.A.Hemmings
(1994).
Pleckstrin homology (PH) domains in signal transduction.
|
| |
J Cell Biochem,
56,
436-443.
|
 |
|
|
|
|
 |
G.Riddihough
(1994).
More meanders and sandwiches.
|
| |
Nat Struct Biol,
1,
755-757.
|
 |
|
|
|
|
 |
G.Wagner
(1994).
Thin end of the wedge.
|
| |
Nat Struct Biol,
1,
497-498.
|
 |
|
|
|
|
 |
S.Tsukada,
M.I.Simon,
O.N.Witte,
and
A.Katz
(1994).
Binding of beta gamma subunits of heterotrimeric G proteins to the PH domain of Bruton tyrosine kinase.
|
| |
Proc Natl Acad Sci U S A,
91,
11256-11260.
|
 |
|
|
|
|
 |
T.J.Gibson,
M.Hyvönen,
A.Musacchio,
M.Saraste,
and
E.Birney
(1994).
PH domain: the first anniversary.
|
| |
Trends Biochem Sci,
19,
349-353.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |