spacer
spacer

PDBsum entry 1mdi

Go to PDB code: 
protein Protein-protein interface(s) links
Complex (electron transport/peptide) PDB id
1mdi
Jmol
Contents
Protein chains
105 a.a. *
13 a.a. *
Waters ×18
* Residue conservation analysis
PDB id:
1mdi
Name: Complex (electron transport/peptide)
Title: High resolution solution nmr structure of mixed disulfide intermediate between mutant human thioredoxin and a 13 residue peptide comprising its target site in human nfkb
Structure: Thioredoxin. Chain: a. Engineered: yes. Target site in human nfkb. Chain: b. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606.
NMR struc: 1 models
Authors: G.M.Clore,J.Qin,A.M.Gronenborn
Key ref:
J.Qin et al. (1995). Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B. Structure, 3, 289-297. PubMed id: 7788295 DOI: 10.1016/S0969-2126(01)00159-9
Date:
27-Feb-95     Release date:   03-Jun-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P10599  (THIO_HUMAN) -  Thioredoxin
Seq:
Struc:
105 a.a.
105 a.a.*
Protein chain
Pfam   ArchSchema ?
P19838  (NFKB1_HUMAN) -  Nuclear factor NF-kappa-B p105 subunit
Seq:
Struc:
 
Seq:
Struc:
968 a.a.
13 a.a.
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   7 terms 
  Biological process     nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway   23 terms 
  Biochemical function     protein binding     4 terms  

 

 
DOI no: 10.1016/S0969-2126(01)00159-9 Structure 3:289-297 (1995)
PubMed id: 7788295  
 
 
Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B.
J.Qin, G.M.Clore, W.M.Kennedy, J.R.Huth, A.M.Gronenborn.
 
  ABSTRACT  
 
BACKGROUND: Human thioredoxin is a 12 kDa cellular redox protein that plays a key role in maintaining the redox environment of the cell. It has recently been shown to be responsible for activating the DNA-binding properties of the cellular transcription factor, NF kappa B, by reducing a disulfide bond involving Cys62 of the p50 subunit. Using multidimensional heteronuclear-edited and hetero-nuclear-filtered NMR spectroscopy, we have solved the solution structure of a complex of human thioredoxin and a 13-residue peptide extending from residues 56-68 of p50, representing a kinetically stable mixed disulfide intermediate along the reaction pathway. RESULTS: The NF kappa B peptide is located in a long boot-shaped cleft on the surface of human thioredoxin delineated by the active-site loop, helices alpha 2, alpha 3 and alpha 4, and strands beta 3 and beta 4. The peptide adopts a crescent-like conformation with a smooth 110 degrees bend centered around residue 60 which permits it to follow the path of the cleft. CONCLUSIONS: In addition to the intermolecular disulfide bridge between Cys32 of human thioredoxin and Cys62 of the peptide, the complex is stabilized by numerous hydrogen-bonding, electrostatic and hydrophobic interactions which involve residues 57-65 of the NF kappa B peptide and confer substrate specificity. These structural features permit one to suggest the specificity requirements for human thioredoxin-catalyzed disulfide bond reduction of proteins.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. View of the molecular surface of hTRX illustrating the cleft in which the NFκB peptide is located. The degree of curvature of the molecular surface is color coded from white (convex) to dark gray (concave). Hence the cleft is visualized as the contiguous boot-shaped gray region on the surface of hTRX. The backbone of the peptide is shown in green, and side chains are colored as follows: Phe, Tyr, Val, Pro and Cys in yellow; Arg and His in blue; Glu in red and Ser in magenta. Note that the side chains of Phe56 and His67 of the bound NFκB peptide are disordered in solution. Figure 3. View of the molecular surface of hTRX illustrating the cleft in which the NFκB peptide is located. The degree of curvature of the molecular surface is color coded from white (convex) to dark gray (concave). Hence the cleft is visualized as the contiguous boot-shaped gray region on the surface of hTRX. The backbone of the peptide is shown in green, and side chains are colored as follows: Phe, Tyr, Val, Pro and Cys in yellow; Arg and His in blue; Glu in red and Ser in magenta. Note that the side chains of Phe56 and His67 of the bound NFκB peptide are disordered in solution. (Figure generated with the program GRASP [[3]83].)
Figure 4.
Figure 4. Interactions between the NFκB peptide and hTRX. Only residues 57–65 of the NFκB peptide, which are in contact with hTRX, are shown, and the residues of the peptide and hTRX are depicted by lower-case and upper-case letters, respectively. (a) Stereoview of the backbone (N, Cα, C) of hTRX (blue) and the NFκB peptide (red). The side chains of hTRX and the NFκB peptide at the interface of the complex are shown in pink and green, respectively, and the disulfide bond between Cys32 of hTRX and Cys62 of the NFκB peptide is shown in yellow. (Figure generated with the program VISP [84].) (b) Schematic representation of the hTRX–NFκB peptide complex. Residues of hTRX involved in hydrophobic interactions with the peptide are shown circled, and the dashed lines indicate hydrogen bonds, salt bridges or electrostatic interactions. Figure 4. Interactions between the NFκB peptide and hTRX. Only residues 57–65 of the NFκB peptide, which are in contact with hTRX, are shown, and the residues of the peptide and hTRX are depicted by lower-case and upper-case letters, respectively. (a) Stereoview of the backbone (N, Cα, C) of hTRX (blue) and the NFκB peptide (red). The side chains of hTRX and the NFκB peptide at the interface of the complex are shown in pink and green, respectively, and the disulfide bond between Cys32 of hTRX and Cys62 of the NFκB peptide is shown in yellow. (Figure generated with the program VISP [[4]84].) (b) Schematic representation of the hTRX–NFκB peptide complex. Residues of hTRX involved in hydrophobic interactions with the peptide are shown circled, and the dashed lines indicate hydrogen bonds, salt bridges or electrostatic interactions. (The NFκB peptide chain was generated by the program MOLSCRIPT [[5]85].)
 
  The above figures are reprinted by permission from Cell Press: Structure (1995, 3, 289-297) copyright 1995.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20981751 G.Hall, T.D.Bradshaw, C.A.Laughton, M.F.Stevens, and J.Emsley (2011).
Structure of Mycobacterium tuberculosis thioredoxin in complex with quinol inhibitor PMX464.
  Protein Sci, 20, 210-215.
PDB codes: 3nof 3o6t
20662007 A.Weichsel, M.Kem, and W.R.Montfort (2010).
Crystal structure of human thioredoxin revealing an unraveled helix and exposed S-nitrosation site.
  Protein Sci, 19, 1801-1806.
PDB codes: 3m9j 3m9k
20625793 E.Pedone, D.Limauro, K.D'Ambrosio, G.De Simone, and S.Bartolucci (2010).
Multiple catalytically active thioredoxin folds: a winning strategy for many functions.
  Cell Mol Life Sci, 67, 3797-3814.  
20661909 G.Hall, and J.Emsley (2010).
Structure of human thioredoxin exhibits a large conformational change.
  Protein Sci, 19, 1807-1811.
PDB code: 3e3e
20367496 N.Wakabayashi, S.L.Slocum, J.J.Skoko, S.Shin, and T.W.Kensler (2010).
When NRF2 talks, who's listening?
  Antioxid Redox Signal, 13, 1649-1663.  
19951033 S.Rosales-Corral, R.J.Reiter, D.X.Tan, G.G.Ortiz, and G.Lopez-Armas (2010).
Functional aspects of redox control during neuroinflammation.
  Antioxid Redox Signal, 13, 193-247.  
19535335 A.Crow, A.Lewin, O.Hecht, M.Carlsson Möller, G.R.Moore, L.Hederstedt, and N.E.Le Brun (2009).
Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site.
  J Biol Chem, 284, 23719-23733.
PDB codes: 3eu3 3eu4 3gh9 3gha
19570036 A.M.Psarra, S.Hermann, G.Panayotou, and G.Spyrou (2009).
Interaction of mitochondrial thioredoxin with glucocorticoid receptor and NF-kappaB modulates glucocorticoid receptor and NF-kappaB signalling in HEK-293 cells.
  Biochem J, 422, 521-531.  
19692331 C.Wakita, T.Maeshima, A.Yamazaki, T.Shibata, S.Ito, M.Akagawa, M.Ojika, J.Yodoi, and K.Uchida (2009).
Stereochemical configuration of 4-hydroxy-2-nonenal-cysteine adducts and their stereoselective formation in a redox-regulated protein.
  J Biol Chem, 284, 28810-28822.  
19675666 G.Roos, N.Foloppe, K.Van Laer, L.Wyns, L.Nilsson, P.Geerlings, and J.Messens (2009).
How thioredoxin dissociates its mixed disulfide.
  PLoS Comput Biol, 5, e1000461.  
19389711 J.J.Paxman, N.A.Borg, J.Horne, P.E.Thompson, Y.Chin, P.Sharma, J.S.Simpson, J.Wielens, S.Piek, C.M.Kahler, H.Sakellaris, M.Pearce, S.P.Bottomley, J.Rossjohn, and M.J.Scanlon (2009).
The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes.
  J Biol Chem, 284, 17835-17845.
PDB code: 3dks
19597482 R.Perez-Jimenez, J.Li, P.Kosuri, I.Sanchez-Romero, A.P.Wiita, D.Rodriguez-Larrea, A.Chueca, A.Holmgren, A.Miranda-Vizuete, K.Becker, S.H.Cho, J.Beckwith, E.Gelhaye, J.P.Jacquot, E.Gaucher, J.M.Sanchez-Ruiz, B.J.Berne, and J.M.Fernandez (2009).
Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy.
  Nat Struct Mol Biol, 16, 890-896.  
19696882 V.Castillo, and S.Ventura (2009).
Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases.
  PLoS Comput Biol, 5, e1000476.  
19628032 W.Jeong, Y.Jung, H.Kim, S.J.Park, and S.G.Rhee (2009).
Thioredoxin-related protein 14, a new member of the thioredoxin family with disulfide reductase activity: implication in the redox regulation of TNF-alpha signaling.
  Free Radic Biol Med, 47, 1294-1303.  
19237745 Y.Carius, D.Rother, C.G.Friedrich, and A.J.Scheidig (2009).
The structure of the periplasmic thiol-disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation.
  Acta Crystallogr D Biol Crystallogr, 65, 229-240.  
19124382 I.Rahman (2008).
Antioxidant therapeutic advances in COPD.
  Ther Adv Respir Dis, 2, 351-374.  
18424513 K.Maeda, P.Hägglund, C.Finnie, B.Svensson, and A.Henriksen (2008).
Crystal structures of barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 reveal features involved in protein recognition and possibly in discriminating the isoform specificity.
  Protein Sci, 17, 1015-1024.
PDB codes: 2vlt 2vlu 2vlv 2vm1 2vm2
18757366 T.H.Elgán, and K.D.Berndt (2008).
Quantifying Escherichia coli Glutaredoxin-3 Substrate Specificity Using Ligand-induced Stability.
  J Biol Chem, 283, 32839-32847.  
18455736 T.R.Kouwen, J.Andréll, R.Schrijver, J.Y.Dubois, M.J.Maher, S.Iwata, E.P.Carpenter, and J.M.van Dijl (2008).
Thioredoxin A active-site mutants form mixed disulfide dimers that resemble enzyme-substrate reaction intermediates.
  J Mol Biol, 379, 520-534.
PDB code: 2voc
18003611 T.T.Mac, A.von Hacht, K.C.Hung, R.J.Dutton, D.Boyd, J.C.Bardwell, and T.S.Ulmer (2008).
Insight into disulfide bond catalysis in Chlamydia from the structure and function of DsbH, a novel oxidoreductase.
  J Biol Chem, 283, 824-832.
PDB code: 2ju5
17972886 A.P.Wiita, R.Perez-Jimenez, K.A.Walther, F.Gräter, B.J.Berne, A.Holmgren, J.M.Sanchez-Ruiz, and J.M.Fernandez (2007).
Probing the chemistry of thioredoxin catalysis with force.
  Nature, 450, 124-127.  
17340205 G.C.Amorim, A.S.Pinheiro, L.E.Netto, A.P.Valente, and F.C.Almeida (2007).
NMR solution structure of the reduced form of thioredoxin 2 from Saccharomyces cerevisiae.
  J Biomol NMR, 38, 99.
PDB code: 2hsy
17881353 J.Haugstetter, M.A.Maurer, T.Blicher, M.Pagac, G.Wider, and L.Ellgaard (2007).
Structure-function analysis of the endoplasmic reticulum oxidoreductase TMX3 reveals interdomain stabilization of the N-terminal redox-active domain.
  J Biol Chem, 282, 33859-33867.  
17266144 J.S.Moylan, and M.B.Reid (2007).
Oxidative stress, chronic disease, and muscle wasting.
  Muscle Nerve, 35, 411-429.  
17913712 J.Ye, S.H.Cho, J.Fuselier, W.Li, J.Beckwith, and T.A.Rapoport (2007).
Crystal structure of an unusual thioredoxin protein with a zinc finger domain.
  J Biol Chem, 282, 34945-34951.  
17937622 R.Geisberger, C.Kiermayer, C.Hömig, M.Conrad, J.Schmidt, U.Zimber-Strobl, and M.Brielmeier (2007).
B- and T-cell-specific inactivation of thioredoxin reductase 2 does not impair lymphocyte development and maintenance.
  Biol Chem, 388, 1083-1090.  
17984578 T.Okamoto, and A.Tsuchiya (2007).
[NF-kappaB as a therapeutic target of rheumatoid arthritis]
  Nihon Rinsho Meneki Gakkai Kaishi, 30, 383-389.  
17303556 Y.Li, Y.Hu, X.Zhang, H.Xu, E.Lescop, B.Xia, and C.Jin (2007).
Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis.
  J Biol Chem, 282, 11078-11083.
PDB codes: 2gzy 2gzz 2ipa
16971393 A.Lewin, A.Crow, A.Oubrie, and N.E.Le Brun (2006).
Molecular basis for specificity of the extracytoplasmic thioredoxin ResA.
  J Biol Chem, 281, 35467-35477.
PDB codes: 2h19 2h1a 2h1b 2h1d 2h1g
17072325 C.Bubici, S.Papa, K.Dean, and G.Franzoso (2006).
Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance.
  Oncogene, 25, 6731-6748.  
16537372 C.L.Colbert, Q.Wu, P.J.Erbel, K.H.Gardner, and J.Deisenhofer (2006).
Mechanism of substrate specificity in Bacillus subtilis ResA, a thioredoxin-like protein involved in cytochrome c maturation.
  Proc Natl Acad Sci U S A, 103, 4410-4415.
PDB code: 2f9s
17139080 G.Hall, M.Shah, P.A.McEwan, C.Laughton, M.Stevens, A.Westwell, and J.Emsley (2006).
Structure of Mycobacterium tuberculosis thioredoxin C.
  Acta Crystallogr D Biol Crystallogr, 62, 1453-1457.
PDB code: 2i1u
16840349 H.P.Su, D.Y.Lin, and D.N.Garboczi (2006).
The structure of G4, the poxvirus disulfide oxidoreductase essential for virus maturation and infectivity.
  J Virol, 80, 7706-7713.
PDB code: 2g2q
17034356 J.Yoshioka, E.R.Schreiter, and R.T.Lee (2006).
Role of thioredoxin in cell growth through interactions with signaling molecules.
  Antioxid Redox Signal, 8, 2143-2151.  
17098195 K.Maeda, P.Hägglund, C.Finnie, B.Svensson, and A.Henriksen (2006).
Structural basis for target protein recognition by the protein disulfide reductase thioredoxin.
  Structure, 14, 1701-1710.
PDB code: 2iwt
  17012772 L.Xiao, L.Zhao, T.Li, D.K.Hartle, O.I.Aruoma, and E.W.Taylor (2006).
Activity of the dietary antioxidant ergothioneine in a virus gene-based assay for inhibitors of HIV transcription.
  Biofactors, 27, 157-165.  
16458359 P.Kirkham, and I.Rahman (2006).
Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy.
  Pharmacol Ther, 111, 476-494.  
16766796 P.Patwari, L.J.Higgins, W.A.Chutkow, J.Yoshioka, and R.T.Lee (2006).
The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange.
  J Biol Chem, 281, 21884-21891.  
16930136 R.Ladenstein, and B.Ren (2006).
Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
  FEBS J, 273, 4170-4185.  
16418167 X.Zhang, Y.Hu, X.Guo, E.Lescop, Y.Li, B.Xia, and C.Jin (2006).
The Bacillus subtilis YkuV is a thiol:disulfide oxidoreductase revealed by its redox structures and activity.
  J Biol Chem, 281, 8296-8304.
PDB codes: 2b5x 2b5y
15713651 C.Jakupoglu, G.K.Przemeck, M.Schneider, S.G.Moreno, N.Mayr, A.K.Hatzopoulos, M.H.de Angelis, W.Wurst, G.W.Bornkamm, M.Brielmeier, and M.Conrad (2005).
Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development.
  Mol Cell Biol, 25, 1980-1988.  
15998250 P.Di Simplicio, S.Frosali, R.Priora, D.Summa, F.Cherubini Di Simplicio, D.Di Giuseppe, and A.Di Stefano (2005).
Biochemical and biological aspects of protein thiolation in cells and plasma.
  Antioxid Redox Signal, 7, 951-963.  
15355959 J.R.Woo, S.J.Kim, W.Jeong, Y.H.Cho, S.C.Lee, Y.J.Chung, S.G.Rhee, and S.E.Ryu (2004).
Structural basis of cellular redox regulation by human TRP14.
  J Biol Chem, 279, 48120-48125.
PDB code: 1wou
15175318 M.A.Edeling, U.Ahuja, B.Heras, L.Thöny-Meyer, and J.L.Martin (2004).
The acidic nature of the CcmG redox-active center is important for cytochrome c maturation in Escherichia coli.
  J Bacteriol, 186, 4030-4033.  
12552119 C.Nguyen, J.L.Teo, A.Matsuda, M.Eguchi, E.Y.Chi, W.R.Henderson, and M.Kahn (2003).
Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma.
  Proc Natl Acad Sci U S A, 100, 1169-1173.  
12433921 F.Vignols, N.Mouaheb, D.Thomas, and Y.Meyer (2003).
Redox control of Hsp70-Co-chaperone interaction revealed by expression of a thioredoxin-like Arabidopsis protein.
  J Biol Chem, 278, 4516-4523.  
12529327 S.J.Kim, J.R.Woo, Y.S.Hwang, D.G.Jeong, D.H.Shin, K.Kim, and S.E.Ryu (2003).
The tetrameric structure of Haemophilus influenza hybrid Prx5 reveals interactions between electron donor and acceptor proteins.
  J Biol Chem, 278, 10790-10798.
PDB code: 1nm3
12816947 W.H.Watson, J.Pohl, W.R.Montfort, O.Stuchlik, M.S.Reed, G.Powis, and D.P.Jones (2003).
Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif.
  J Biol Chem, 278, 33408-33415.  
12067592 A.K.Roy, T.Oh, O.Rivera, J.Mubiru, C.S.Song, and B.Chatterjee (2002).
Impacts of transcriptional regulation on aging and senescence.
  Ageing Res Rev, 1, 367-380.  
11985582 J.Jin, X.Chen, Y.Zhou, M.Bartlam, Q.Guo, Y.Liu, Y.Sun, Y.Gao, S.Ye, G.Li, Z.Rao, B.Qiang, and J.Yuan (2002).
Crystal structure of the catalytic domain of a human thioredoxin-like protein.
  Eur J Biochem, 269, 2060-2068.
PDB code: 1gh2
12121652 M.A.Edeling, L.W.Guddat, R.A.Fabianek, L.Thöny-Meyer, and J.L.Martin (2002).
Structure of CcmG/DsbE at 1.14 A resolution: high-fidelity reducing activity in an indiscriminately oxidizing environment.
  Structure, 10, 973-979.
PDB code: 1kng
11347894 B.Hofmann, H.Budde, K.Bruns, S.A.Guerrero, H.M.Kalisz, U.Menge, M.Montemartini, E.Nogoceke, P.Steinert, J.B.Wissing, L.Flohé, and H.J.Hecht (2001).
Structures of tryparedoxins revealing interaction with trypanothione.
  Biol Chem, 382, 459-471.
PDB codes: 1ewx 1ezk 1fg4 1i5g
11264458 G.Powis, and W.R.Montfort (2001).
Properties and biological activities of thioredoxins.
  Annu Rev Pharmacol Toxicol, 41, 261-295.  
11441809 G.Powis, and W.R.Montfort (2001).
Properties and biological activities of thioredoxins.
  Annu Rev Biophys Biomol Struct, 30, 421-455.  
11035260 G.Powis, D.Mustacich, and A.Coon (2000).
The role of the redox protein thioredoxin in cell growth and cancer.
  Free Radic Biol Med, 29, 312-322.  
10828992 J.Couprie, F.Vinci, C.Dugave, E.Quéméneur, and M.Moutiez (2000).
Investigation of the DsbA mechanism through the synthesis and analysis of an irreversible enzyme-ligand complex.
  Biochemistry, 39, 6732-6742.  
11213487 J.Qin, Y.Yang, A.Velyvis, and A.Gronenborn (2000).
Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes.
  Antioxid Redox Signal, 2, 827-840.  
10649999 S.Dai, C.Schwendtmayer, P.Schürmann, S.Ramaswamy, and H.Eklund (2000).
Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster.
  Science, 287, 655-658.
PDB code: 1dj7
11582571 V.Menchise, C.Corbier, C.Didierjean, J.P.Jacquot, E.Benedetti, M.Saviano, and A.Aubry (2000).
Crystal structure of the W35A mutant thioredoxin h from Chlamydomonas reinhardtii: the substitution of the conserved active site Trp leads to modifications in the environment of the two catalytic cysteines.
  Biopolymers, 56, 1-7.  
11233142 H.Tanaka, Y.Makino, K.Okamoto, T.Iida, K.Yan, and N.Yoshikawa (1999).
Redox regulation of the glucocorticoid receptor.
  Antioxid Redox Signal, 1, 403-423.  
10488136 K.Hirota, M.Murata, Y.Sachi, H.Nakamura, J.Takeuchi, K.Mori, and J.Yodoi (1999).
Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB.
  J Biol Chem, 274, 27891-27897.  
10194350 K.Johansson, S.Ramaswamy, M.Saarinen, M.Lemaire-Chamley, E.Issakidis-Bourguet, M.Miginiac-Maslow, and H.Eklund (1999).
Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form.
  Biochemistry, 38, 4319-4326.
PDB code: 7mdh
10391912 L.Verdoucq, F.Vignols, J.P.Jacquot, Y.Chartier, and Y.Meyer (1999).
In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family.
  J Biol Chem, 274, 19714-19722.  
10581254 M.Chiadmi, A.Navaza, M.Miginiac-Maslow, J.P.Jacquot, and J.Cherfils (1999).
Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase.
  EMBO J, 18, 6809-6815.
PDB codes: 1d9q 1dbz 1dcu
10491099 M.Montemartini, H.M.Kalisz, H.J.Hecht, P.Steinert, and L.Flohé (1999).
Activation of active-site cysteine residues in the peroxiredoxin-type tryparedoxin peroxidase of Crithidia fasciculata.
  Eur J Biochem, 264, 516-524.  
10497208 S.Izawa, K.Maeda, K.Sugiyama, J.Mano, Y.Inoue, and A.Kimura (1999).
Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae.
  J Biol Chem, 274, 28459-28465.  
  10210184 V.Bunik, G.Raddatz, S.Lemaire, Y.Meyer, J.P.Jacquot, and H.Bisswanger (1999).
Interaction of thioredoxins with target proteins: role of particular structural elements and electrostatic properties of thioredoxins in their interplay with 2-oxoacid dehydrogenase complexes.
  Protein Sci, 8, 65-74.  
9915858 Y.Makino, N.Yoshikawa, K.Okamoto, K.Hirota, J.Yodoi, I.Makino, and H.Tanaka (1999).
Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function.
  J Biol Chem, 274, 3182-3188.  
10498962 Y.Meyer, L.Verdoucq, and F.Vignols (1999).
Plant thioredoxins and glutaredoxins: identity and putative roles.
  Trends Plant Sci, 4, 388-394.  
9721674 J.López Jaramillo, A.Chueca, M.Sahrawy, and J.López Gorgé (1998).
Hybrids from pea chloroplast thioredoxins f and m: physicochemical and kinetic characteristics.
  Plant J, 15, 155-163.  
9782121 M.Hotta, F.Tashiro, H.Ikegami, H.Niwa, T.Ogihara, J.Yodoi, and J.Miyazaki (1998).
Pancreatic beta cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes.
  J Exp Med, 188, 1445-1451.  
9558318 M.J.Berardi, C.L.Pendred, and J.H.Bushweller (1998).
Preparation, characterization, and complete heteronuclear NMR resonance assignments of the glutaredoxin (C14S)-ribonucleotide reductase B1 737-761 (C754S) mixed disulfide.
  Biochemistry, 37, 5849-5857.  
9501259 N.Mouaheb, D.Thomas, L.Verdoucq, P.Monfort, and Y.Meyer (1998).
In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae.
  Proc Natl Acad Sci U S A, 95, 3312-3317.  
9860827 Y.Yang, S.Jao, S.Nanduri, D.W.Starke, J.J.Mieyal, and J.Qin (1998).
Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity.
  Biochemistry, 37, 17145-17156.
PDB code: 1b4q
9143692 H.Nakamura, K.Nakamura, and J.Yodoi (1997).
Redox regulation of cellular activation.
  Annu Rev Immunol, 15, 351-369.  
9094311 J.Kemmink, N.J.Darby, K.Dijkstra, M.Nilges, and T.E.Creighton (1997).
The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules.
  Curr Biol, 7, 239-245.  
9374530 S.Leppä, L.Pirkkala, S.C.Chow, J.E.Eriksson, and L.Sistonen (1997).
Thioredoxin is transcriptionally induced upon activation of heat shock factor 2.
  J Biol Chem, 272, 30400-30404.  
9030762 V.Mittard, M.J.Blackledge, M.Stein, J.P.Jacquot, D.Marion, and J.M.Lancelin (1997).
NMR solution structure of an oxidised thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii.
  Eur J Biochem, 243, 374-383.
PDB code: 1tof
8768898 A.J.Wand, and S.W.Englander (1996).
Protein complexes studied by NMR spectroscopy.
  Curr Opin Biotechnol, 7, 403-408.  
8717528 A.S.Baldwin (1996).
The NF-kappa B and I kappa B proteins: new discoveries and insights.
  Annu Rev Immunol, 14, 649-683.  
8805557 A.Weichsel, J.R.Gasdaska, G.Powis, and W.R.Montfort (1996).
Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer.
  Structure, 4, 735-751.
PDB codes: 1ert 1eru 1erv 1erw
8631927 H.K.Brandes, F.W.Larimer, and F.C.Hartman (1996).
The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f.
  J Biol Chem, 271, 3333-3335.  
9052856 H.Masutani, K.Hirota, T.Sasada, Y.Ueda-Taniguchi, Y.Taniguchi, H.Sono, and J.Yodoi (1996).
Transactivation of an inducible anti-oxidative stress protein, human thioredoxin by HTLV-I Tax.
  Immunol Lett, 54, 67-71.  
8672469 J.Kemmink, N.J.Darby, K.Dijkstra, M.Nilges, and T.E.Creighton (1996).
Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy.
  Biochemistry, 35, 7684-7691.
PDB code: 1mek
8555200 J.Qin, G.M.Clore, and A.M.Gronenborn (1996).
Ionization equilibria for side-chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NF kappa B.
  Biochemistry, 35, 7.  
8736558 J.Qin, G.M.Clore, W.P.Kennedy, J.Kuszewski, and A.M.Gronenborn (1996).
The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal.
  Structure, 4, 613-620.
PDB codes: 1cqg 1cqh
8798742 M.K.Geck, F.W.Larimer, and F.C.Hartman (1996).
Identification of residues of spinach thioredoxin f that influence interactions with target enzymes.
  J Biol Chem, 271, 24736-24740.  
8664271 P.F.Wang, D.M.Veine, S.H.Ahn, and C.H.Williams (1996).
A stable mixed disulfide between thioredoxin reductase and its substrate, thioredoxin: preparation and characterization.
  Biochemistry, 35, 4812-4819.  
8958209 Y.Makino, K.Okamoto, N.Yoshikawa, M.Aoshima, K.Hirota, J.Yodoi, K.Umesono, I.Makino, and H.Tanaka (1996).
Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system.
  J Clin Invest, 98, 2469-2477.  
7788289 A.Holmgren (1995).
Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide.
  Structure, 3, 239-243.  
  8575189 A.M.Gronenborn, and G.M.Clore (1995).
Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy.
  Crit Rev Biochem Mol Biol, 30, 351-385.  
  8770536 J.D.Hayes, and D.J.Pulford (1995).
The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance.
  Crit Rev Biochem Mol Biol, 30, 445-600.  
8590004 M.Saarinen, F.K.Gleason, and H.Eklund (1995).
Crystal structure of thioredoxin-2 from Anabaena.
  Structure, 3, 1097-1108.
PDB code: 1thx
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.