PDBsum entry 1hci

Go to PDB code: 
protein Protein-protein interface(s) links
Triple-helix coiled coil PDB id
Protein chain
475 a.a. *
Waters ×16
* Residue conservation analysis
PDB id:
Name: Triple-helix coiled coil
Title: Crystal structure of the rod domain of alpha-actinin
Structure: Alpha-actinin 2. Chain: a, b. Fragment: spectrin-like repeats 1,2,3, and 4 - amino acids 274 - 746. Synonym: alpha actinin skeletal muscle isoform 2, f-actin cross linking protein. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Tissue: skeletal muscle. Plasmid: pet 8c. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Biol. unit: Dimer (from PDB file)
2.8Å     R-factor:   0.270     R-free:   0.295
Authors: J.Ylanne,K.Scheffzek,P.Young,M.Saraste
Key ref:
J.Ylänne et al. (2001). Crystal structure of the alpha-actinin rod reveals an extensive torsional twist. Structure, 9, 597-604. PubMed id: 11470434 DOI: 10.1016/S0969-2126(01)00619-0
04-May-01     Release date:   27-Jun-01    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P35609  (ACTN2_HUMAN) -  Alpha-actinin-2
894 a.a.
475 a.a.*
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)


DOI no: 10.1016/S0969-2126(01)00619-0 Structure 9:597-604 (2001)
PubMed id: 11470434  
Crystal structure of the alpha-actinin rod reveals an extensive torsional twist.
J.Ylänne, K.Scheffzek, P.Young, M.Saraste.
BACKGROUND: Alpha-actinin is a ubiquitously expressed protein found in numerous actin structures. It consists of an N-terminal actin binding domain, a central rod domain, and a C-terminal domain and functions as a homodimer to cross-link actin filaments. The rod domain determines the distance between cross-linked actin filaments and also serves as an interaction site for several cytoskeletal and signaling proteins. RESULTS: We report here the crystal structure of the alpha-actinin rod. The structure is a twisted antiparallel dimer that contains a conserved acidic surface. CONCLUSIONS: The novel features revealed by the structure allow prediction of the orientation of parallel and antiparallel cross-linked actin filaments in relation to alpha-actinin. The conserved acidic surface is a possible interaction site for several cytoplasmic tails of transmembrane proteins involved in the recruitment of alpha-actinin to the plasma membrane.
  Selected figure(s)  
Figure 5.
Figure 5. A Comparison between Spectrin Repeats 1 and 2 in Our Structure and Dictyostelium discoideum a-ActininThe color codes are as follows: yellow, human a-actinin 2A repeat 1; red, human repeat 2; and green, Dictyostelium a-actinin [30].(a) Both spectrin repeats cannot be superimposed simultaneously. When the two spectrin repeat 1s are superimposed, the orientations of both spectrin repeat 2s differ.(b) In the superimposition of the two spectrin repeat 1s, the major differences are the orientations of the helixes linking them to the two spectrin repeat 2s (upper right).(c) The superimposition of the two spectrin repeat 2s reveals differences at the linking helix (lower left) and the adjoining loop

  The above figure is reprinted by permission from Cell Press: Structure (2001, 9, 597-604) copyright 2001.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241830 K.G.Oikonomou, K.Zachou, and G.N.Dalekos (2011).
Alpha-actinin: a multidisciplinary protein with important role in B-cell driven autoimmunity.
  Autoimmun Rev, 10, 389-396.  
19920151 H.Shao, C.Wu, and A.Wells (2010).
Phosphorylation of alpha-actinin 4 upon epidermal growth factor exposure regulates its interaction with actin.
  J Biol Chem, 285, 2591-2600.  
20446344 S.H.Lee, and R.Dominguez (2010).
Regulation of actin cytoskeleton dynamics in cells.
  Mol Cells, 29, 311-325.  
  20463852 C.G.Pontrello, and I.M.Ethell (2009).
Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines.
  Open Neurosci J, 3, 67-86.  
19436721 J.Golji, R.Collins, and M.R.Mofrad (2009).
Molecular Mechanics of the alpha-Actinin Rod Domain: Bending, Torsional, and Extensional Behavior.
  PLoS Comput Biol, 5, e1000389.  
19141864 J.J.Ipsaro, L.Huang, and A.Mondragón (2009).
Structures of the spectrin-ankyrin interaction binding domains.
  Blood, 113, 5385-5393.
PDB codes: 3f57 3f59
19830582 P.K.Luther (2009).
The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling.
  J Muscle Res Cell Motil, 30, 171-185.  
18998136 P.Reiter, D.Felix, H.von der Mosel, and W.Alt (2009).
Energetics and dynamics of global integrals modeling interaction between stiff filaments.
  J Math Biol, 59, 377-414.  
19327143 T.Klaavuniemi, N.Alho, P.Hotulainen, A.Kelloniemi, H.Havukainen, P.Permi, S.Mattila, and J.Ylänne (2009).
Characterization of the interaction between Actinin-Associated LIM Protein (ALP) and the rod domain of alpha-actinin.
  BMC Cell Biol, 10, 22.  
17977835 D.Li, H.Y.Tang, and D.W.Speicher (2008).
A structural model of the erythrocyte spectrin heterodimer initiation site determined using homology modeling and chemical cross-linking.
  J Biol Chem, 283, 1553-1562.  
18296101 M.Lorenzi, and M.Gimona (2008).
Synthetic actin-binding domains reveal compositional constraints for function.
  Int J Biochem Cell Biol, 40, 1806-1816.  
18577523 S.Rodius, O.Chaloin, M.Moes, E.Schaffner-Reckinger, I.Landrieu, G.Lippens, M.Lin, J.Zhang, and N.Kieffer (2008).
The Talin Rod IBS2 {alpha}-Helix Interacts with the {beta}3 Integrin Cytoplasmic Tail Membrane-proximal Helix by Establishing Charge Complementary Salt Bridges.
  J Biol Chem, 283, 24212-24223.  
17331538 C.M.Hampton, D.W.Taylor, and K.A.Taylor (2007).
Novel structures for alpha-actinin:F-actin interactions and their implications for actin-membrane attachment and tension sensing in the cytoskeleton.
  J Mol Biol, 368, 92.  
17192394 C.P.Johnson, M.Gaetani, V.Ortiz, N.Bhasin, S.Harper, P.G.Gallagher, D.W.Speicher, and D.E.Discher (2007).
Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding.
  Blood, 109, 3538-3543.  
17504815 H.Li, T.Mao, Z.Zhang, and M.Yuan (2007).
The AtMAP65-1 cross-bridge between microtubules is formed by one dimer.
  Plant Cell Physiol, 48, 866-874.  
17085494 L.G.Randles, R.W.Rounsevell, and J.Clarke (2007).
Spectrin domains lose cooperativity in forced unfolding.
  Biophys J, 92, 571-577.  
17115122 M.Soncini, S.Vesentini, D.Ruffoni, M.Orsi, M.A.Deriu, and A.Redaelli (2007).
Mechanical response and conformational changes of alpha-actinin domains during unfolding: a molecular dynamics study.
  Biomech Model Mechanobiol, 6, 399-407.  
17925230 S.Mukhina, Y.L.Wang, and M.Murata-Hori (2007).
Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis.
  Dev Cell, 13, 554-565.  
17867784 S.Paramore, G.S.Ayton, and G.A.Voth (2007).
Transient violations of the second law of thermodynamics in protein unfolding examined using synthetic atomic force microscopy and the fluctuation theorem.
  J Chem Phys, 127, 105105.  
16826238 C.Hamiaux, A.van Eerde, C.Parsot, J.Broos, and B.W.Dijkstra (2006).
Structural mimicry for vinculin activation by IpaA, a virulence factor of Shigella flexneri.
  EMBO Rep, 7, 794-799.
PDB code: 2gdc
  16569237 D.L.Scott, G.Diez, and W.H.Goldmann (2006).
Protein-lipid interactions: correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data.
  Theor Biol Med Model, 3, 17.  
17074767 H.Chen, D.M.Choudhury, and S.W.Craig (2006).
Coincidence of actin filaments and talin is required to activate vinculin.
  J Biol Chem, 281, 40389-40398.  
16716778 N.Menhart (2006).
Hybrid spectrin type repeats produced by exon-skipping in dystrophin.
  Biochim Biophys Acta, 1764, 993-999.  
16407299 P.R.Bois, B.P.O'Hara, D.Nietlispach, J.Kirkpatrick, and T.Izard (2006).
The vinculin binding sites of talin and alpha-actinin are sufficient to activate vinculin.
  J Biol Chem, 281, 7228-7236.  
16387757 S.Batey, K.A.Scott, and J.Clarke (2006).
Complex folding kinetics of a multidomain protein.
  Biophys J, 90, 2120-2130.  
16891371 S.Paramore, and G.A.Voth (2006).
Examining the influence of linkers and tertiary structure in the forced unfolding of multiple-repeat spectrin molecules.
  Biophys J, 91, 3436-3445.  
16227506 S.Paramore, G.S.Ayton, D.T.Mirijanian, and G.A.Voth (2006).
Extending a spectrin repeat unit. I: linear force-extension response.
  Biophys J, 90, 92.  
16227505 S.Paramore, G.S.Ayton, and G.A.Voth (2006).
Extending a spectrin repeat unit. II: rupture behavior.
  Biophys J, 90, 101-111.  
16893648 W.H.Ziegler, R.C.Liddington, and D.R.Critchley (2006).
The structure and regulation of vinculin.
  Trends Cell Biol, 16, 453-460.  
15988023 P.R.Bois, R.A.Borgon, C.Vonrhein, and T.Izard (2005).
Structural dynamics of alpha-actinin-vinculin interactions.
  Mol Cell Biol, 25, 6112-6122.
PDB code: 1ydi
15833278 R.J.Chi, S.G.Olenych, K.Kim, and T.C.Keller (2005).
Smooth muscle alpha-actinin interaction with smitin.
  Int J Biochem Cell Biol, 37, 1470-1482.  
15635447 T.H.Millard, G.Bompard, M.Y.Heung, T.R.Dafforn, D.J.Scott, L.M.Machesky, and K.Fütterer (2005).
Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53.
  EMBO J, 24, 240-250.
PDB code: 1y2o
15062087 H.Kusunoki, R.I.MacDonald, and A.Mondragón (2004).
Structural insights into the stability and flexibility of unusual erythroid spectrin repeats.
  Structure, 12, 645-656.
PDB code: 1s35
15022329 L.J.Mason, C.T.Ravirajan, A.Rahman, C.Putterman, and D.A.Isenberg (2004).
Is alpha-actinin a target for pathogenic anti-DNA antibodies in lupus nephritis?
  Arthritis Rheum, 50, 866-870.  
15070900 S.Y.Lin, S.Raval, Z.Zhang, M.Deverill, K.A.Siminovitch, D.R.Branch, and B.Haimovich (2004).
The protein-tyrosine phosphatase SHP-1 regulates the phosphorylation of alpha-actinin.
  J Biol Chem, 279, 25755-25764.  
15084604 T.Klaavuniemi, A.Kelloniemi, and J.Ylänne (2004).
The ZASP-like motif in actinin-associated LIM protein is required for interaction with the alpha-actinin rod and for targeting to the muscle Z-line.
  J Biol Chem, 279, 26402-26410.  
12657793 F.Ekström, G.Stier, and U.H.Sauer (2003).
Crystallization of the actin-binding domain of human alpha-actinin: analysis of microcrystals of SeMet-labelled protein.
  Acta Crystallogr D Biol Crystallogr, 59, 724-726.  
14581229 R.Law, G.Liao, S.Harper, G.Yang, D.W.Speicher, and D.E.Discher (2003).
Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains.
  Biophys J, 85, 3286-3293.  
12524305 R.Law, P.Carl, S.Harper, P.Dalhaimer, D.W.Speicher, and D.E.Discher (2003).
Cooperativity in forced unfolding of tandem spectrin repeats.
  Biophys J, 84, 533-544.  
12517699 S.J.Winder (2003).
Structural insights into actin-binding, branching and bundling proteins.
  Curr Opin Cell Biol, 15, 14-22.  
12716899 T.S.Fraley, T.C.Tran, A.M.Corgan, C.A.Nash, J.Hao, D.R.Critchley, and J.A.Greenwood (2003).
Phosphoinositide binding inhibits alpha-actinin bundling activity.
  J Biol Chem, 278, 24039-24045.  
12112139 L.Huang, B.Mittal, J.W.Sanger, and J.M.Sanger (2002).
Host focal adhesion protein domains that bind to the translocated intimin receptor (Tir) of enteropathogenic Escherichia coli (EPEC).
  Cell Motil Cytoskeleton, 52, 255-265.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.