|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
81 a.a.
|
 |
|
|
|
|
|
|
|
312 a.a.
|
 |
|
|
|
|
|
|
|
309 a.a.
|
 |
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Blood coagulation
|
 |
|
Title:
|
 |
Crystal structure of crosslinked fragment d
|
|
Structure:
|
 |
Fibrinogen. Chain: a, d. Fragment: double fragment d. Fibrinogen. Chain: b, e. Fragment: double fragment d. Fibrinogen. Chain: c, f. Fragment: double fragment d.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Organ: blood. Tissue: blood.
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
2.90Å
|
R-factor:
|
0.241
|
R-free:
|
0.318
|
|
|
Authors:
|
 |
G.Spraggon,S.J.Everse,R.F.Doolittle
|
Key ref:
|
 |
G.Spraggon
et al.
(1997).
Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin.
Nature,
389,
455-462.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
05-Aug-97
|
Release date:
|
03-Dec-97
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P02671
(FIBA_HUMAN) -
Fibrinogen alpha chain from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
866 a.a.
81 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
389:455-462
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin.
|
|
G.Spraggon,
S.J.Everse,
R.F.Doolittle.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
In blood coagulation, units of the protein fibrinogen pack together to form a
fibrin clot, but a crystal structure for fibrinogen is needed to understand how
this is achieved. The structure of a core fragment (fragment D) from human
fibrinogen has now been determined to 2.9 A resolution. The 86K three-chained
structure consists of a coiled-coil region and two homologous globular entitles
oriented at approximately 130 degrees to each other. Additionally, the
covalently bound dimer of fragment D, known as 'double-D', was isolated from
human fibrin, crystallized in the presence of a Gly-Pro-Arg-Pro-amide peptide
ligand, which simulates the donor polymerization site, and its structure solved
by molecular replacement with the model of fragment D.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4 a, Topology of -chain
(green) and -chain
(red) C-terminal domains. The first residue in each segment of
secondary structure is numbered. b, Stereo depiction of
superposed C backbone
structures from globular portions of -chains
(green) and -chains
(red); the numbers on the strands and letters on the helices
correspond to the secondary structure designations in Fig. 4. c,
GRASP representation of binding cavities of -chains
(left) and -chains
(right) showing charge distribution; red, negatively charged;
blue, positively charged^47. Domains have been reorientated to
show equivalent projections.
|
 |
Figure 5.
Figure 5 a, Topology of -chain
(green) and -chain
(red) C-terminal domains. The first residue in each segment of
secondary structure is numbered. b, Stereo depiction of
superposed C backbone
structures from globular portions of -chains
(green) and -chains
(red); the numbers on the strands and letters on the helices
correspond to the secondary structure designations in Fig. 4. c,
GRASP representation of binding cavities of -chains
(left) and -chains
(right) showing charge distribution; red, negatively charged;
blue, positively charged^47. Domains have been reorientated to
show equivalent projections.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(1997,
389,
455-462)
copyright 1997.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
E.V.Lugovskoy,
P.G.Gritsenko,
T.A.Koshel,
I.O.Koliesnik,
S.O.Cherenok,
O.I.Kalchenko,
V.I.Kalchenko,
and
S.V.Komisarenko
(2011).
Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization.
|
| |
FEBS J,
278,
1244-1251.
|
 |
|
|
|
|
 |
H.A.Choy,
M.M.Kelley,
J.Croda,
J.Matsunaga,
J.T.Babbitt,
A.I.Ko,
M.Picardeau,
and
D.A.Haake
(2011).
The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira interrogans.
|
| |
PLoS One,
6,
e16879.
|
 |
|
|
|
|
 |
L.Sando,
S.Danon,
A.G.Brownlee,
R.J.McCulloch,
J.A.Ramshaw,
C.M.Elvin,
and
J.A.Werkmeister
(2011).
Photochemically crosslinked matrices of gelatin and fibrinogen promote rapid cell proliferation.
|
| |
J Tissue Eng Regen Med,
5,
337-346.
|
 |
|
|
|
|
 |
P.Macheboeuf,
C.Buffalo,
C.Y.Fu,
A.S.Zinkernagel,
J.N.Cole,
J.E.Johnson,
V.Nizet,
and
P.Ghosh
(2011).
Streptococcal M1 protein constructs a pathological host fibrinogen network.
|
| |
Nature,
472,
64-68.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Kuehn,
N.Simon,
and
G.Pradel
(2010).
Family members stick together: multi-protein complexes of malaria parasites.
|
| |
Med Microbiol Immunol,
199,
209-226.
|
 |
|
|
|
|
 |
C.M.Rein,
B.L.Anderson,
M.M.Ballard,
C.M.Domes,
J.M.Johnston,
R.J.Madsen,
K.K.Wolper,
A.S.Terker,
J.M.Strother,
T.G.Deloughery,
and
D.H.Farrell
(2010).
Severe bleeding in a woman heterozygous for the fibrinogen gammaR275C mutation.
|
| |
Blood Coagul Fibrinolysis,
21,
494-497.
|
 |
|
|
|
|
 |
J.Zhu
(2010).
Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.
|
| |
Biomaterials,
31,
4639-4656.
|
 |
|
|
|
|
 |
L.B.Koh,
I.Rodriguez,
and
S.S.Venkatraman
(2010).
Conformational behavior of fibrinogen on topographically modified polymer surfaces.
|
| |
Phys Chem Chem Phys,
12,
10301-10308.
|
 |
|
|
|
|
 |
M.A.Rozenfeld,
V.B.Leonova,
A.N.Shegolihin,
S.D.Razumovskii,
M.L.Konstantinova,
A.V.Bychkova,
and
A.L.Kovarskii
(2010).
Free-radical oxidation of fibrinogen fragments D and E.
|
| |
Dokl Biochem Biophys,
433,
155-159.
|
 |
|
|
|
|
 |
R.Kotlín,
Z.Reicheltová,
J.Suttnar,
P.Salaj,
I.Hrachovinová,
T.Riedel,
M.Malý,
M.Oravec,
J.Kvasnicka,
and
J.E.Dyr
(2010).
Two novel fibrinogen variants in the C-terminus of the Bβ-chain: fibrinogen Rokycany and fibrinogen Znojmo.
|
| |
J Thromb Thrombolysis,
30,
311-318.
|
 |
|
|
|
|
 |
S.E.Stabenfeldt,
J.J.Gossett,
and
T.H.Barker
(2010).
Building better fibrin knob mimics: an investigation of synthetic fibrin knob peptide structures in solution and their dynamic binding with fibrinogen/fibrin holes.
|
| |
Blood,
116,
1352-1359.
|
 |
|
|
|
|
 |
S.O.Brennan,
R.L.Davis,
K.Conard,
A.Savo,
and
K.N.Furuya
(2010).
Novel fibrinogen mutation γ314Thr→Pro (fibrinogen AI duPont) associated with hepatic fibrinogen storage disease and hypofibrinogenaemia.
|
| |
Liver Int,
30,
1541-1547.
|
 |
|
|
|
|
 |
A.Bah,
C.J.Carrell,
Z.Chen,
P.S.Gandhi,
and
E.Di Cera
(2009).
Stabilization of the E* form turns thrombin into an anticoagulant.
|
| |
J Biol Chem,
284,
20034-20040.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.K.Ryu,
D.Davalos,
and
K.Akassoglou
(2009).
Fibrinogen signal transduction in the nervous system.
|
| |
J Thromb Haemost,
7,
151-154.
|
 |
|
|
|
|
 |
L.Medved,
and
J.W.Weisel
(2009).
Recommendations for nomenclature on fibrinogen and fibrin.
|
| |
J Thromb Haemost,
7,
355-359.
|
 |
|
|
|
|
 |
R.H.Abou-Saleh,
S.D.Connell,
R.Harrand,
R.A.Ajjan,
M.W.Mosesson,
D.A.Smith,
P.J.Grant,
and
R.A.Ariëns
(2009).
Nanoscale probing reveals that reduced stiffness of clots from fibrinogen lacking 42 N-terminal Bbeta-chain residues is due to the formation of abnormal oligomers.
|
| |
Biophys J,
96,
2415-2427.
|
 |
|
|
|
|
 |
S.R.Bowley,
N.Okumura,
and
S.T.Lord
(2009).
Impaired protofibril formation in fibrinogen gamma N308K is due to altered D:D and "A:a" interactions.
|
| |
Biochemistry,
48,
8656-8663.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Bowley,
and
S.T.Lord
(2009).
Fibrinogen variant BbetaD432A has normal polymerization but does not bind knob "B".
|
| |
Blood,
113,
4425-4430.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.McNamara,
A.S.Zinkernagel,
P.Macheboeuf,
M.W.Cunningham,
V.Nizet,
and
P.Ghosh
(2008).
Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence.
|
| |
Science,
319,
1405-1408.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Nakayama-Hamada,
A.Suzuki,
H.Furukawa,
R.Yamada,
and
K.Yamamoto
(2008).
Citrullinated fibrinogen inhibits thrombin-catalysed fibrin polymerization.
|
| |
J Biochem,
144,
393-398.
|
 |
|
|
|
|
 |
P.de Moerloose,
and
M.Neerman-Arbez
(2008).
Treatment of congenital fibrinogen disorders.
|
| |
Expert Opin Biol Ther,
8,
979-992.
|
 |
|
|
|
|
 |
S.Lancellotti,
S.Rutella,
V.De Filippis,
N.Pozzi,
B.Rocca,
and
R.De Cristofaro
(2008).
Fibrinogen-elongated {gamma} Chain Inhibits Thrombin-induced Platelet Response, Hindering the Interaction with Different Receptors.
|
| |
J Biol Chem,
283,
30193-30204.
|
 |
|
|
|
|
 |
T.A.Springer,
J.Zhu,
and
T.Xiao
(2008).
Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3.
|
| |
J Cell Biol,
182,
791-800.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.A.Amelot,
M.Tagzirt,
G.Ducouret,
R.L.Kuen,
and
B.F.Le Bonniec
(2007).
Platelet factor 4 (CXCL4) seals blood clots by altering the structure of fibrin.
|
| |
J Biol Chem,
282,
710-720.
|
 |
|
|
|
|
 |
C.B.Geer,
A.Tripathy,
M.H.Schoenfisch,
S.T.Lord,
and
O.V.Gorkun
(2007).
Role of 'B-b' knob-hole interactions in fibrin binding to adsorbed fibrinogen.
|
| |
J Thromb Haemost,
5,
2344-2351.
|
 |
|
|
|
|
 |
D.Vu,
and
M.Neerman-Arbez
(2007).
Molecular mechanisms accounting for fibrinogen deficiency: from large deletions to intracellular retention of misfolded proteins.
|
| |
J Thromb Haemost,
5,
125-131.
|
 |
|
|
|
|
 |
E.V.Lugovskoy,
P.G.Gritsenko,
L.G.Kapustianenko,
I.N.Kolesnikova,
V.I.Chernishov,
and
S.V.Komisarenko
(2007).
Functional role of Bbeta-chain N-terminal fragment in the fibrin polymerization process.
|
| |
FEBS J,
274,
4540-4549.
|
 |
|
|
|
|
 |
J.W.Weisel
(2007).
Which knobs fit into which holes in fibrin polymerization?
|
| |
J Thromb Haemost,
5,
2340-2343.
|
 |
|
|
|
|
 |
M.Guthold,
W.Liu,
E.A.Sparks,
L.M.Jawerth,
L.Peng,
M.Falvo,
R.Superfine,
R.R.Hantgan,
and
S.T.Lord
(2007).
A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.
|
| |
Cell Biochem Biophys,
49,
165-181.
|
 |
|
|
|
|
 |
M.Neerman-Arbez,
and
P.de Moerloose
(2007).
Mutations in the fibrinogen gene cluster accounting for congenital afibrinogenemia: an update and report of 10 novel mutations.
|
| |
Hum Mutat,
28,
540-553.
|
 |
|
|
|
|
 |
N.Okumura,
F.Terasawa,
A.Haneishi,
N.Fujihara,
M.Hirota-Kawadobora,
K.Yamauchi,
H.Ota,
and
S.T.Lord
(2007).
B:b interactions are essential for polymerization of variant fibrinogens with impaired holes 'a'.
|
| |
J Thromb Haemost,
5,
2352-2359.
|
 |
|
|
|
|
 |
R.A.Burton,
G.Tsurupa,
R.R.Hantgan,
N.Tjandra,
and
L.Medved
(2007).
NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment.
|
| |
Biochemistry,
46,
8550-8560.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.I.Litvinov,
O.V.Gorkun,
D.K.Galanakis,
S.Yakovlev,
L.Medved,
H.Shuman,
and
J.W.Weisel
(2007).
Polymerization of fibrin: Direct observation and quantification of individual B:b knob-hole interactions.
|
| |
Blood,
109,
130-138.
|
 |
|
|
|
|
 |
R.Kotlín,
M.Chytilová,
J.Suttnar,
P.Salaj,
T.Riedel,
J.Santrůcek,
P.Klener,
and
J.E.Dyr
(2007).
A novel fibrinogen variant--Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution.
|
| |
Eur J Haematol,
78,
410-416.
|
 |
|
|
|
|
 |
I.Pechik,
S.Yakovlev,
M.W.Mosesson,
G.L.Gilliland,
and
L.Medved
(2006).
Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly.
|
| |
Biochemistry,
45,
3588-3597.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.H.Brown
(2006).
Breaking symmetry in protein dimers: designs and functions.
|
| |
Protein Sci,
15,
1.
|
 |
|
|
|
|
 |
L.Betts,
B.K.Merenbloom,
and
S.T.Lord
(2006).
The structure of fibrinogen fragment D with the 'A' knob peptide GPRVVE.
|
| |
J Thromb Haemost,
4,
1139-1141.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Rubbia-Brandt,
M.Neerman-Arbez,
A.L.Rougemont,
P.J.Malé,
and
L.Spahr
(2006).
Fibrinogen gamma375 arg-->trp mutation (fibrinogen aguadilla) causes hereditary hypofibrinogenemia, hepatic endoplasmic reticulum storage disease and cirrhosis.
|
| |
Am J Surg Pathol,
30,
906-911.
|
 |
|
|
|
|
 |
M.Meyer,
F.Bergmann,
and
S.O.Brennan
(2006).
Novel fibrinogen mutation (gamma 313 Ser-->Asn) associated with hypofibrinogenemia in two unrelated families.
|
| |
Blood Coagul Fibrinolysis,
17,
63-67.
|
 |
|
|
|
|
 |
R.A.Burton,
G.Tsurupa,
L.Medved,
and
N.Tjandra
(2006).
Identification of an ordered compact structure within the recombinant bovine fibrinogen alphaC-domain fragment by NMR.
|
| |
Biochemistry,
45,
2257-2266.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Asselta,
S.Duga,
and
M.L.Tenchini
(2006).
The molecular basis of quantitative fibrinogen disorders.
|
| |
J Thromb Haemost,
4,
2115-2129.
|
 |
|
|
|
|
 |
R.C.Marchi,
Z.Carvajal,
C.Boyer-Neumann,
E.Anglés-Cano,
and
J.W.Weisel
(2006).
Functional characterization of fibrinogen Bicêtre II: a gamma 308 Asn-->Lys mutation located near the fibrin D:D interaction sites.
|
| |
Blood Coagul Fibrinolysis,
17,
193-201.
|
 |
|
|
|
|
 |
T.A.Dugan,
V.W.Yang,
D.J.McQuillan,
and
M.Höök
(2006).
Decorin modulates fibrin assembly and structure.
|
| |
J Biol Chem,
281,
38208-38216.
|
 |
|
|
|
|
 |
G.Castaman,
R.Ghiotto,
S.Duga,
and
F.Rodeghiero
(2005).
A novel fibrinogen gamma chain mutation (gamma 239 Gln-->His) is the cause of dysfibrinogenemia Vicenza.
|
| |
J Thromb Haemost,
3,
600-601.
|
 |
|
|
|
|
 |
M.W.Mosesson
(2005).
Fibrinogen and fibrin structure and functions.
|
| |
J Thromb Haemost,
3,
1894-1904.
|
 |
|
|
|
|
 |
N.Rai,
M.Nöllmann,
B.Spotorno,
G.Tassara,
O.Byron,
and
M.Rocco
(2005).
SOMO (SOlution MOdeler) differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics.
|
| |
Structure,
13,
723-734.
|
 |
|
|
|
|
 |
R.I.Litvinov,
O.V.Gorkun,
S.F.Owen,
H.Shuman,
and
J.W.Weisel
(2005).
Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level.
|
| |
Blood,
106,
2944-2951.
|
 |
|
|
|
|
 |
S.Duga,
P.Braidotti,
R.Asselta,
M.Maggioni,
E.Santagostino,
C.Pellegrini,
G.Coggi,
M.Malcovati,
and
M.L.Tenchini
(2005).
Liver histology of an afibrinogenemic patient with the Bbeta-L353R mutation showing no evidence of hepatic endoplasmic reticulum storage disease (ERSD); comparative study in COS-1 cells of the intracellular processing of the Bbeta-L353R fibrinogen vs. the ERSD-associated gamma-G284R mutant.
|
| |
J Thromb Haemost,
3,
724-732.
|
 |
|
|
|
|
 |
A.Conti,
Y.Sanchez-Ruiz,
A.Bachi,
L.Beretta,
E.Grandi,
M.Beltramo,
and
M.Alessio
(2004).
Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers.
|
| |
J Neurotrauma,
21,
854-863.
|
 |
|
|
|
|
 |
A.Dear,
C.E.Dempfle,
S.O.Brennan,
W.Kirschstein,
and
P.M.George
(2004).
Fibrinogen Mannheim II: a novel gamma307 His-->Tyr substitution in the gammaD domain causes hypofibrinogenemia.
|
| |
J Thromb Haemost,
2,
2194-2199.
|
 |
|
|
|
|
 |
G.Pradel,
K.Hayton,
L.Aravind,
L.M.Iyer,
M.S.Abrahamsen,
A.Bonawitz,
C.Mejia,
and
T.J.Templeton
(2004).
A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito.
|
| |
J Exp Med,
199,
1533-1544.
|
 |
|
|
|
|
 |
H.A.Guglielmone,
M.C.Sanchez,
D.Abate Daga,
and
J.L.Bocco
(2004).
A new heterozygous mutation in gamma fibrinogen gene leading to 326 Cys-->Ser substitution in fibrinogen Córdoba is associated with defective polymerization and familial hypodysfibrinogenemia.
|
| |
J Thromb Haemost,
2,
352-354.
|
 |
|
|
|
|
 |
I.Pechik,
J.Madrazo,
M.W.Mosesson,
I.Hernandez,
G.L.Gilliland,
and
L.Medved
(2004).
Crystal structure of the complex between thrombin and the central "E" region of fibrin.
|
| |
Proc Natl Acad Sci U S A,
101,
2718-2723.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.W.Weisel
(2004).
Cross-linked gamma-chains in fibrin fibrils bridge transversely between strands: no.
|
| |
J Thromb Haemost,
2,
394-399.
|
 |
|
|
|
|
 |
M.W.Mosesson
(2004).
Cross-linked gamma-chains in fibrin fibrils bridge 'transversely' between strands: yes.
|
| |
J Thromb Haemost,
2,
388-393.
|
 |
|
|
|
|
 |
R.F.Doolittle
(2004).
Determining the crystal structure of fibrinogen.
|
| |
J Thromb Haemost,
2,
683-689.
|
 |
|
|
|
|
 |
V.K.Lishko,
N.P.Podolnikova,
V.P.Yakubenko,
S.Yakovlev,
L.Medved,
S.P.Yadav,
and
T.P.Ugarova
(2004).
Multiple binding sites in fibrinogen for integrin alphaMbeta2 (Mac-1).
|
| |
J Biol Chem,
279,
44897-44906.
|
 |
|
|
|
|
 |
A.Profumo,
M.Turci,
G.Damonte,
F.Ferri,
D.Magatti,
B.Cardinali,
C.Cuniberti,
and
M.Rocco
(2003).
Kinetics of fibrinopeptide release by thrombin as a function of CaCl2 concentration: different susceptibility of FPA and FPB and evidence for a fibrinogen isoform-specific effect at physiological Ca2+ concentration.
|
| |
Biochemistry,
42,
12335-12348.
|
 |
|
|
|
|
 |
M.Hirota-Kawadobora,
F.Terasawa,
O.Yonekawa,
N.Sahara,
E.Shimizu,
N.Okumura,
T.Katsuyama,
and
H.Shigematsu
(2003).
Fibrinogens Kosai and Ogasa: Bbeta15Gly-->Cys (GGT-->TGT) substitution associated with impairment of fibrinopeptide B release and lateral aggregation.
|
| |
J Thromb Haemost,
1,
275-283.
|
 |
|
|
|
|
 |
M.W.Mosesson
(2003).
Fibrinogen gamma chain functions.
|
| |
J Thromb Haemost,
1,
231-238.
|
 |
|
|
|
|
 |
N.P.Podolnikova,
V.P.Yakubenko,
G.L.Volkov,
E.F.Plow,
and
T.P.Ugarova
(2003).
Identification of a novel binding site for platelet integrins alpha IIb beta 3 (GPIIbIIIa) and alpha 5 beta 1 in the gamma C-domain of fibrinogen.
|
| |
J Biol Chem,
278,
32251-32258.
|
 |
|
|
|
|
 |
R.F.Doolittle
(2003).
X-ray crystallographic studies on fibrinogen and fibrin.
|
| |
J Thromb Haemost,
1,
1559-1565.
|
 |
|
|
|
|
 |
R.F.Doolittle
(2003).
Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography.
|
| |
Blood Rev,
17,
33-41.
|
 |
|
|
|
|
 |
T.A.Dugan,
V.W.Yang,
D.J.McQuillan,
and
M.Höök
(2003).
Decorin binds fibrinogen in a Zn2+-dependent interaction.
|
| |
J Biol Chem,
278,
13655-13662.
|
 |
|
|
|
|
 |
C.C.Deivanayagam,
E.R.Wann,
W.Chen,
M.Carson,
K.R.Rajashankar,
M.Höök,
and
S.V.Narayana
(2002).
A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A.
|
| |
EMBO J,
21,
6660-6672.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Tsurupa,
L.Tsonev,
and
L.Medved
(2002).
Structural organization of the fibrin(ogen) alpha C-domain.
|
| |
Biochemistry,
41,
6449-6459.
|
 |
|
|
|
|
 |
J.R.Shainoff,
G.B.Smejkal,
P.M.DiBello,
S.S.Sung,
L.A.Bush,
and
E.Di Cera
(2002).
Allosteric effects potentiating the release of the second fibrinopeptide A from fibrinogen by thrombin.
|
| |
J Biol Chem,
277,
19367-19373.
|
 |
|
|
|
|
 |
K.Akassoglou,
and
S.Strickland
(2002).
Nervous system pathology: the fibrin perspective.
|
| |
Biol Chem,
383,
37-45.
|
 |
|
|
|
|
 |
S.J.Everse
(2002).
New insights into fibrin (ogen) structure and function.
|
| |
Vox Sang,
83,
375-382.
|
 |
|
|
|
|
 |
Z.Yang,
G.Spraggon,
L.Pandi,
S.J.Everse,
M.Riley,
and
R.F.Doolittle
(2002).
Crystal structure of fragment D from lamprey fibrinogen complexed with the peptide Gly-His-Arg-Pro-amide.
|
| |
Biochemistry,
41,
10218-10224.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Madrazo,
J.H.Brown,
S.Litvinovich,
R.Dominguez,
S.Yakovlev,
L.Medved,
and
C.Cohen
(2001).
Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4-A resolution.
|
| |
Proc Natl Acad Sci U S A,
98,
11967-11972.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Brown,
N.Volkmann,
G.Jun,
A.H.Henschen-Edman,
and
C.Cohen
(2000).
The crystal structure of modified bovine fibrinogen.
|
| |
Proc Natl Acad Sci U S A,
97,
85-90.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.R.Siebenlist,
D.A.Meh,
and
M.W.Mosesson
(2000).
Position of gamma-chain carboxy-terminal regions in fibrinogen/fibrin cross-linking mixtures.
|
| |
Biochemistry,
39,
14171-14175.
|
 |
|
|
|
|
 |
M.L.Linenberger,
J.Kindelan,
R.L.Bennett,
A.P.Reiner,
and
H.C.Côté
(2000).
Fibrinogen bellingham: a gamma-chain R275C substitution and a beta-promoter polymorphism in a thrombotic member of an asymptomatic family.
|
| |
Am J Hematol,
64,
242-250.
|
 |
|
|
|
|
 |
M.Moaddel,
D.H.Farrell,
M.A.Daugherty,
and
M.G.Fried
(2000).
Interactions of human fibrinogens with factor XIII: roles of calcium and the gamma' peptide.
|
| |
Biochemistry,
39,
6698-6705.
|
 |
|
|
|
|
 |
N.V.Efremova,
B.Bondurant,
D.F.O'Brien,
and
D.E.Leckband
(2000).
Measurements of interbilayer forces and protein adsorption on uncharged lipid bilayers displaying poly(ethylene glycol) chains.
|
| |
Biochemistry,
39,
3441-3451.
|
 |
|
|
|
|
 |
S.Bernocco,
F.Ferri,
A.Profumo,
C.Cuniberti,
and
M.Rocco
(2000).
Polymerization of rod-like macromolecular monomers studied by stopped-flow, multiangle light scattering: set-up, data processing, and application to fibrin formation.
|
| |
Biophys J,
79,
561-583.
|
 |
|
|
|
|
 |
S.N.Murthy,
J.H.Wilson,
T.J.Lukas,
Y.Veklich,
J.W.Weisel,
and
L.Lorand
(2000).
Transglutaminase-catalyzed crosslinking of the Aalpha and gamma constituent chains in fibrinogen.
|
| |
Proc Natl Acad Sci U S A,
97,
44-48.
|
 |
|
|
|
|
 |
S.O.Brennan,
J.Wyatt,
D.Medicina,
F.Callea,
and
P.M.George
(2000).
Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because of a gamma284 Gly-->Arg mutation.
|
| |
Am J Pathol,
157,
189-196.
|
 |
|
|
|
|
 |
S.Yakovlev,
E.Makogonenko,
N.Kurochkina,
W.Nieuwenhuizen,
K.Ingham,
and
L.Medved
(2000).
Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites.
|
| |
Biochemistry,
39,
15730-15741.
|
 |
|
|
|
|
 |
S.Yakovlev,
S.Litvinovich,
D.Loukinov,
and
L.Medved
(2000).
Role of the beta-strand insert in the central domain of the fibrinogen gamma-module.
|
| |
Biochemistry,
39,
15721-15729.
|
 |
|
|
|
|
 |
Z.Yang,
I.Mochalkin,
L.Veerapandian,
M.Riley,
and
R.F.Doolittle
(2000).
Crystal structure of native chicken fibrinogen at 5.5-A resolution.
|
| |
Proc Natl Acad Sci U S A,
97,
3907-3912.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Yang,
I.Mochalkin,
and
R.F.Doolittle
(2000).
A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides.
|
| |
Proc Natl Acad Sci U S A,
97,
14156-14161.
|
 |
|
|
|
|
 |
G.Spraggon
(1999).
Envelope skeletonization as a means to determine monomer masks and non-crystallographic symmetry relationships: application in the solution of the structure of fibrinogen fragment D.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
458-463.
|
 |
|
|
|
|
 |
J.Hemmerlé,
S.M.Altmann,
M.Maaloum,
J.K.Hörber,
L.Heinrich,
J.C.Voegel,
and
P.Schaaf
(1999).
Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy.
|
| |
Proc Natl Acad Sci U S A,
96,
6705-6710.
|
 |
|
|
|
|
 |
K.E.Brummel,
S.Butenas,
and
K.G.Mann
(1999).
An integrated study of fibrinogen during blood coagulation.
|
| |
J Biol Chem,
274,
22862-22870.
|
 |
|
|
|
|
 |
K.Yokoyama,
X.P.Zhang,
L.Medved,
and
Y.Takada
(1999).
Specific binding of integrin alpha v beta 3 to the fibrinogen gamma and alpha E chain C-terminal domains.
|
| |
Biochemistry,
38,
5872-5877.
|
 |
|
|
|
|
 |
S.Gokudan,
T.Muta,
R.Tsuda,
K.Koori,
T.Kawahara,
N.Seki,
Y.Mizunoe,
S.N.Wai,
S.Iwanaga,
and
S.Kawabata
(1999).
Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen.
|
| |
Proc Natl Acad Sci U S A,
96,
10086-10091.
|
 |
|
|
|
|
 |
S.J.Everse,
G.Spraggon,
L.Veerapandian,
and
R.F.Doolittle
(1999).
Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide.
|
| |
Biochemistry,
38,
2941-2946.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Ware,
J.P.Donahue,
J.Hawiger,
and
W.F.Anderson
(1999).
Structure of the fibrinogen gamma-chain integrin binding and factor XIIIa cross-linking sites obtained through carrier protein driven crystallization.
|
| |
Protein Sci,
8,
2663-2671.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.S.Panetti,
B.J.Kudryk,
and
D.F.Mosher
(1999).
Interaction of recombinant procollagen and properdin modules of thrombospondin-1 with heparin and fibrinogen/fibrin.
|
| |
J Biol Chem,
274,
430-437.
|
 |
|
|
|
|
 |
E.C.Lee,
S.Y.Yu,
X.Hu,
M.Mlodzik,
and
N.E.Baker
(1998).
Functional analysis of the fibrinogen-related scabrous gene from Drosophila melanogaster identifies potential effector and stimulatory protein domains.
|
| |
Genetics,
150,
663-673.
|
 |
|
|
|
|
 |
E.Di Stasio,
C.Nagaswami,
J.W.Weisel,
and
E.Di Cera
(1998).
Cl- regulates the structure of the fibrin clot.
|
| |
Biophys J,
75,
1973-1979.
|
 |
|
|
|
|
 |
G.Spraggon,
D.Applegate,
S.J.Everse,
J.Z.Zhang,
L.Veerapandian,
C.Redman,
R.F.Doolittle,
and
G.Grieninger
(1998).
Crystal structure of a recombinant alphaEC domain from human fibrinogen-420.
|
| |
Proc Natl Acad Sci U S A,
95,
9099-9104.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.P.Schneider,
A.Lombardi,
and
W.F.DeGrado
(1998).
Analysis and design of three-stranded coiled coils and three-helix bundles.
|
| |
Fold Des,
3,
R29-R40.
|
 |
|
|
|
|
 |
L.Lorand,
K.N.Parameswaran,
and
S.N.Murthy
(1998).
A double-headed Gly-Pro-Arg-Pro ligand mimics the functions of the E domain of fibrin for promoting the end-to-end crosslinking of gamma chains by factor XIIIa.
|
| |
Proc Natl Acad Sci U S A,
95,
537-541.
|
 |
|
|
|
|
 |
M.T.Stubbs,
M.Renatus,
and
W.Bode
(1998).
An active zymogen: unravelling the mystery of tissue-type plasminogen activator.
|
| |
Biol Chem,
379,
95.
|
 |
|
|
|
|
 |
M.W.Mosesson,
K.R.Siebenlist,
D.A.Meh,
J.S.Wall,
and
J.F.Hainfeld
(1998).
The location of the carboxy-terminal region of gamma chains in fibrinogen and fibrin D domains.
|
| |
Proc Natl Acad Sci U S A,
95,
10511-10516.
|
 |
|
|
|
|
 |
O.V.Gorkun,
A.H.Henschen-Edman,
L.F.Ping,
and
S.T.Lord
(1998).
Analysis of A alpha 251 fibrinogen: the alpha C domain has a role in polymerization, albeit more subtle than anticipated from the analogous proteolytic fragment X.
|
| |
Biochemistry,
37,
15434-15441.
|
 |
|
|
|
|
 |
Q.Liu,
and
M.M.Frojmovic
(1998).
The fibrinogen RIBS-I epitope (gamma373-385) appears proximate to the gamma408-411 adhesive domain but is not involved in interaction between receptor-bound or surface-adsorbed fibrinogen and platelet GPIIbIIIa.
|
| |
Biochim Biophys Acta,
1429,
217-229.
|
 |
|
|
|
|
 |
R.F.Doolittle,
G.Spraggon,
and
S.J.Everse
(1998).
Three-dimensional structural studies on fragments of fibrinogen and fibrin.
|
| |
Curr Opin Struct Biol,
8,
792-798.
|
 |
|
|
|
|
 |
S.J.Everse,
G.Spraggon,
L.Veerapandian,
M.Riley,
and
R.F.Doolittle
(1998).
Crystal structure of fragment double-D from human fibrin with two different bound ligands.
|
| |
Biochemistry,
37,
8637-8642.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.P.Ugarova,
D.A.Solovjov,
L.Zhang,
D.I.Loukinov,
V.C.Yee,
L.V.Medved,
and
E.F.Plow
(1998).
Identification of a novel recognition sequence for integrin alphaM beta2 within the gamma-chain of fibrinogen.
|
| |
J Biol Chem,
273,
22519-22527.
|
 |
|
|
|
|
 |
Y.Veklich,
E.K.Ang,
L.Lorand,
and
J.W.Weisel
(1998).
The complementary aggregation sites of fibrin investigated through examination of polymers of fibrinogen with fragment E.
|
| |
Proc Natl Acad Sci U S A,
95,
1438-1442.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|