PDBsum entry 1fag

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Electron transport PDB id
Protein chains
455 a.a. *
HEM ×4
PAM ×4
* Residue conservation analysis
PDB id:
Name: Electron transport
Title: Structure of cytochrome p450
Structure: Cytochrome p450 bm-3. Chain: a, b, c, d. Fragment: heme domain. Synonym: p450 102, fatty acid hydroxylase. Engineered: yes
Source: Bacillus megaterium. Organism_taxid: 1404. Strain: 14581. Expressed in: escherichia coli. Expression_system_taxid: 562
2.70Å     R-factor:   0.246     R-free:   0.353
Authors: H.Y.Li,T.L.Poulos
Key ref: H.Li and T.L.Poulos (1997). The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol, 4, 140-146. PubMed id: 9033595
01-Aug-96     Release date:   12-Feb-97    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P14779  (CPXB_BACME) -  Bifunctional P-450/NADPH-P450 reductase
1049 a.a.
455 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.  - Unspecific monooxygenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RH + reduced flavoprotein + O2 = ROH + oxidized flavoprotein + H2O
+ reduced flavoprotein
+ O(2)
+ oxidized flavoprotein
+ H(2)O
      Cofactor: Heme-thiolate
   Enzyme class 3: E.C.  - NADPH--hemoprotein reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: NADPH + n oxidized hemoprotein = NADP+ + n reduced hemoprotein
+ n oxidized hemoprotein
= NADP(+)
+ n reduced hemoprotein
      Cofactor: FAD; FMN
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     oxidation-reduction process   1 term 
  Biochemical function     oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen     3 terms  


Nat Struct Biol 4:140-146 (1997)
PubMed id: 9033595  
The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid.
H.Li, T.L.Poulos.
The substrate-bound structures of two cytochrome P450s, P450cam and P450eryF, are known. While these structures reveal important features that control substrate specificity, the problem of how conformational changes allow for substrate entry and product release remains unsolved. The structure of the haem domain of the bacterial fatty acid hydroxylase, P450BM-3, previously was solved in the substrate-free form. Unlike the substrate-bound P450cam and P450eryF structures, the substrate access channel is open in substrate-free P450BM-3. Here we present the X-ray structure of P450BM-3 at 2.7 A bound with a fatty acid substrate, palmitoleic acid. A comparison of the substrate-bound and -free forms reveals major conformational differences and provides the first detailed picture of substrate-induced conformational changes in a P450.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21057946 A.Schallmey, G.den Besten, I.G.Teune, R.F.Kembaren, and D.B.Janssen (2011).
Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca.
  Appl Microbiol Biotechnol, 89, 1475-1485.  
21156025 I.N.Van Bogaert, S.Groeneboer, K.Saerens, and W.Soetaert (2011).
The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism.
  FEBS J, 278, 206-221.  
21400620 L.L.Wu, C.L.Yang, F.C.Lo, C.H.Chiang, C.W.Chang, K.Y.Ng, H.H.Chou, H.Y.Hung, S.I.Chan, and S.S.Yu (2011).
Tuning the Regio- and Stereoselectivity of CH Activation in n-Octanes by Cytochrome P450 BM-3 with Fluorine Substituents: Evidence for Interactions Between a CF Bond and Aromatic π Systems.
  Chemistry, 17, 4774-4787.  
21184059 N.Misawa, M.Nodate, T.Otomatsu, K.Shimizu, C.Kaido, M.Kikuta, A.Ideno, H.Ikenaga, J.Ogawa, S.Shimizu, and K.Shindo (2011).
Bioconversion of substituted naphthalenes and β-eudesmol with the cytochrome P450 BM3 variant F87V.
  Appl Microbiol Biotechnol, 90, 147-157.  
21246504 R.Fasan, N.C.Crook, M.W.Peters, P.Meinhold, T.Buelter, M.Landwehr, P.C.Cirino, and F.H.Arnold (2011).
Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli.
  Biotechnol Bioeng, 108, 500-510.  
21431175 T.N.Waltham, H.M.Girvan, C.F.Butler, S.R.Rigby, A.J.Dunford, R.A.Holt, and A.W.Munro (2011).
Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3.
  Metallomics, 3, 369-378.  
21240430 W.C.Huang, P.M.Cullis, E.L.Raven, and G.C.Roberts (2011).
Control of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using structure-based mutagenesis.
  Metallomics, 3, 410-416.  
21171581 Y.T.Lee, E.C.Glazer, R.F.Wilson, C.D.Stout, and D.B.Goodin (2011).
Three clusters of conformational States in p450cam reveal a multistep pathway for closing of the substrate access channel .
  Biochemistry, 50, 693-703.  
19961857 A.J.Annalora, D.B.Goodin, W.X.Hong, Q.Zhang, E.F.Johnson, and C.D.Stout (2010).
Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism.
  J Mol Biol, 396, 441-451.
PDB codes: 3k9v 3k9y
21110374 C.J.Whitehouse, W.Yang, J.A.Yorke, B.C.Rowlatt, A.J.Strong, C.F.Blanford, S.G.Bell, M.Bartlam, L.L.Wong, and Z.Rao (2010).
Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3).
  Chembiochem, 11, 2549-2556.
PDB code: 3m4v
20180779 H.M.Girvan, C.W.Levy, P.Williams, K.Fisher, M.R.Cheesman, S.E.Rigby, D.Leys, and A.W.Munro (2010).
Glutamate-haem ester bond formation is disfavoured in flavocytochrome P450 BM3: characterization of glutamate substitution mutants at the haem site of P450 BM3.
  Biochem J, 427, 455-466.
PDB codes: 3kx3 3kx4 3kx5
20190737 M.G.Shapiro, G.G.Westmeyer, P.A.Romero, J.O.Szablowski, B.Küster, A.Shah, C.R.Otey, R.Langer, F.H.Arnold, and A.Jasanoff (2010).
Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine.
  Nat Biotechnol, 28, 264-270.  
19727863 N.Krishnamoorthy, P.Gajendrarao, S.Thangapandian, Y.Lee, and K.W.Lee (2010).
Probing possible egress channels for multiple ligands in human CYP3A4: A molecular modeling study.
  J Mol Model, 16, 607-614.  
19947890 N.Shakunthala (2010).
New cytochrome P450 mechanisms: implications for understanding molecular basis for drug toxicity at the level of the cytochrome.
  Expert Opin Drug Metab Toxicol, 6, 1.  
20697922 O.Shoji, T.Fujishiro, S.Nagano, S.Tanaka, T.Hirose, Y.Shiro, and Y.Watanabe (2010).
Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis.
  J Biol Inorg Chem, 15, 1331-1339.
PDB codes: 2zqj 2zqx
20446763 T.C.Pochapsky, S.Kazanis, and M.Dang (2010).
Conformational plasticity and structure/function relationships in cytochromes P450.
  Antioxid Redox Signal, 13, 1273-1296.  
20297780 Y.T.Lee, R.F.Wilson, I.Rupniewski, and D.B.Goodin (2010).
P450cam visits an open conformation in the absence of substrate.
  Biochemistry, 49, 3412-3419.
PDB codes: 3l61 3l62 3l63
19492389 C.J.Whitehouse, S.G.Bell, W.Yang, J.A.Yorke, C.F.Blanford, A.J.Strong, E.J.Morse, M.Bartlam, Z.Rao, and L.L.Wong (2009).
A highly active single-mutation variant of P450BM3 (CYP102A1).
  Chembiochem, 10, 1654-1656.
PDB code: 3hf2
19865780 C.S.Porro, D.Kumar, and Visser (2009).
Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: search for an Fe(i) oxidation state.
  Phys Chem Chem Phys, 11, 10219-10226.  
19555717 I.G.Denisov, D.J.Frank, and S.G.Sligar (2009).
Cooperative properties of cytochromes P450.
  Pharmacol Ther, 124, 151-167.  
17964298 B.L.Hilker, H.Fukushige, C.Hou, and D.Hildebrand (2008).
Comparison of Bacillus monooxygenase genes for unique fatty acid production.
  Prog Lipid Res, 47, 1.  
18283351 C.J.Whitehouse, S.G.Bell, H.G.Tufton, R.J.Kenny, L.C.Ogilvie, and L.L.Wong (2008).
Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options.
  Chem Commun (Camb), (), 966-968.  
18392864 C.K.Chen, T.K.h.Shokhireva, R.E.Berry, H.Zhang, and F.A.Walker (2008).
The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity.
  J Biol Inorg Chem, 13, 813-824.  
17957765 E.Stjernschantz, B.M.van Vugt-Lussenburg, A.Bonifacio, Beer, G.van der Zwan, C.Gooijer, J.N.Commandeur, N.P.Vermeulen, and C.Oostenbrink (2008).
Structural rationalization of novel drug metabolizing mutants of cytochrome P450 BM3.
  Proteins, 71, 336-352.  
18413310 G.A.Schoch, J.K.Yano, S.Sansen, P.M.Dansette, C.D.Stout, and E.F.Johnson (2008).
Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid.
  J Biol Chem, 283, 17227-17237.
PDB codes: 2nnh 2nni 2nnj 2vn0
18787124 L.Li, Z.Chang, Z.Pan, Z.Q.Fu, and X.Wang (2008).
Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase.
  Proc Natl Acad Sci U S A, 105, 13883-13888.
PDB codes: 3dam 3dan 3dbm
18483737 M.Dietrich, S.Eiben, C.Asta, T.A.Do, J.Pleiss, and V.B.Urlacher (2008).
Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis.
  Appl Microbiol Biotechnol, 79, 931-940.  
18838690 M.J.Cryle, and I.Schlichting (2008).
Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex.
  Proc Natl Acad Sci U S A, 105, 15696-15701.
PDB codes: 3ejb 3ejd 3eje
18655143 P.J.Mak, D.Kaluka, M.E.Manyumwa, H.Zhang, T.Deng, and J.R.Kincaid (2008).
Defining resonance Raman spectral responses to substrate binding by cytochrome P450 from Pseudomonas putida.
  Biopolymers, 89, 1045-1053.  
18619466 R.Fasan, Y.T.Meharenna, C.D.Snow, T.L.Poulos, and F.H.Arnold (2008).
Evolutionary history of a specialized p450 propane monooxygenase.
  J Mol Biol, 383, 1069-1080.
PDB code: 3cbd
18473391 R.J.Branco, A.Seifert, M.Budde, V.B.Urlacher, M.J.Ramos, and J.Pleiss (2008).
Anchoring effects in a wide binding pocket: the molecular basis of regioselectivity in engineered cytochrome P450 monooxygenase from B. megaterium.
  Proteins, 73, 597-607.  
17534532 A.W.Munro, H.M.Girvan, and K.J.McLean (2007).
Variations on a (t)heme--novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily.
  Nat Prod Rep, 24, 585-609.  
17448174 B.S.Kim, S.Y.Kim, J.Park, W.Park, K.Y.Hwang, Y.J.Yoon, W.K.Oh, B.Y.Kim, and J.S.Ahn (2007).
Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.
  J Appl Microbiol, 102, 1392-1400.  
17532492 C.H.Yun, K.H.Kim, D.H.Kim, H.C.Jung, and J.G.Pan (2007).
The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities.
  Trends Biotechnol, 25, 289-298.  
17077084 H.M.Girvan, H.E.Seward, H.S.Toogood, M.R.Cheesman, D.Leys, and A.W.Munro (2007).
Structural and spectroscopic characterization of P450 BM3 mutants with unprecedented P450 heme iron ligand sets. New heme ligation states influence conformational equilibria in P450 BM3.
  J Biol Chem, 282, 564-572.
PDB codes: 2ij2 2ij3 2ij4
18028029 K.J.McLean, H.M.Girvan, and A.W.Munro (2007).
Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects.
  Expert Opin Drug Metab Toxicol, 3, 847-863.  
17606921 M.Makino, H.Sugimoto, Y.Shiro, S.Asamizu, H.Onaka, and S.Nagano (2007).
Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton.
  Proc Natl Acad Sci U S A, 104, 11591-11596.
PDB codes: 2z3t 2z3u
17427946 S.G.Rupasinghe, H.Duan, and M.A.Schuler (2007).
Molecular definitions of fatty acid hydroxylases in Arabidopsis thaliana.
  Proteins, 68, 279-293.  
16224788 C.R.Otey, G.Bandara, J.Lalonde, K.Takahashi, and F.H.Arnold (2006).
Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450.
  Biotechnol Bioeng, 93, 494-499.  
16594730 C.R.Otey, M.Landwehr, J.B.Endelman, K.Hiraga, J.D.Bloom, and F.H.Arnold (2006).
Structure-guided recombination creates an artificial family of cytochromes P450.
  PLoS Biol, 4, e112.  
16521141 J.Nazor, and U.Schwaneberg (2006).
Laboratory evolution of P450 BM-3 for mediated electron transfer.
  Chembiochem, 7, 638-644.  
16478468 M.Al-Anizy, N.J.Horley, C.W.Kuo, L.C.Gillett, C.A.Laughton, D.Kendall, D.A.Barrett, T.Parker, and D.R.Bell (2006).
Cytochrome P450 Cyp4x1 is a major P450 protein in mouse brain.
  FEBS J, 273, 936-947.  
16566047 M.Budde, M.Morr, R.D.Schmid, and V.B.Urlacher (2006).
Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium.
  Chembiochem, 7, 789-794.  
16001257 V.B.Urlacher, A.Makhsumkhanov, and R.D.Schmid (2006).
Biotransformation of beta-ionone by engineered cytochrome P450 BM-3.
  Appl Microbiol Biotechnol, 70, 53-59.  
15857787 I.Axarli, A.Prigipaki, and N.E.Labrou (2005).
Engineering the substrate specificity of cytochrome P450 CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals.
  Biomol Eng, 22, 81-88.  
16162505 L.A.McLaughlin, M.J.Paine, C.A.Kemp, J.D.Maréchal, J.U.Flanagan, C.J.Ward, M.J.Sutcliffe, G.C.Roberts, and C.R.Wolf (2005).
Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding.
  J Biol Chem, 280, 38617-38624.  
16080215 P.Meinhold, M.W.Peters, M.M.Chen, K.Takahashi, and F.H.Arnold (2005).
Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3.
  Chembiochem, 6, 1765-1768.  
15725653 Q.S.Li, J.Ogawa, R.D.Schmid, and S.Shimizu (2005).
Indole hydroxylation by bacterial cytochrome P450 BM-3 and modulation of activity by cumene hydroperoxide.
  Biosci Biotechnol Biochem, 69, 293-300.  
15710617 R.Neeli, O.Roitel, N.S.Scrutton, and A.W.Munro (2005).
Switching pyridine nucleotide specificity in P450 BM3: mechanistic analysis of the W1046H and W1046A enzymes.
  J Biol Chem, 280, 17634-17644.  
15664991 T.D.Pfister, T.Ohki, T.Ueno, I.Hara, S.Adachi, Y.Makino, N.Ueyama, Y.Lu, and Y.Watanabe (2005).
Monooxygenation of an aromatic ring by F43W/H64D/V68I myoglobin mutant and hydrogen peroxide. Myoglobin mutants as a model for P450 hydroxylation chemistry.
  J Biol Chem, 280, 12858-12866.  
15549292 W.T.Sulistyaningdyah, J.Ogawa, Q.S.Li, C.Maeda, Y.Yano, R.D.Schmid, and S.Shimizu (2005).
Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds.
  Appl Microbiol Biotechnol, 67, 556-562.  
15100217 E.E.Scott, M.A.White, Y.A.He, E.F.Johnson, C.D.Stout, and J.R.Halpert (2004).
Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding.
  J Biol Chem, 279, 27294-27301.
PDB code: 1suo
15020591 H.M.Girvan, K.R.Marshall, R.J.Lawson, D.Leys, M.G.Joyce, J.Clarkson, W.E.Smith, M.R.Cheesman, and A.W.Munro (2004).
Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set.
  J Biol Chem, 279, 23274-23286.  
14691240 L.M.Podust, H.Bach, Y.Kim, D.C.Lamb, M.Arase, D.H.Sherman, S.L.Kelly, and M.R.Waterman (2004).
Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways.
  Protein Sci, 13, 255-268.
PDB code: 1odo
14742211 L.Xiao, V.Madison, A.S.Chau, D.Loebenberg, R.E.Palermo, and P.M.McNicholas (2004).
Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding.
  Antimicrob Agents Chemother, 48, 568-574.  
15030474 M.Amichot, S.Tarès, A.Brun-Barale, L.Arthaud, J.M.Bride, and J.B.Bergé (2004).
Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism.
  Eur J Biochem, 271, 1250-1257.  
15375636 M.Budde, S.C.Maurer, R.D.Schmid, and V.B.Urlacher (2004).
Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis.
  Appl Microbiol Biotechnol, 66, 180-186.  
15020590 M.G.Joyce, H.M.Girvan, A.W.Munro, and D.Leys (2004).
A single mutation in cytochrome P450 BM3 induces the conformational rearrangement seen upon substrate binding in the wild-type enzyme.
  J Biol Chem, 279, 23287-23293.
PDB codes: 1smi 1smj
15189165 O.Pylypenko, and I.Schlichting (2004).
Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s.
  Annu Rev Biochem, 73, 991.  
15078870 P.C.Rudberg, F.Tholander, M.Andberg, M.M.Thunnissen, and J.Z.Haeggström (2004).
Leukotriene A4 hydrolase: identification of a common carboxylate recognition site for the epoxide hydrolase and aminopeptidase substrates.
  J Biol Chem, 279, 27376-27382.
PDB code: 1sqm
15606809 W.Li, A.R.Zangerl, M.A.Schuler, and M.R.Berenbaum (2004).
Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella.
  Insect Mol Biol, 13, 603-613.  
15258138 X.He, and Montellano (2004).
Radical rebound mechanism in cytochrome P-450-catalyzed hydroxylation of the multifaceted radical clocks alpha- and beta-thujone.
  J Biol Chem, 279, 39479-39484.  
12831319 D.F.Lewis (2003).
P450 structures and oxidative metabolism of xenobiotics.
  Pharmacogenomics, 4, 387-395.  
12435731 D.Leys, C.G.Mowat, K.J.McLean, A.Richmond, S.K.Chapman, M.D.Walkinshaw, and A.W.Munro (2003).
Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 A reveals novel features of cytochrome P450.
  J Biol Chem, 278, 5141-5147.
PDB codes: 1n40 1n4g
12519760 D.S.Lee, A.Yamada, H.Sugimoto, I.Matsunaga, H.Ogura, K.Ichihara, S.Adachi, S.Y.Park, and Y.Shiro (2003).
Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies.
  J Biol Chem, 278, 9761-9767.
PDB code: 1izo
14563924 E.E.Scott, Y.A.He, M.R.Wester, M.A.White, C.C.Chin, J.R.Halpert, E.F.Johnson, and C.D.Stout (2003).
An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution.
  Proc Natl Acad Sci U S A, 100, 13196-13201.
PDB code: 1po5
12950252 G.A.Schoch, R.Attias, M.Le Ret, and D.Werck-Reichhart (2003).
Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. Homology guided site-directed mutagenesis.
  Eur J Biochem, 270, 3684-3695.  
12401810 J.K.Yano, F.Blasco, H.Li, R.D.Schmid, A.Henne, and T.L.Poulos (2003).
Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus.
  J Biol Chem, 278, 608-616.
PDB code: 1n97
12519772 L.M.Podust, Y.Kim, M.Arase, B.A.Neely, B.J.Beck, H.Bach, D.H.Sherman, D.C.Lamb, S.L.Kelly, and M.R.Waterman (2003).
The 1.92-A structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems.
  J Biol Chem, 278, 12214-12221.
PDB code: 1gwi
14503006 M.A.Schuler, and D.Werck-Reichhart (2003).
Functional genomics of P450s.
  Annu Rev Plant Biol, 54, 629-667.  
12933799 S.Nagano, H.Li, H.Shimizu, C.Nishida, H.Ogura, P.R.Ortiz de Montellano, and T.L.Poulos (2003).
Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450epoK.
  J Biol Chem, 278, 44886-44893.
PDB codes: 1pkf 1q5d 1q5e
14597705 T.L.Poulos (2003).
Cytochrome P450 flexibility.
  Proc Natl Acad Sci U S A, 100, 13121-13122.  
12076537 A.W.Munro, D.G.Leys, K.J.McLean, K.R.Marshall, T.W.Ost, S.Daff, C.S.Miles, S.K.Chapman, D.A.Lysek, C.C.Moser, C.C.Page, and P.L.Dutton (2002).
P450 BM3: the very model of a modern flavocytochrome.
  Trends Biochem Sci, 27, 250-257.  
15618664 N.Murayama, T.Nakamura, M.Saeki, A.Soyama, Y.Saito, K.Sai, S.Ishida, O.Nakajima, M.Itoda, Y.Ohno, S.Ozawa, and J.Sawada (2002).
CYP3A4 gene polymorphisms influence testosterone 6beta-hydroxylation.
  Drug Metab Pharmacokinet, 17, 150-156.  
11922954 S.B.Kirton, C.A.Baxter, and M.J.Sutcliffe (2002).
Comparative modelling of cytochromes P450.
  Adv Drug Deliv Rev, 54, 385-406.  
11985584 T.Kitazume, A.Tanaka, N.Takaya, A.Nakamura, S.Matsuyama, T.Suzuki, and H.Shoun (2002).
Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by an Escherichia coli expression system.
  Eur J Biochem, 269, 2075-2082.  
12482514 V.Urlacher, and R.D.Schmid (2002).
Biotransformations using prokaryotic P450 monooxygenases.
  Curr Opin Biotechnol, 13, 557-564.  
12039006 Y.Watanabe (2002).
Construction of heme enzymes: four approaches.
  Curr Opin Chem Biol, 6, 208-216.  
11358532 A.B.Carmichael, and L.L.Wong (2001).
Protein engineering of Bacillus megaterium CYP102.The oxidation of polycyclic aromatic hydrocarbons.
  Eur J Biochem, 268, 3117-3125.  
11606730 A.R.Dunn, I.J.Dmochowski, A.M.Bilwes, H.B.Gray, and B.R.Crane (2001).
Probing the open state of cytochrome P450cam with ruthenium-linker substrates.
  Proc Natl Acad Sci U S A, 98, 12420-12425.
PDB code: 1k2o
11329260 C.C.Tsao, M.R.Wester, B.Ghanayem, S.J.Coulter, B.Chanas, E.F.Johnson, and J.A.Goldstein (2001).
Identification of human CYP2C19 residues that confer S-mephenytoin 4'-hydroxylation activity to CYP2C9.
  Biochemistry, 40, 1937-1944.  
11456500 K.R.Henne, M.B.Fisher, K.R.Iyer, D.H.Lang, W.F.Trager, and A.E.Rettie (2001).
Active site characteristics of CYP4B1 probed with aromatic ligands.
  Biochemistry, 40, 8597-8605.  
11248033 L.M.Podust, T.L.Poulos, and M.R.Waterman (2001).
Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors.
  Proc Natl Acad Sci U S A, 98, 3068-3073.
PDB codes: 1e9x 1ea1
11722930 Q.S.Li, J.Ogawa, R.D.Schmid, and S.Shimizu (2001).
Engineering cytochrome P450 BM-3 for oxidation of polycyclic aromatic hydrocarbons.
  Appl Environ Microbiol, 67, 5735-5739.  
10819987 C.Helvig, and J.H.Capdevila (2000).
Biochemical characterization of rat P450 2C11 fused to rat or bacterial NADPH-P450 reductase domains.
  Biochemistry, 39, 5196-5205.  
11150615 C.S.Miles, T.W.Ost, M.A.Noble, A.W.Munro, and S.K.Chapman (2000).
Protein engineering of cytochromes P-450.
  Biochim Biophys Acta, 1543, 383-407.  
10856424 D.F.Lewis (2000).
On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics: towards the prediction of human p450 substrate specificity and metabolism.
  Biochem Pharmacol, 60, 293-306.  
11106776 D.F.Lewis, and P.Hlavica (2000).
Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects.
  Biochim Biophys Acta, 1460, 353-374.  
  11178272 D.Werck-Reichhart, and R.Feyereisen (2000).
Cytochromes P450: a success story.
  Genome Biol, 1, REVIEWS3003.  
10644712 J.Cosme, and E.F.Johnson (2000).
Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding.
  J Biol Chem, 275, 2545-2553.  
10678174 P.A.Williams, J.Cosme, V.Sridhar, E.F.Johnson, and D.E.McRee (2000).
Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity.
  Mol Cell, 5, 121-131.
PDB code: 1dt6
10801323 S.V.Smith, A.P.Koley, R.Dai, R.C.Robinson, H.Leong, A.Markowitz, and F.K.Friedman (2000).
Conformational modulation of human cytochrome P450 2E1 by ethanol and other substrates: a CO flash photolysis study.
  Biochemistry, 39, 5731-5737.  
10570242 H.Li, and T.L.Poulos (1999).
Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450(BM-3).
  Biochim Biophys Acta, 1441, 141-149.  
10051560 I.F.Sevrioukova, H.Li, H.Zhang, J.A.Peterson, and T.L.Poulos (1999).
Structure of a cytochrome P450-redox partner electron-transfer complex.
  Proc Natl Acad Sci U S A, 96, 1863-1868.
PDB codes: 1bu7 1bvy
10593892 I.F.Sevrioukova, J.T.Hazzard, G.Tollin, and T.L.Poulos (1999).
The FMN to heme electron transfer in cytochrome P450BM-3. Effect of chemical modification of cysteines engineered at the FMN-heme domain interaction site.
  J Biol Chem, 274, 36097-36106.  
10320335 M.Schalk, S.Nedelkina, G.Schoch, Y.Batard, and D.Werck-Reichhart (1999).
Role of unusual amino acid residues in the proximal and distal heme regions of a plant P450, CYP73A1.
  Biochemistry, 38, 6093-6103.  
10024026 Y.T.Chang, and G.H.Loew (1999).
Homology modeling and substrate binding study of human CYP4A11 enzyme.
  Proteins, 34, 403-415.  
9485309 E.A.Dierks, S.C.Davis, and P.R.Ortiz de Montellano (1998).
Glu-320 and Asp-323 are determinants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole.
  Biochemistry, 37, 1839-1847.  
9722531 E.A.Dierks, Z.Zhang, E.F.Johnson, and Montellano (1998).
The catalytic site of cytochrome P4504A11 (CYP4A11) and its L131F mutant.
  J Biol Chem, 273, 23055-23061.  
9516419 F.Cabello-Hurtado, Y.Batard, J.P.Salaün, F.Durst, F.Pinot, and D.Werck-Reichhart (1998).
Cloning, expression in yeast, and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids.
  J Biol Chem, 273, 7260-7267.  
9819219 F.Jung, K.J.Griffin, W.Song, T.H.Richardson, M.Yang, and E.F.Johnson (1998).
Identification of amino acid substitutions that confer a high affinity for sulfaphenazole binding and a high catalytic efficiency for warfarin metabolism to P450 2C19.
  Biochemistry, 37, 16270-16279.  
9828361 F.Valetti, S.J.Sadeghi, Y.T.Meharenna, S.R.Leliveld, and G.Gilardi (1998).
Engineering multi-domain redox proteins containing flavodoxin as bio-transformer: preparatory studies by rational design.
  Biosens Bioelectron, 13, 675-685.  
9635777 I.D.Macdonald, A.W.Munro, and W.E.Smith (1998).
Fatty acid-induced alteration of the porphyrin macrocycle of cytochrome P450 BM3.
  Biophys J, 74, 3241-3249.  
9843385 M.A.Noble, L.Quaroni, G.D.Chumanov, K.L.Turner, S.K.Chapman, R.P.Hanzlik, and A.W.Munro (1998).
Imidazolyl carboxylic acids as mechanistic probes of flavocytochrome P-450 BM3.
  Biochemistry, 37, 15799-15807.  
9649301 M.Vidakovic, S.G.Sligar, H.Li, and T.L.Poulos (1998).
Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect.
  Biochemistry, 37, 9211-9219.
PDB codes: 5cp4 6cp4
9065459 S.Govindaraj, and T.L.Poulos (1997).
The domain architecture of cytochrome P450BM-3.
  J Biol Chem, 272, 7915-7921.  
9374858 S.N.Daff, S.K.Chapman, K.L.Turner, R.A.Holt, S.Govindaraj, T.L.Poulos, and A.W.Munro (1997).
Redox control of the catalytic cycle of flavocytochrome P-450 BM3.
  Biochemistry, 36, 13816-13823.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.