 |
PDBsum entry 1e7e
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Plasma protein
|
PDB id
|
|
|
|
1e7e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
J Mol Biol
303:721-732
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin.
|
|
A.A.Bhattacharya,
T.Grüne,
S.Curry.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Human serum albumin (HSA) is an abundant plasma protein that is responsible for
the transport of fatty acids. HSA also binds and perturbs the pharmacokinetics
of a wide range of drug compounds. Binding studies have revealed significant
interactions between fatty acid and drug-binding sites on albumin but
high-resolution structural information on ligand binding to the protein has been
lacking. We report here a crystallographic study of five HSA-fatty acid
complexes formed using saturated medium-chain and long-chain fatty acids (C10:0,
C12:0, C14:0, C16:0 and C18:0). A total of seven binding sites that are occupied
by all medium-chain and long-chain fatty acids have been identified, although
medium-chain fatty acids are found to bind at additional sites on the protein,
yielding a total of 11 distinct binding locations. Comparison of the different
complexes reveals key similarities and significant differences in the modes of
binding, and serves to rationalise much of the biochemical data on fatty acid
interactions with albumin. The two principal drug-binding sites, in sub-domains
IIA and IIIA, are observed to be occupied by fatty acids and one of them (in
IIIA) appears to coincide with a high-affinity long-chain fatty acid binding
site.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Structures of HSA complexed with five different
fatty acids. The protein secondary structure is shown
schematically and the domains are colour-coded as follows: I,
red; II, green, III, blue. The A and B sub-domains are depicted
in dark and light shades, respectively. This colour scheme is
maintained throughout. Bound fatty acids are shown in a
space-filling representation and coloured by atom type (carbon,
grey; oxygen, red). Where two fatty acid molecules bind in close
proximity, one of them is shown in a darker shade of grey. All
Figures were prepared using Bobscript [Esnouf 1997] and Raster3D
[Merrit and Bacon 1997].
|
 |
Figure 5.
Figure 5. Superposition of fatty acids bound to site 5 in
sub-domains IIIB. Amino acid side-chains for Y401 and K525 are
shown coloured by atom type.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Elsevier:
J Mol Biol
(2000,
303,
721-732)
copyright 2000.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.J.Ryan,
J.Ghuman,
P.A.Zunszain,
C.W.Chung,
and
S.Curry
(2011).
Structural basis of binding of fluorescent, site-specific dansylated amino acids to human serum albumin.
|
| |
J Struct Biol,
174,
84-91.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.di Masi,
F.Gullotta,
A.Bolli,
G.Fanali,
M.Fasano,
and
P.Ascenzi
(2011).
Ibuprofen binding to secondary sites allosterically modulates the spectroscopic and catalytic properties of human serum heme-albumin.
|
| |
FEBS J,
278,
654-662.
|
 |
|
|
|
|
 |
D.K.Das,
T.Mondal,
U.Mandal,
and
K.Bhattacharyya
(2011).
Probing deuterium isotope effect on structure and solvation dynamics of human serum albumin.
|
| |
Chemphyschem,
12,
814-822.
|
 |
|
|
|
|
 |
F.Beckford,
J.Thessing,
J.Woods,
J.Didion,
N.Gerasimchuk,
A.Gonzalez-Sarrias,
and
N.P.Seeram
(2011).
Synthesis and structure of [(η(6)-p-cymene)Ru(2-anthracen-9-ylmethylene-N-ethylhydrazinecarbothioamide)Cl]Cl; biological evaluation, topoisomerase II inhibition and reaction with DNA and human serum albumin.
|
| |
Metallomics,
3,
491-502.
|
 |
|
|
|
|
 |
K.Kaneko,
V.T.Chuang,
A.Minomo,
K.Yamasaki,
N.V.Bhagavan,
T.Maruyama,
and
M.Otagiri
(2011).
Histidine146 of human serum albumin plays a prominent role at the interface of subdomains IA and IIA in allosteric ligand binding.
|
| |
IUBMB Life,
63,
277-285.
|
 |
|
|
|
|
 |
M.J.Junk,
H.W.Spiess,
and
D.Hinderberger
(2011).
Characterization of the solution structure of human serum albumin loaded with a metal porphyrin and Fatty acids.
|
| |
Biophys J,
100,
2293-2301.
|
 |
|
|
|
|
 |
P.Ascenzi,
A.Bolli,
A.di Masi,
G.R.Tundo,
G.Fanali,
M.Coletta,
and
M.Fasano
(2011).
Isoniazid and rifampicin inhibit allosterically heme binding to albumin and peroxynitrite isomerization by heme-albumin.
|
| |
J Biol Inorg Chem,
16,
97.
|
 |
|
|
|
|
 |
S.W.Sarsam,
D.R.Nutt,
K.Strohfeldt,
and
K.A.Watson
(2011).
Titanocene anticancer complexes and their binding mode of action to human serum albumin: a computational study.
|
| |
Metallomics,
3,
152-161.
|
 |
|
|
|
|
 |
A.Varshney,
P.Sen,
E.Ahmad,
M.Rehan,
N.Subbarao,
and
R.H.Khan
(2010).
Ligand binding strategies of human serum albumin: how can the cargo be utilized?
|
| |
Chirality,
22,
77-87.
|
 |
|
|
|
|
 |
B.Sivaraman,
and
R.A.Latour
(2010).
The adherence of platelets to adsorbed albumin by receptor-mediated recognition of binding sites exposed by adsorption-induced unfolding.
|
| |
Biomaterials,
31,
1036-1044.
|
 |
|
|
|
|
 |
F.Zsila,
and
I.Fitos
(2010).
Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds.
|
| |
Org Biomol Chem,
8,
4905-4914.
|
 |
|
|
|
|
 |
J.Li,
X.Zhu,
C.Yang,
and
R.Shi
(2010).
Characterization of the binding of angiotensin II receptor blockers to human serum albumin using docking and molecular dynamics simulation.
|
| |
J Mol Model,
16,
789-798.
|
 |
|
|
|
|
 |
M.Gokara,
B.Sudhamalla,
D.G.Amooru,
and
R.Subramanyam
(2010).
Molecular interaction studies of trimethoxy flavone with human serum albumin.
|
| |
PLoS One,
5,
e8834.
|
 |
|
|
|
|
 |
T.Buranda,
Y.Wu,
D.Perez,
A.Chigaev,
and
L.A.Sklar
(2010).
Real-time partitioning of octadecyl rhodamine B into bead-supported lipid bilayer membranes revealing quantitative differences in saturable binding sites in DOPC and 1:1:1 DOPC/SM/cholesterol membranes.
|
| |
J Phys Chem B,
114,
1336-1349.
|
 |
|
|
|
|
 |
T.Young,
L.Hua,
X.Huang,
R.Abel,
R.Friesner,
and
B.J.Berne
(2010).
Dewetting transitions in protein cavities.
|
| |
Proteins,
78,
1856-1869.
|
 |
|
|
|
|
 |
H.X.Zhang,
S.Gao,
and
X.X.Yang
(2009).
Synthesis of an octupolar compound and its biological effects on serum albumin.
|
| |
Mol Biol Rep,
36,
1405-1411.
|
 |
|
|
|
|
 |
K.Takehara,
K.Yuki,
M.Shirasawa,
S.Yamasaki,
and
S.Yamada
(2009).
Binding properties of hydrophobic molecules to human serum albumin studied by fluorescence titration.
|
| |
Anal Sci,
25,
115-120.
|
 |
|
|
|
|
 |
L.L.Wu,
H.W.Gao,
N.Y.Gao,
F.F.Chen,
and
L.Chen
(2009).
Interaction of perfluorooctanoic acid with human serum albumin.
|
| |
BMC Struct Biol,
9,
31.
|
 |
|
|
|
|
 |
N.E.Basken,
C.J.Mathias,
and
M.A.Green
(2009).
Elucidation of the human serum albumin (HSA) binding site for the Cu-PTSM and Cu-ATSM radiopharmaceuticals.
|
| |
J Pharm Sci,
98,
2170-2179.
|
 |
|
|
|
|
 |
P.Ascenzi,
A.di Masi,
M.Coletta,
C.Ciaccio,
G.Fanali,
F.P.Nicoletti,
G.Smulevich,
and
M.Fasano
(2009).
Ibuprofen impairs allosterically peroxynitrite isomerization by ferric human serum heme-albumin.
|
| |
J Biol Chem,
284,
31006-31017.
|
 |
|
|
|
|
 |
P.Ascenzi,
and
M.Fasano
(2009).
Serum heme-albumin: an allosteric protein.
|
| |
IUBMB Life,
61,
1118-1122.
|
 |
|
|
|
|
 |
R.E.Kontermann
(2009).
Strategies to extend plasma half-lives of recombinant antibodies.
|
| |
BioDrugs,
23,
93.
|
 |
|
|
|
|
 |
S.Balaz
(2009).
Modeling kinetics of subcellular disposition of chemicals.
|
| |
Chem Rev,
109,
1793-1899.
|
 |
|
|
|
|
 |
S.Curry
(2009).
Lessons from the crystallographic analysis of small molecule binding to human serum albumin.
|
| |
Drug Metab Pharmacokinet,
24,
342-357.
|
 |
|
|
|
|
 |
S.Guo,
X.Shi,
F.Yang,
L.Chen,
E.J.Meehan,
C.Bian,
and
M.Huang
(2009).
Structural basis of transport of lysophospholipids by human serum albumin.
|
| |
Biochem J,
423,
23-30.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.T.Chuang,
T.Maruyama,
and
M.Otagiri
(2009).
Updates on contemporary protein binding techniques.
|
| |
Drug Metab Pharmacokinet,
24,
358-364.
|
 |
|
|
|
|
 |
Y.M.Chen,
and
L.H.Guo
(2009).
Fluorescence study on site-specific binding of perfluoroalkyl acids to human serum albumin.
|
| |
Arch Toxicol,
83,
255-261.
|
 |
|
|
|
|
 |
Z.Liu,
X.Zheng,
X.Yang,
E.Wang,
and
J.Wang
(2009).
Affinity and specificity of levamlodipine-human serum albumin interactions: insights into its carrier function.
|
| |
Biophys J,
96,
3917-3925.
|
 |
|
|
|
|
 |
A.Varshney,
B.Ahmad,
and
R.H.Khan
(2008).
Comparative studies of unfolding and binding of ligands to human serum albumin in the presence of fatty acid: spectroscopic approach.
|
| |
Int J Biol Macromol,
42,
483-490.
|
 |
|
|
|
|
 |
C.Leggio,
L.Galantini,
and
N.V.Pavel
(2008).
About the albumin structure in solution: cigar Expanded form versus heart Normal shape.
|
| |
Phys Chem Chem Phys,
10,
6741-6750.
|
 |
|
|
|
|
 |
H.W.Gao,
Q.Xu,
L.Chen,
S.L.Wang,
Y.Wang,
L.L.Wu,
and
Y.Yuan
(2008).
Potential protein toxicity of synthetic pigments: binding of poncean S to human serum albumin.
|
| |
Biophys J,
94,
906-917.
|
 |
|
|
|
|
 |
K.Ogata,
N.Takamura,
J.Tokunaga,
K.Kawai,
K.Arimori,
and
S.Higuchi
(2008).
Dosage plan of a flurbiprofen injection product using inhibition of protein binding by lipid emulsion in rats.
|
| |
J Pharm Pharmacol,
60,
15-20.
|
 |
|
|
|
|
 |
L.J.Ma,
Y.Li,
L.Li,
J.Sun,
C.Tian,
and
Y.Wu
(2008).
A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells.
|
| |
Chem Commun (Camb),
(),
6345-6347.
|
 |
|
|
|
|
 |
L.M.Boland,
and
M.M.Drzewiecki
(2008).
Polyunsaturated fatty acid modulation of voltage-gated ion channels.
|
| |
Cell Biochem Biophys,
52,
59-84.
|
 |
|
|
|
|
 |
P.A.Zunszain,
J.Ghuman,
A.F.McDonagh,
and
S.Curry
(2008).
Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXalpha.
|
| |
J Mol Biol,
381,
394-406.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Fujiwara,
and
T.Amisaki
(2008).
Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method.
|
| |
Biophys J,
94,
95.
|
 |
|
|
|
|
 |
S.Lejon,
J.F.Cramer,
and
P.Nordberg
(2008).
Structural basis for the binding of naproxen to human serum albumin in the presence of fatty acids and the GA module.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
64-69.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.Mandal,
S.Ghosh,
G.Mitra,
A.Adhikari,
S.Dey,
and
K.Bhattacharyya
(2008).
A femtosecond study of the interaction of human serum albumin with a surfactant (SDS).
|
| |
Chem Asian J,
3,
1430-1434.
|
 |
|
|
|
|
 |
G.Fanali,
A.Bocedi,
P.Ascenzi,
and
M.Fasano
(2007).
Modulation of heme and myristate binding to human serum albumin by anti-HIV drugs. An optical and NMR spectroscopic study.
|
| |
FEBS J,
274,
4491-4502.
|
 |
|
|
|
|
 |
G.P.Tilz,
M.Wiltgen,
U.Demel,
C.Faschinger,
H.Schmidinger,
and
A.Hermetter
(2007).
Insights into molecular medicine: development of new diagnostic and prognostic parameters.
|
| |
Wien Med Wochenschr,
157,
122-129.
|
 |
|
|
|
|
 |
K.Kitamura
(2007).
[Derivative spectrophotometric and NMR spectroscopic study in pharmaceutical science]
|
| |
Yakugaku Zasshi,
127,
1621-1642.
|
 |
|
|
|
|
 |
M.Y.Berezin,
H.Lee,
W.Akers,
G.Nikiforovich,
and
S.Achilefu
(2007).
Ratiometric analysis of fluorescence lifetime for probing binding sites in albumin with near-infrared fluorescent molecular probes.
|
| |
Photochem Photobiol,
83,
1371-1378.
|
 |
|
|
|
|
 |
Y.Zhang,
V.Lukacova,
V.Bartus,
and
S.Balaz
(2007).
Structural determinants of binding of aromates to extracellular matrix: a multi-species multi-mode CoMFA study.
|
| |
Chem Res Toxicol,
20,
11-19.
|
 |
|
|
|
|
 |
A.Kawakami,
K.Kubota,
N.Yamada,
U.Tagami,
K.Takehana,
I.Sonaka,
E.Suzuki,
and
K.Hirayama
(2006).
Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions.
|
| |
FEBS J,
273,
3346-3357.
|
 |
|
|
|
|
 |
H.G.Mahesha,
S.A.Singh,
N.Srinivasan,
and
A.G.Rao
(2006).
A spectroscopic study of the interaction of isoflavones with human serum albumin.
|
| |
FEBS J,
273,
451-467.
|
 |
|
|
|
|
 |
S.Schwarz,
B.Hufnagel,
M.Dworak,
S.Klumpp,
and
J.Krieglstein
(2006).
Protein phosphatase type 2Calpha and 2Cbeta are involved in fatty acid-induced apoptosis of neuronal and endothelial cells.
|
| |
Apoptosis,
11,
1111-1119.
|
 |
|
|
|
|
 |
V.T.Chuang,
and
M.Otagiri
(2006).
Stereoselective binding of human serum albumin.
|
| |
Chirality,
18,
159-166.
|
 |
|
|
|
|
 |
A.Bocedi,
S.Notari,
E.Menegatti,
G.Fanali,
M.Fasano,
and
P.Ascenzi
(2005).
Allosteric modulation of anti-HIV drug and ferric heme binding to human serum albumin.
|
| |
FEBS J,
272,
6287-6296.
|
 |
|
|
|
|
 |
D.K.Chou,
R.Krishnamurthy,
T.W.Randolph,
J.F.Carpenter,
and
M.C.Manning
(2005).
Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation.
|
| |
J Pharm Sci,
94,
1368-1381.
|
 |
|
|
|
|
 |
E.Yamazaki,
M.Inagaki,
O.Kurita,
and
T.Inoue
(2005).
Kinetics of fatty acid binding ability of glycated human serum albumin.
|
| |
J Biosci,
30,
475-481.
|
 |
|
|
|
|
 |
F.Zsila,
P.Molnár,
and
J.Deli
(2005).
Analysis of binding interaction between the natural apocarotenoid bixin and human serum albumin by circular dichroism and fluorescence spectroscopy.
|
| |
Chem Biodivers,
2,
758-772.
|
 |
|
|
|
|
 |
G.Fanali,
R.Fesce,
C.Agrati,
P.Ascenzi,
and
M.Fasano
(2005).
Allosteric modulation of myristate and Mn(III)heme binding to human serum albumin. Optical and NMR spectroscopy characterization.
|
| |
FEBS J,
272,
4672-4683.
|
 |
|
|
|
|
 |
J.R.Simard,
P.A.Zunszain,
C.E.Ha,
J.S.Yang,
N.V.Bhagavan,
I.Petitpas,
S.Curry,
and
J.A.Hamilton
(2005).
Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
102,
17958-17963.
|
 |
|
|
|
|
 |
N.Ahmed,
D.Dobler,
M.Dean,
and
P.J.Thornalley
(2005).
Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity.
|
| |
J Biol Chem,
280,
5724-5732.
|
 |
|
|
|
|
 |
Y.J.Hu,
Y.Liu,
Z.B.Pi,
and
S.S.Qu
(2005).
Interaction of cromolyn sodium with human serum albumin: a fluorescence quenching study.
|
| |
Bioorg Med Chem,
13,
6609-6614.
|
 |
|
|
|
|
 |
B.X.Huang,
H.Y.Kim,
and
C.Dass
(2004).
Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry.
|
| |
J Am Soc Mass Spectrom,
15,
1237-1247.
|
 |
|
|
|
|
 |
G.Fabriciova,
S.Sanchez-Cortes,
J.V.Garcia-Ramos,
and
P.Miskovsky
(2004).
Surface-enhanced Raman spectroscopy study of the interaction of the antitumoral drug emodin with human serum albumin.
|
| |
Biopolymers,
74,
125-130.
|
 |
|
|
|
|
 |
J.Lazar,
L.E.Rasmussen,
D.R.Greenwood,
I.S.Bang,
and
G.D.Prestwich
(2004).
Elephant albumin: a multipurpose pheromone shuttle.
|
| |
Chem Biol,
11,
1093-1100.
|
 |
|
|
|
|
 |
S.Lejon,
I.M.Frick,
L.Björck,
M.Wikström,
and
S.Svensson
(2004).
Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin.
|
| |
J Biol Chem,
279,
42924-42928.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Colmenarejo
(2003).
In silico prediction of drug-binding strengths to human serum albumin.
|
| |
Med Res Rev,
23,
275-301.
|
 |
|
|
|
|
 |
I.Petitpas,
C.E.Petersen,
C.E.Ha,
A.A.Bhattacharya,
P.A.Zunszain,
J.Ghuman,
N.V.Bhagavan,
and
S.Curry
(2003).
Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia.
|
| |
Proc Natl Acad Sci U S A,
100,
6440-6445.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.S.Abreu,
L.M.Estronca,
M.J.Moreno,
and
W.L.Vaz
(2003).
Binding of a fluorescent lipid amphiphile to albumin and its transfer to lipid bilayer membranes.
|
| |
Biophys J,
84,
386-399.
|
 |
|
|
|
|
 |
M.Simonyi,
Z.Bikádi,
F.Zsila,
and
J.Deli
(2003).
Supramolecular exciton chirality of carotenoid aggregates.
|
| |
Chirality,
15,
680-698.
|
 |
|
|
|
|
 |
P.A.Zunszain,
J.Ghuman,
T.Komatsu,
E.Tsuchida,
and
S.Curry
(2003).
Crystal structural analysis of human serum albumin complexed with hemin and fatty acid.
|
| |
BMC Struct Biol,
3,
6.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.M.Butt,
S.R.Hutton,
M.J.Marks,
and
A.C.Collins
(2002).
Bovine serum albumin enhances nicotinic acetylcholine receptor function in mouse thalamic synaptosomes.
|
| |
J Neurochem,
83,
48-56.
|
 |
|
|
|
|
 |
C.Verboven,
A.Rabijns,
M.De Maeyer,
H.Van Baelen,
R.Bouillon,
and
C.De Ranter
(2002).
A structural basis for the unique binding features of the human vitamin D-binding protein.
|
| |
Nat Struct Biol,
9,
131-136.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Curry
(2002).
Beyond expansion: structural studies on the transport roles of human serum albumin.
|
| |
Vox Sang,
83,
315-319.
|
 |
|
|
|
|
 |
S.S.Krishnakumar,
and
D.Panda
(2002).
Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding.
|
| |
Biochemistry,
41,
7443-7452.
|
 |
|
|
|
|
 |
S.Yapoudjian,
M.G.Ivanova,
A.M.Brzozowski,
S.A.Patkar,
J.Vind,
A.Svendsen,
and
R.Verger
(2002).
Binding of Thermomyces (Humicola) lanuginosa lipase to the mixed micelles of cis-parinaric acid/NaTDC.
|
| |
Eur J Biochem,
269,
1613-1621.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.Kragh-Hansen,
V.T.Chuang,
and
M.Otagiri
(2002).
Practical aspects of the ligand-binding and enzymatic properties of human serum albumin.
|
| |
Biol Pharm Bull,
25,
695-704.
|
 |
|
|
|
|
 |
J.Sowell,
J.C.Mason,
L.Strekowski,
and
G.Patonay
(2001).
Binding constant determination of drugs toward subdomain IIIA of human serum albumin by near-infrared dye-displacement capillary electrophoresis.
|
| |
Electrophoresis,
22,
2512-2517.
|
 |
|
|
|
|
 |
S.Baroni,
M.Mattu,
A.Vannini,
R.Cipollone,
S.Aime,
P.Ascenzi,
and
M.Fasano
(2001).
Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. A spectroscopic study.
|
| |
Eur J Biochem,
268,
6214-6220.
|
 |
|
|
|
|
 |
U.Kragh-Hansen,
F.Hellec,
B.de Foresta,
M.le Maire,
and
J.V.Møller
(2001).
Detergents as probes of hydrophobic binding cavities in serum albumin and other water-soluble proteins.
|
| |
Biophys J,
80,
2898-2911.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |