spacer
spacer

PDBsum entry 1ca9

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Tnf signaling PDB id
1ca9
Jmol
Contents
Protein chain
(+ 0 more) 191 a.a. *
Ligands
PRO-PHE-SER-LYS-
GLU-GLU-CYS
GLY-GLN-VAL-PRO-
PHE-SER-LYS-GLU-
GLU-CYS
Waters ×910
* Residue conservation analysis
PDB id:
1ca9
Name: Tnf signaling
Title: Structure of tnf receptor associated factor 2 in complex with a peptide from tnf-r2
Structure: Protein (tnf receptor associated factor 2). Chain: a, b, c, d, e, f. Fragment: traf domain. Synonym: traf2. Engineered: yes. Protein (tnf-r2). Chain: g, h. Fragment: traf-binding site. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Synthetic: yes. Other_details: sequence from human tnf-r2, swiss prot accession p20333
Biol. unit: Monomer (from PDB file)
Resolution:
2.30Å     R-factor:   0.234     R-free:   0.289
Authors: Y.C.Park,V.Burkitt,A.R.Villa,L.Tong,H.Wu
Key ref:
Y.C.Park et al. (1999). Structural basis for self-association and receptor recognition of human TRAF2. Nature, 398, 533-538. PubMed id: 10206649 DOI: 10.1038/19110
Date:
25-Feb-99     Release date:   12-Apr-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q12933  (TRAF2_HUMAN) -  TNF receptor-associated factor 2
Seq:
Struc:
501 a.a.
191 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     regulation of apoptotic process   5 terms 
  Biochemical function     ubiquitin-protein ligase activity     1 term  

 

 
DOI no: 10.1038/19110 Nature 398:533-538 (1999)
PubMed id: 10206649  
 
 
Structural basis for self-association and receptor recognition of human TRAF2.
Y.C.Park, V.Burkitt, A.R.Villa, L.Tong, H.Wu.
 
  ABSTRACT  
 
Tumour necrosis factor (TNF)-receptor-associated factors (TRAFs) form a family of cytoplasmic adapter proteins that mediate signal transduction from many members of the TNF-receptor superfamily and the interleukin-1 receptor. They are important in the regulation of cell survival and cell death. The carboxy-terminal region of TRAFs (the TRAF domain) is required for self-association and interaction with receptors. The domain contains a predicted coiled-coil region that is followed by a highly conserved TRAF-C domain. Here we report the crystal structure of the TRAF domain of human TRAF2, both alone and in complex with a peptide from TNF receptor-2 (TNF-R2). The structures reveal a trimeric self-association of the TRAF domain, which we confirm by studies in solution. The TRAF-C domain forms a new, eight-stranded antiparallel beta-sandwich structure. The TNF-R2 peptide binds to a conserved shallow surface depression on one TRAF-C domain and does not contact the other protomers of the trimer. The nature of the interaction indicates that an SXXE motif may be a TRAF2-binding consensus sequence. The trimeric structure of the TRAF domain provides an avidity-based explanation for the dependence of TRAF recruitment on the oligomerization of the receptors by their trimeric extracellular ligands.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Structure of the TRAF domain alone and in complex with the TNF-R2 peptide. a, Stereo ribbon diagram of the TRAF domain of human TRAF2 in the peptide-free structure. The -strands, -helices and loops are shown in cyan, yellow and purple, respectively. The loop between 7 and 8 is highly flexible andexhibits a different conformation in the peptide-bound structure b, Ribbon drawing of the trimeric TRAF domain in complex with TNF-R2 peptide, looking down the three-fold axis. The -strands in each protomer are shown in cyan, green and dark blue. The peptide is shown as a stick model for the protomer incyan. Residues of the TRAF-C domain in the trimer interface (between the protomers shown in cyan and dark blue) are also shown as stick models. The TRAF-C domain of the structure obeys proper three-fold symmetry, whereas the coiled-coil domain shows significant deviations. c, As for b, except that the three-fold axis is now vertical.
Figure 3.
Figure 3: Detailed interaction between TRAF2 and the TNF-R2 peptide. a,Simulated annealing omit difference map for the TNF-R2 peptide calculated with reflections between 20.0 and 2.3 Å resolution and contoured at 2.0 . The peptide model is superimposed. b, Molecular surface of a TRAF2 promoter, showing the bound TNF-R2 peptide as a stick model; the three-fold axis is in the vertical orientation. Surface colour coding is according to electrostatic surface potential, scaled from -30 to +30 kTe^-1, with blue for positive and red for negative. Selected residues in the receptor peptide and the underlying secondary-structural elements of TRAF2 at the binding site are labelled. c, Stereo view of the detailed interaction between the TNF-R2 peptide (carbon atoms shown in yellow) and the TRAF2 protomer (carbon atoms shown in grey). The main chain of the TRAF2 structure is shown in cyan as backbone worms. Selected residues in the peptide (primed numbers in green) and the protein (in grey) are labelled. Hydrogen bonds and a salt bridge are shown as black dotted lines.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (1999, 398, 533-538) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21135870 C.Zheng, Q.Yin, and H.Wu (2011).
Structural studies of NF-κB signaling.
  Cell Res, 21, 183-195.  
20012905 A.W.Ho, and S.L.Gaffen (2010).
IL-17RC: a partner in IL-17 signaling and beyond.
  Semin Immunopathol, 32, 33-42.  
20385093 C.Zheng, V.Kabaleeswaran, Y.Wang, G.Cheng, and H.Wu (2010).
Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation.
  Mol Cell, 38, 101-113.
PDB codes: 3m06 3m0a 3m0d
20817427 P.D.Mace, and S.J.Riedl (2010).
Molecular cell death platforms and assemblies.
  Curr Opin Cell Biol, 22, 828-836.  
21088666 S.G.Hymowitz, and V.M.Dixit (2010).
Unleashing cell death: the Fas-FADD complex.
  Nat Struct Mol Biol, 17, 1289-1290.  
19815541 J.E.Vince, D.Pantaki, R.Feltham, P.D.Mace, S.M.Cordier, A.C.Schmukle, A.J.Davidson, B.A.Callus, W.W.Wong, I.E.Gentle, H.Carter, E.F.Lee, H.Walczak, C.L.Day, D.L.Vaux, and J.Silke (2009).
TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis.
  J Biol Chem, 284, 35906-35915.  
19426233 K.Chattopadhyay, E.Lazar-Molnar, Q.Yan, R.Rubinstein, C.Zhan, V.Vigdorovich, U.A.Ramagopal, J.Bonanno, S.G.Nathenson, and S.C.Almo (2009).
Sequence, structure, function, immunity: structural genomics of costimulation.
  Immunol Rev, 229, 356-386.  
19426222 M.Croft, T.So, W.Duan, and P.Soroosh (2009).
The significance of OX40 and OX40L to T-cell biology and immune disease.
  Immunol Rev, 229, 173-191.  
19290931 M.Karin, and E.Gallagher (2009).
TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes.
  Immunol Rev, 228, 225-240.  
19810754 Q.Yin, B.Lamothe, B.G.Darnay, and H.Wu (2009).
Structural basis for the lack of E2 interaction in the RING domain of TRAF2.
  Biochemistry, 48, 10558-10567.
PDB code: 3knv
19465916 Q.Yin, S.C.Lin, B.Lamothe, M.Lu, Y.C.Lo, G.Hura, L.Zheng, R.L.Rich, A.D.Campos, D.G.Myszka, M.J.Lenardo, B.G.Darnay, and H.Wu (2009).
E2 interaction and dimerization in the crystal structure of TRAF6.
  Nat Struct Mol Biol, 16, 658-666.
PDB codes: 3hcs 3hct 3hcu
19489725 R.J.Deshaies, and C.A.Joazeiro (2009).
RING domain E3 ubiquitin ligases.
  Annu Rev Biochem, 78, 399-434.  
18362156 C.H.Yang, A.Murti, S.R.Pfeffer, M.Fan, Z.Du, and L.M.Pfeffer (2008).
The role of TRAF2 binding to the type I interferon receptor in alternative NF kappaB activation and antiviral response.
  J Biol Chem, 283, 14309-14316.  
18606850 J.E.Vince, D.Chau, B.Callus, W.W.Wong, C.J.Hawkins, P.Schneider, M.McKinlay, C.A.Benetatos, S.M.Condon, S.K.Chunduru, G.Yeoh, R.Brink, D.L.Vaux, and J.Silke (2008).
TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha.
  J Cell Biol, 182, 171-184.  
18182486 K.Chattopadhyay, U.A.Ramagopal, M.Brenowitz, S.G.Nathenson, and S.C.Almo (2008).
Evolution of GITRL immune function: murine GITRL exhibits unique structural and biochemical properties within the TNF superfamily.
  Proc Natl Acad Sci U S A, 105, 635-640.
PDB codes: 2qdn 3b9i
18601528 S.V.Koushik, and S.S.Vogel (2008).
Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements.
  J Biomed Opt, 13, 031204.  
18485060 Y.Liu, F.Wang, H.Zhang, H.He, L.Ma, and X.W.Deng (2008).
Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development.
  Plant J, 55, 844-856.  
17379600 B.H.Morrison, J.A.Bauer, J.A.Lupica, Z.Tang, H.Schmidt, J.A.DiDonato, and D.J.Lindner (2007).
Effect of inositol hexakisphosphate kinase 2 on transforming growth factor beta-activated kinase 1 and NF-kappaB activation.
  J Biol Chem, 282, 15349-15356.  
17449269 F.K.Chan (2007).
Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling.
  Cytokine, 37, 101-107.  
18040044 K.Chattopadhyay, U.A.Ramagopal, A.Mukhopadhaya, V.N.Malashkevich, T.P.Dilorenzo, M.Brenowitz, S.G.Nathenson, and S.C.Almo (2007).
Assembly and structural properties of glucocorticoid-induced TNF receptor ligand: Implications for function.
  Proc Natl Acad Sci U S A, 104, 19452-19457.
PDB codes: 2q1m 2r30 2r32
17560374 M.Lu, S.C.Lin, Y.Huang, Y.J.Kang, R.Rich, Y.C.Lo, D.Myszka, J.Han, and H.Wu (2007).
XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization.
  Mol Cell, 26, 689-702.
PDB codes: 2poi 2pom 2pop
17254331 N.J.Hill, A.Stotland, M.Solomon, P.Secrest, E.Getzoff, and N.Sarvetnick (2007).
Resistance of the target islet tissue to autoimmune destruction contributes to genetic susceptibility in Type 1 diabetes.
  Biol Direct, 2, 5.  
17327397 P.Mercier, M.J.Lewis, D.D.Hau, L.F.Saltibus, W.Xiao, and L.Spyracopoulos (2007).
Structure, interactions, and dynamics of the RING domain from human TRAF6.
  Protein Sci, 16, 602-614.
PDB code: 2jmd
17230229 X.Sagaert, C.De Wolf-Peeters, H.Noels, and M.Baens (2007).
The pathogenesis of MALT lymphomas: where do we stand?
  Leukemia, 21, 389-396.  
17970914 Y.Chen, J.P.Mauldin, R.N.Day, and A.Periasamy (2007).
Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions.
  J Microsc, 228, 139-152.  
17989877 Z.Xu, P.Nie, B.Sun, and M.Chang (2007).
Molecular identification and expression analysis of tumor necrosis factor receptor-associated factor 2 in grass carp Ctenopharyngodon idella.
  Acta Biochim Biophys Sin (Shanghai), 39, 857-868.  
17063183 D.J.Rawlings, K.Sommer, and M.E.Moreno-García (2006).
The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes.
  Nat Rev Immunol, 6, 799-812.  
16891304 E.Varfolomeev, S.M.Wayson, V.M.Dixit, W.J.Fairbrother, and D.Vucic (2006).
The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2.
  J Biol Chem, 281, 29022-29029.  
16825662 J.H.Thomas (2006).
Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants.
  Genome Res, 16, 1017-1030.  
17098202 J.Schulze-Luehrmann, and S.Ghosh (2006).
Antigen-receptor signaling to nuclear factor kappa B.
  Immunity, 25, 701-715.  
16382137 J.Wan, W.Zhang, L.Wu, T.Bai, M.Zhang, K.W.Lo, Y.L.Chui, Y.Cui, Q.Tao, M.Yamamoto, S.Akira, and Z.Wu (2006).
BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway.
  Mol Cell Biol, 26, 448-456.  
16402859 M.Hu, L.Gu, M.Li, P.D.Jeffrey, W.Gu, and Y.Shi (2006).
Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway.
  PLoS Biol, 4, e27.
PDB codes: 2f1w 2f1x 2f1y 2f1z
16594899 W.Shi, L.Li, X.Shi, F.Zheng, J.Zeng, X.Jiang, F.Gong, M.Zhou, and Z.Li (2006).
Inhibition of nuclear factor-kappaB activation is essential for membrane-associated TNF-alpha-induced apoptosis in HL-60 cells.
  Immunol Cell Biol, 84, 366-373.  
16636664 Y.Wu, Y.Fan, B.Xue, L.Luo, J.Shen, S.Zhang, Y.Jiang, and Z.Yin (2006).
Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals.
  Oncogene, 25, 5787-5800.  
16020544 A.P.Grech, S.Gardam, T.Chan, R.Quinn, R.Gonzales, A.Basten, and R.Brink (2005).
Tumor necrosis factor receptor 2 (TNFR2) signaling is negatively regulated by a novel, carboxyl-terminal TNFR-associated factor 2 (TRAF2)-binding site.
  J Biol Chem, 280, 31572-31581.  
15899873 A.S.Chung, Y.J.Guan, Z.L.Yuan, J.E.Albina, and Y.E.Chin (2005).
Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II.
  Mol Cell Biol, 25, 4716-4726.  
16040744 C.Thaler, S.V.Koushik, P.S.Blank, and S.S.Vogel (2005).
Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer.
  Biophys J, 89, 2736-2749.  
15695509 F.T.Ishmael, V.K.Shier, S.S.Ishmael, and J.S.Bond (2005).
Intersubunit and domain interactions of the meprin B metalloproteinase. Disulfide bonds and protein-protein interactions in the MAM and TRAF domains.
  J Biol Chem, 280, 13895-13901.  
15659101 J.Gillespie, S.W.Rogers, M.Deery, P.Dupree, and J.C.Rogers (2005).
A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae.
  Plant J, 41, 429-441.  
15708970 J.Hauer, S.Püschner, P.Ramakrishnan, U.Simon, M.Bongers, C.Federle, and H.Engelmann (2005).
TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs.
  Proc Natl Acad Sci U S A, 102, 2874-2879.  
16234979 K.Kanazawa, and A.Kudo (2005).
Self-assembled RANK induces osteoclastogenesis ligand-independently.
  J Bone Miner Res, 20, 2053-2060.  
15520016 R.F.Kelley, K.Totpal, S.H.Lindstrom, M.Mathieu, K.Billeci, L.Deforge, R.Pai, S.G.Hymowitz, and A.Ashkenazi (2005).
Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling.
  J Biol Chem, 280, 2205-2212.  
16009714 S.Wu, P.Xie, K.Welsh, C.Li, C.Z.Ni, X.Zhu, J.C.Reed, A.C.Satterthwait, G.A.Bishop, and K.R.Ely (2005).
LMP1 protein from the Epstein-Barr virus is a structural CD40 decoy in B lymphocytes for binding to TRAF3.
  J Biol Chem, 280, 33620-33626.
PDB code: 1zms
16129676 T.Noguchi, K.Takeda, A.Matsuzawa, K.Saegusa, H.Nakano, J.Gohda, J.Inoue, and H.Ichijo (2005).
Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death.
  J Biol Chem, 280, 37033-37040.  
15808506 V.Saridakis, Y.Sheng, F.Sarkari, M.N.Holowaty, K.Shire, T.Nguyen, R.G.Zhang, J.Liao, W.Lee, A.M.Edwards, C.H.Arrowsmith, and L.Frappier (2005).
Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization.
  Mol Cell, 18, 25-36.
PDB codes: 1yy6 1yze
15743837 W.J.Kim, S.H.Back, V.Kim, I.Ryu, and S.K.Jang (2005).
Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions.
  Mol Cell Biol, 25, 2450-2462.  
16162816 Y.Morita, C.Kanei-Ishii, T.Nomura, and S.Ishii (2005).
TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation.
  Mol Biol Cell, 16, 5433-5444.  
15093829 G.Zhang (2004).
Tumor necrosis factor family ligand-receptor binding.
  Curr Opin Struct Biol, 14, 154-160.  
15121867 J.Gil, M.A.García, P.Gomez-Puertas, S.Guerra, J.Rullas, H.Nakano, J.Alcamí, and M.Esteban (2004).
TRAF family proteins link PKR with NF-kappa B activation.
  Mol Cell Biol, 24, 4502-4512.  
15468071 J.S.Lee, U.S.Hong, T.H.Lee, S.K.Yoon, and J.B.Yoon (2004).
Mass spectrometric analysis of tumor necrosis factor receptor-associated factor 1 ubiquitination mediated by cellular inhibitor of apoptosis 2.
  Proteomics, 4, 3376-3382.  
15341735 K.Saito, T.Kigawa, S.Koshiba, K.Sato, Y.Matsuo, A.Sakamoto, T.Takagi, M.Shirouzu, T.Yabuki, E.Nunokawa, E.Seki, T.Matsuda, M.Aoki, Y.Miyata, N.Hirakawa, M.Inoue, T.Terada, T.Nagase, R.Kikuno, M.Nakayama, O.Ohara, A.Tanaka, and S.Yokoyama (2004).
The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKgamma.
  Structure, 12, 1719-1728.
PDB code: 1ixd
14557256 M.Fotin-Mleczek, F.Henkler, A.Hausser, H.Glauner, D.Samel, A.Graness, P.Scheurich, D.Mauri, and H.Wajant (2004).
Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation.
  J Biol Chem, 279, 677-685.  
14517219 C.Li, P.S.Norris, C.Z.Ni, M.L.Havert, E.M.Chiong, B.R.Tran, E.Cabezas, J.C.Reed, A.C.Satterthwait, C.F.Ware, and K.R.Ely (2003).
Structurally distinct recognition motifs in lymphotoxin-beta receptor and CD40 for tumor necrosis factor receptor-associated factor (TRAF)-mediated signaling.
  J Biol Chem, 278, 50523-50529.
PDB code: 1rf3
12399461 G.P.Bertenshaw, M.T.Norcum, and J.S.Bond (2003).
Structure of homo- and hetero-oligomeric meprin metalloproteases. Dimers, tetramers, and high molecular mass multimers.
  J Biol Chem, 278, 2522-2532.  
14579250 H.Wu, and J.R.Arron (2003).
TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology.
  Bioessays, 25, 1096-1105.  
12783577 J.M.Zapata (2003).
TNF-receptor-associated factors as targets for drug development.
  Expert Opin Ther Targets, 7, 411-425.  
12960157 L.F.Lu, W.J.Cook, L.L.Lin, and R.J.Noelle (2003).
CD40 signaling through a newly identified tumor necrosis factor receptor-associated factor 2 (TRAF2) binding site.
  J Biol Chem, 278, 45414-45418.  
14505312 L.He, D.P.Olson, X.Wu, T.S.Karpova, J.G.McNally, and P.E.Lipsky (2003).
A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
  Cytometry A, 55, 71-85.  
12843613 M.Kaneko, Y.Niinuma, and Y.Nomura (2003).
Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2.
  Biol Pharm Bull, 26, 931-935.  
12645006 O.V.Moroz, G.G.Dodson, K.S.Wilson, E.Lukanidin, and I.B.Bronstein (2003).
Multiple structural states of S100A12: A key to its functional diversity.
  Microsc Res Tech, 60, 581-592.  
12787559 P.W.Dempsey, S.E.Doyle, J.Q.He, and G.Cheng (2003).
The signaling adaptors and pathways activated by TNF superfamily.
  Cytokine Growth Factor Rev, 14, 193-209.  
12787562 S.R.Wiley, and J.A.Winkles (2003).
TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor.
  Cytokine Growth Factor Rev, 14, 241-249.  
12610149 W.F.Coffin, T.R.Geiger, and J.M.Martin (2003).
Transmembrane domains 1 and 2 of the latent membrane protein 1 of Epstein-Barr virus contain a lipid raft targeting signal and play a critical role in cytostasis.
  J Virol, 77, 3749-3758.  
12005438 C.Li, C.Z.Ni, M.L.Havert, E.Cabezas, J.He, D.Kaiser, J.C.Reed, A.C.Satterthwait, G.Cheng, and K.R.Ely (2002).
Downstream regulator TANK binds to the CD40 recognition site on TRAF3.
  Structure, 10, 403-411.
PDB codes: 1kzz 1l0a
12389614 C.Schneider, and G.Hübinger (2002).
Pleiotropic signal transduction mediated by human CD30: a member of the tumor necrosis factor receptor (TNFR) family.
  Leuk Lymphoma, 43, 1355-1366.  
12136149 C.Z.Ni, K.Welsh, J.Zheng, M.Havert, J.C.Reed, and K.R.Ely (2002).
Crystallization and preliminary X-ray analysis of the TRAF domain of TRAF3.
  Acta Crystallogr D Biol Crystallogr, 58, 1340-1342.  
11742346 G.Polekhina, C.M.House, N.Traficante, J.P.Mackay, F.Relaix, D.A.Sassoon, M.W.Parker, and D.D.Bowtell (2002).
Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-alpha signaling.
  Nat Struct Biol, 9, 68-75.
PDB code: 1k2f
12354113 H.Glauner, D.Siegmund, H.Motejadded, P.Scheurich, F.Henkler, O.Janssen, and H.Wajant (2002).
Intracellular localization and transcriptional regulation of tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4).
  Eur J Biochem, 269, 4819-4829.  
12411493 H.Habelhah, I.J.Frew, A.Laine, P.W.Janes, F.Relaix, D.Sassoon, D.D.Bowtell, and Z.Ronai (2002).
Stress-induced decrease in TRAF2 stability is mediated by Siah2.
  EMBO J, 21, 5756-5765.  
12140561 H.Ye, J.R.Arron, B.Lamothe, M.Cirilli, T.Kobayashi, N.K.Shevde, D.Segal, O.K.Dzivenu, M.Vologodskaia, M.Yim, K.Du, S.Singh, J.W.Pike, B.G.Darnay, Y.Choi, and H.Wu (2002).
Distinct molecular mechanism for initiating TRAF6 signalling.
  Nature, 418, 443-447.
PDB codes: 1lb4 1lb5 1lb6
12351847 H.Ye, M.Cirilli, and H.Wu (2002).
The use of construct variation and diffraction data analysis in the crystallization of the TRAF domain of human tumor necrosis factor receptor associated factor 6.
  Acta Crystallogr D Biol Crystallogr, 58, 1886-1888.  
11753426 J.C.Reed, and K.R.Ely (2002).
Degrading liaisons: Siah structure revealed.
  Nat Struct Biol, 9, 8.  
11796220 J.L.Bodmer, P.Schneider, and J.Tschopp (2002).
The molecular architecture of the TNF superfamily.
  Trends Biochem Sci, 27, 19-26.  
11751921 J.N.Shin, I.Kim, J.S.Lee, G.Y.Koh, Z.H.Lee, and H.H.Kim (2002).
A novel zinc finger protein that inhibits osteoclastogenesis and the function of tumor necrosis factor receptor-associated factor 6.
  J Biol Chem, 277, 8346-8353.  
12370254 J.R.Arron, Y.Pewzner-Jung, M.C.Walsh, T.Kobayashi, and Y.Choi (2002).
Regulation of the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF)2 by TRAF1 reveals mechanisms of TRAF2 signaling.
  J Exp Med, 196, 923-934.  
12447905 K.R.Ely, and C.Li (2002).
Structurally adaptive hot spots at a protein interaction interface on TRAF3.
  J Mol Recognit, 15, 286-290.  
11856825 O.V.Moroz, A.A.Antson, E.J.Dodson, H.J.Burrell, S.J.Grist, R.M.Lloyd, N.J.Maitland, G.G.Dodson, K.S.Wilson, E.Lukanidin, and I.B.Bronstein (2002).
The structure of S100A12 in a hexameric form and its proposed role in receptor signalling.
  Acta Crystallogr D Biol Crystallogr, 58, 407-413.
PDB code: 1gqm
11777919 P.Xia, L.Wang, P.A.Moretti, N.Albanese, F.Chai, S.M.Pitson, R.J.D'Andrea, J.R.Gamble, and M.A.Vadas (2002).
Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling.
  J Biol Chem, 277, 7996-8003.  
12023963 Y.C.Xu, R.F.Wu, Y.Gu, Y.S.Yang, M.C.Yang, F.E.Nwariaku, and L.S.Terada (2002).
Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase.
  J Biol Chem, 277, 28051-28057.  
11313471 E.C.Wang, A.Thern, A.Denzel, J.Kitson, S.N.Farrow, and M.J.Owen (2001).
DR3 regulates negative selection during thymocyte development.
  Mol Cell Biol, 21, 3451-3461.  
11167129 H.Wajant, and P.Scheurich (2001).
Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling.
  Int J Biochem Cell Biol, 33, 19-32.  
11384740 J.Moscat, L.Sanz, P.Sanchez, and M.T.Diaz-Meco (2001).
Regulation and role of the atypical PKC isoforms in cell survival during tumor transformation.
  Adv Enzyme Regul, 41, 99.  
11676830 J.Z.Qin, P.Bacon, V.Chaturvedi, and B.J.Nickoloff (2001).
Role of NF-kappaB activity in apoptotic response of keratinocytes mediated by interferon-gamma, tumor necrosis factor-alpha, and tumor-necrosis-factor-related apoptosis-inducing ligand.
  J Invest Dermatol, 117, 898-907.  
11250893 N.Kobayashi, Y.Kadono, A.Naito, K.Matsumoto, T.Yamamoto, S.Tanaka, and J.Inoue (2001).
Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis.
  EMBO J, 20, 1271-1280.  
11239407 R.M.Locksley, N.Killeen, and M.J.Lenardo (2001).
The TNF and TNF receptor superfamilies: integrating mammalian biology.
  Cell, 104, 487-501.  
11514191 V.Baud, and M.Karin (2001).
Signal transduction by tumor necrosis factor and its relatives.
  Trends Cell Biol, 11, 372-377.  
  11257231 Y.Huang, Y.C.Park, R.L.Rich, D.Segal, D.G.Myszka, and H.Wu (2001).
Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain.
  Cell, 104, 781-790.
PDB code: 1i4o
10984535 C.Z.Ni, K.Welsh, E.Leo, C.K.Chiou, H.Wu, J.C.Reed, and K.R.Ely (2000).
Molecular basis for CD40 signaling mediated by TRAF3.
  Proc Natl Acad Sci U S A, 97, 10395-10399.
PDB codes: 1flk 1fll
10911999 D.H.Tsao, T.McDonagh, J.B.Telliez, S.Hsu, K.Malakian, G.Y.Xu, and L.L.Lin (2000).
Solution structure of N-TRADD and characterization of the interaction of N-TRADD and C-TRAF2, a key step in the TNFR1 signaling pathway.
  Mol Cell, 5, 1051-1057.
PDB code: 1f2h
11114500 E.Y.Jones (2000).
The tumour necrosis factor receptor family: life or death choices.
  Curr Opin Struct Biol, 10, 644-648.  
10650002 F.Urano, X.Wang, A.Bertolotti, Y.Zhang, P.Chung, H.P.Harding, and D.Ron (2000).
Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1.
  Science, 287, 664-666.  
10644711 H.Dadgostar, and G.Cheng (2000).
Membrane localization of TRAF 3 enables JNK activation.
  J Biol Chem, 275, 2539-2544.  
10688666 H.Liu, H.Nishitoh, H.Ichijo, and J.M.Kyriakis (2000).
Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin.
  Mol Cell Biol, 20, 2198-2208.  
10908665 H.Ye, and H.Wu (2000).
Thermodynamic characterization of the interaction between TRAF2 and tumor necrosis factor receptor peptides by isothermal titration calorimetry.
  Proc Natl Acad Sci U S A, 97, 8961-8966.  
10766844 J.M.Zapata, S.Matsuzawa, A.Godzik, E.Leo, S.A.Wasserman, and J.C.Reed (2000).
The Drosophila tumor necrosis factor receptor-associated factor-1 (DTRAF1) interacts with Pelle and regulates NFkappaB activity.
  J Biol Chem, 275, 12102-12107.  
10747026 L.Sanz, M.T.Diaz-Meco, H.Nakano, and J.Moscat (2000).
The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway.
  EMBO J, 19, 1576-1586.  
10753817 M.C.Deller, and E.Yvonne Jones (2000).
Cell surface receptors.
  Curr Opin Struct Biol, 10, 213-219.  
10837071 M.Karin, and Y.Ben-Neriah (2000).
Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity.
  Annu Rev Immunol, 18, 621-663.  
10950109 M.L.Gaeta, D.R.Johnson, M.S.Kluger, and J.S.Pober (2000).
The death domain of tumor necrosis factor receptor 1 is necessary but not sufficient for Golgi retention of the receptor and mediates receptor desensitization.
  Lab Invest, 80, 1185-1194.  
10753918 W.R.Force, A.A.Glass, C.A.Benedict, T.C.Cheung, J.Lama, and C.F.Ware (2000).
Discrete signaling regions in the lymphotoxin-beta receptor for tumor necrosis factor receptor-associated factor binding, subcellular localization, and activation of cell death and NF-kappaB pathways.
  J Biol Chem, 275, 11121-11129.  
10892748 Y.C.Park, H.Ye, C.Hsia, D.Segal, R.L.Rich, H.C.Liou, D.G.Myszka, and H.Wu (2000).
A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction.
  Cell, 101, 777-787.
PDB code: 1f3v
10726774 Y.Kuramitsu, M.Fujimoto, T.Tanaka, J.Ohata, and K.Nakamura (2000).
Differential expression of phosphatidylethanol-amine-binding protein in rat hepatoma cell lines: analyses of tumor necrosis factor-alpha-resistant cKDH-8/11 and -sensitive KDH-8/YK cells by two-dimensional gel electrophoresis.
  Electrophoresis, 21, 660-664.  
10428814 E.Leo, K.Welsh, S.Matsuzawa, J.M.Zapata, S.Kitada, R.S.Mitchell, K.R.Ely, and J.C.Reed (1999).
Differential requirements for tumor necrosis factor receptor-associated factor family proteins in CD40-mediated induction of NF-kappaB and Jun N-terminal kinase activation.
  J Biol Chem, 274, 22414-22422.  
10518213 H.Ye, Y.C.Park, M.Kreishman, E.Kieff, and H.Wu (1999).
The structural basis for the recognition of diverse receptor sequences by TRAF2.
  Mol Cell, 4, 321-330.
PDB codes: 1czy 1czz 1d00 1d01 1d0a 1d0j
10549288 S.G.Hymowitz, H.W.Christinger, G.Fuh, M.Ultsch, M.O'Connell, R.F.Kelley, A.Ashkenazi, and A.M.de Vos (1999).
Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5.
  Mol Cell, 4, 563-571.
PDB code: 1d0g
11232332 S.M.McWhirter, S.S.Pullen, B.G.Werneburg, M.E.Labadia, R.H.Ingraham, J.J.Crute, M.R.Kehry, and T.Alber (1999).
Structural and biochemical analysis of signal transduction by the TRAF family of adapter proteins.
  Cold Spring Harb Symp Quant Biol, 64, 551-562.  
10411888 S.M.McWhirter, S.S.Pullen, J.M.Holton, J.J.Crute, M.R.Kehry, and T.Alber (1999).
Crystallographic analysis of CD40 recognition and signaling by human TRAF2.
  Proc Natl Acad Sci U S A, 96, 8408-8413.
PDB code: 1qsc
10433725 S.S.Pullen, M.E.Labadia, R.H.Ingraham, S.M.McWhirter, D.S.Everdeen, T.Alber, J.J.Crute, and M.R.Kehry (1999).
High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization.
  Biochemistry, 38, 10168-10177.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.