9pap Citations

Structure of papain refined at 1.65 A resolution.

J Mol Biol 179 233-56 (1984)
Related entries: 1pad, 2pad, 4pad, 5pad, 6pad

Cited: 258 times
EuropePMC logo PMID: 6502713

Abstract

Papain is a sulfhydryl protease from the latex of the papaya fruit. Its molecules consist of one polypeptide chain with 212 amino acid residues. The chain is folded into two domains with the active site in a groove between the domains. We have refined the crystal structure of papain, in which the sulfhydryl group was oxidized, by a restrained least-squares procedure at 1.65 A to an R-factor of 16.1%. The estimated accuracy in the atomic co-ordinates is 0.1 A, except for disordered atoms. All phi/psi angles for non-glycine residues are found within the outer limit boundary of a Ramachandran plot and this provides another check on the quality of the model. In the alpha-helical parts of the structure, the C = O bonds are directed more away from the helix axis than in a classical alpha-helix, leading to somewhat longer hydrogen bonds, 2.98 A, compared to 2.89 A. The hydrogen-bonding parameters and conformational angles in the anti-parallel beta-sheet structure show a large diversity. Hydrogen bonds in the core of the sheet are generally shorter than those at the more twisted ends. The average value is 2.91 A. The hydrogen bond distance Ni+3-Oi in turns is relatively long and the geometry is far from linear. Hydrogen bond formation, therefore, is perhaps not an essential prerequisite for turn formation. Although the crystallization medium is 62% (w/w) methanol in water, only 29 out of 224 solvent molecules can be regarded with any certainty as methanol molecules. The water molecules play an important role in maintaining structural stability. This is specially true for internal water. Twenty-one water molecules are located in contact areas between adjacent papain molecules. It seems as if the enzyme is trapped in a grid of water molecules with only a limited number of direct interactions between the protein molecules. The residues in the active site cleft belong to the most static parts of the structure. In general, disorder in atomic positions increases when going from the interior of the protein molecule to its surface. This behavior was quantified and it was found that the point of minimum disorder is near the molecular centroid.

Reviews - 9pap mentioned but not cited (5)

  1. Cysteine cathepsins: from structure, function and regulation to new frontiers. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D. Biochim Biophys Acta 1824 68-88 (2012)
  2. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. Elsässer B, Goettig P. Int J Mol Sci 22 3232 (2021)
  3. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. David Troncoso F, Alberto Sánchez D, Luján Ferreira M. ChemistryOpen 11 e202200017 (2022)
  4. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  5. Structural Insights Into Key Plasmodium Proteases as Therapeutic Drug Targets. Mishra M, Singh V, Singh S. Front Microbiol 10 394 (2019)

Articles - 9pap mentioned but not cited (36)

  1. iGNM: a database of protein functional motions based on Gaussian Network Model. Yang LW, Liu X, Jursa CJ, Holliman M, Rader AJ, Karimi HA, Bahar I. Bioinformatics 21 2978-2987 (2005)
  2. Improved pKa calculations through flexibility based sampling of a water-dominated interaction scheme. Warwicker J. Protein Sci 13 2793-2805 (2004)
  3. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. Stack CM, Caffrey CR, Donnelly SM, Seshaadri A, Lowther J, Tort JF, Collins PR, Robinson MW, Xu W, McKerrow JH, Craik CS, Geiger SR, Marion R, Brinen LS, Dalton JP. J. Biol. Chem. 283 9896-9908 (2008)
  4. Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. James TW, Frias-Staheli N, Bacik JP, Levingston Macleod JM, Khajehpour M, García-Sastre A, Mark BL. Proc. Natl. Acad. Sci. U.S.A. 108 2222-2227 (2011)
  5. Crystal structure of porcine reproductive and respiratory syndrome virus leader protease Nsp1alpha. Sun Y, Xue F, Guo Y, Ma M, Hao N, Zhang XC, Lou Z, Li X, Rao Z. J. Virol. 83 10931-10940 (2009)
  6. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids. Kristensen DM, Ward RM, Lisewski AM, Erdin S, Chen BY, Fofanov VY, Kimmel M, Kavraki LE, Lichtarge O. BMC Bioinformatics 9 17 (2008)
  7. Structural basis of murein peptide specificity of a gamma-D-glutamyl-l-diamino acid endopeptidase. Xu Q, Sudek S, McMullan D, Miller MD, Geierstanger B, Jones DH, Krishna SS, Spraggon G, Bursalay B, Abdubek P, Acosta C, Ambing E, Astakhova T, Axelrod HL, Carlton D, Caruthers J, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Trout CV, van den Bedem H, Weekes D, White A, Wolf G, Zubieta C, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structure 17 303-313 (2009)
  8. Peptide-plane flipping in proteins. Hayward S. Protein Sci. 10 2219-2227 (2001)
  9. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica. Robinson MW, Corvo I, Jones PM, George AM, Padula MP, To J, Cancela M, Rinaldi G, Tort JF, Roche L, Dalton JP. PLoS Negl Trop Dis 5 e1012 (2011)
  10. How accurate and statistically robust are catalytic site predictions based on closeness centrality? Chea E, Livesay DR. BMC Bioinformatics 8 153 (2007)
  11. Crystal structure of the peptidase domain of Streptococcus ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway. Ishii S, Yano T, Ebihara A, Okamoto A, Manzoku M, Hayashi H. J. Biol. Chem. 285 10777-10785 (2010)
  12. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Matsuo K, Sakurada Y, Yonehara R, Kataoka M, Gekko K. Biophys. J. 92 4088-4096 (2007)
  13. Identification of mimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonal antibody. Yuan Q, Pestka JJ, Hespenheide BM, Kuhn LA, Linz JE, Hart LP. Appl Environ Microbiol 65 3279-3286 (1999)
  14. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches. Hernández Alvarez L, Naranjo Feliciano D, Hernández González JE, Soares RO, Barreto Gomes DE, Pascutti PG. PLoS Negl Trop Dis 9 e0003759 (2015)
  15. Chikungunya nsP2 protease is not a papain-like cysteine protease and the catalytic dyad cysteine is interchangeable with a proximal serine. Saisawang C, Saitornuang S, Sillapee P, Ubol S, Smith DR, Ketterman AJ. Sci Rep 5 17125 (2015)
  16. Structural and Functional Characterization of the Major Allergen Amb a 11 from Short Ragweed Pollen. Groeme R, Airouche S, Kopečný D, Jaekel J, Savko M, Berjont N, Bussieres L, Le Mignon M, Jagic F, Zieglmayer P, Baron-Bodo V, Bordas-Le Floch V, Mascarell L, Briozzo P, Moingeon P. J. Biol. Chem. 291 13076-13087 (2016)
  17. Mutation analysis of carbamoyl phosphate synthetase: does the structurally conserved glutamine amidotransferase triad act as a functional dyad? Hart EJ, Powers-Lee SG. Protein Sci. 17 1120-1128 (2008)
  18. Agroinfiltration contributes to VP1 recombinant protein degradation. Pillay P, Kunert KJ, van Wyk S, Makgopa ME, Cullis CA, Vorster BJ. Bioengineered 7 459-477 (2016)
  19. High-resolution complex of papain with remnants of a cysteine protease inhibitor derived from Trypanosoma brucei. Alphey MS, Hunter WN. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 504-508 (2006)
  20. Structure and mechanism of Escherichia coli glutathionylspermidine amidase belonging to the family of cysteine; histidine-dependent amidohydrolases/peptidases. Pai CH, Wu HJ, Lin CH, Wang AH. Protein Sci. 20 557-566 (2011)
  21. An ambiguity principle for assigning protein structural domains. Postic G, Ghouzam Y, Chebrek R, Gelly JC. Sci Adv 3 e1600552 (2017)
  22. Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model. Salsbury FR, Poole LB, Fetrow JS. Proteins 80 2583-2591 (2012)
  23. Repurposing the McoTI-II Rigid Molecular Scaffold in to Inhibitor of 'Papain Superfamily' Cysteine Proteases. Mishra M, Singh V, Tellis MB, Joshi RS, Singh S. Pharmaceuticals (Basel) 14 7 (2020)
  24. Chitosan Graft Copolymers with N-Vinylimidazole as Promising Matrices for Immobilization of Bromelain, Ficin, and Papain. Sorokin AV, Olshannikova SS, Lavlinskaya MS, Holyavka MG, Faizullin DA, Zuev YF, Artukhov VG. Polymers (Basel) 14 2279 (2022)
  25. Multiscale Modeling of Bio-Nano Interactions of Zero-Valent Silver Nanoparticles. Subbotina J, Lobaskin V. J Phys Chem B 126 1301-1314 (2022)
  26. Novel Immobilized Biocatalysts Based on Cysteine Proteases Bound to 2-(4-Acetamido-2-sulfanilamide) Chitosan and Research on Their Structural Features. Olshannikova SS, Malykhina NV, Lavlinskaya MS, Sorokin AV, Yudin NE, Vyshkvorkina YM, Lukin AN, Holyavka MG, Artyukhov VG. Polymers (Basel) 14 3223 (2022)
  27. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Nanomaterials (Basel) 11 3299 (2021)
  28. A Novel In Silico Benchmarked Pipeline Capable of Complete Protein Analysis: A Possible Tool for Potential Drug Discovery. Perera DDBD, Perera KML, Peiris DC. Biology (Basel) 10 1113 (2021)
  29. Cathepsin L Inhibitors with Activity against the Liver Fluke Identified From a Focus Library of Quinoxaline 1,4-di-N-Oxide Derivatives. Ferraro F, Merlino A, Gil J, Cerecetto H, Corvo I, Cabrera M. Molecules 24 (2019)
  30. Complexation of Bromelain, Ficin, and Papain with the Graft Copolymer of Carboxymethyl Cellulose Sodium Salt and N-Vinylimidazole Enhances Enzyme Proteolytic Activity. Sorokin AV, Goncharova SS, Lavlinskaya MS, Holyavka MG, Faizullin DA, Zuev YF, Kondratyev MS, Artyukhov VG. Int J Mol Sci 24 11246 (2023)
  31. Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain. Roy S, Choudhury D, Chakrabarti C, Biswas S, Dattagupta JK. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 634-636 (2011)
  32. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Commun Biol 5 272 (2022)
  33. Mutation in the Pro-Peptide Region of a Cysteine Protease Leads to Altered Activity and Specificity-A Structural and Biochemical Approach. Dutta S, Choudhury D, Roy S, Dattagupta JK, Biswas S. PLoS ONE 11 e0158024 (2016)
  34. Peptide conformational imprints enhanced the catalytic activity of papain for esterification. Kanubaddi KR, Yang CL, Huang PY, Lin CY, Tai DF, Lee CH. Front Bioeng Biotechnol 10 943751 (2022)
  35. Protease-Catalyzed l-Aspartate Oligomerization: Substrate Selectivity and Computational Modeling. Yang F, Totsingan F, Dolan E, Khare SD, Gross RA. ACS Omega 5 4403-4414 (2020)
  36. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes. Johé P, Jaenicke E, Neuweiler H, Schirmeister T, Kersten C, Hellmich UA. J Biol Chem 296 100565 (2021)


Reviews citing this publication (14)

  1. The lysosomal cysteine proteases. McGrath ME. Annu Rev Biophys Biomol Struct 28 181-204 (1999)
  2. Revised definition of substrate binding sites of papain-like cysteine proteases. Turk D, Guncar G, Podobnik M, Turk B. Biol. Chem. 379 137-147 (1998)
  3. Cysteine proteases of Porphyromonas gingivalis. Curtis MA, Aduse-Opoku J, Rangarajan M. Crit. Rev. Oral Biol. Med. 12 192-216 (2001)
  4. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Meyer E. Protein Sci. 1 1543-1562 (1992)
  5. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Mills EN, Jenkins JA, Alcocer MJ, Shewry PR. Crit Rev Food Sci Nutr 44 379-407 (2004)
  6. Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Cazzulo JJ, Stoka V, Turk V. Biol. Chem. 378 1-10 (1997)
  7. Folds and activities of peptidoglycan amidases. Firczuk M, Bochtler M. FEMS Microbiol. Rev. 31 676-691 (2007)
  8. Fractionation and purification of the enzymes stored in the latex of Carica papaya. Azarkan M, El Moussaoui A, van Wuytswinkel D, Dehon G, Looze Y. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 790 229-238 (2003)
  9. Structure of allergens and structure based epitope predictions. Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Methods 66 3-21 (2014)
  10. Sequence homologies, hydrophobic profiles and secondary structures of cathepsins B, H and L: comparison with papain and actinidin. Dufour E. Biochimie 70 1335-1342 (1988)
  11. Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Schröder HC, Brandt D, Schlossmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WE. Naturwissenschaften 94 339-359 (2007)
  12. Exogenous proteases for meat tenderization. Bekhit AA, Hopkins DL, Geesink G, Bekhit AA, Franks P. Crit Rev Food Sci Nutr 54 1012-1031 (2014)
  13. Structure and Function of Viral Deubiquitinating Enzymes. Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. J. Mol. Biol. 429 3441-3470 (2017)
  14. Structural studies of specific intermolecular interactions and self-aggregation of biomolecules and their application to drug design. Ishida T. Chem. Pharm. Bull. 57 1309-1334 (2009)

Articles citing this publication (203)

  1. Accurate modeling of protein conformation by automatic segment matching. Levitt M. J. Mol. Biol. 226 507-533 (1992)
  2. Correlated mutations contain information about protein-protein interaction. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. J. Mol. Biol. 271 511-523 (1997)
  3. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N. EMBO J. 10 2321-2330 (1991)
  4. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, Franklin S, Ghayur T, Hackett MC, Hammill LD. Cell 78 343-352 (1994)
  5. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V. EMBO J. 9 1939-1947 (1990)
  6. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. Sibanda BL, Blundell TL, Thornton JM. J. Mol. Biol. 206 759-777 (1989)
  7. Hydrogen bonding in globular proteins. Stickle DF, Presta LG, Dill KA, Rose GD. J. Mol. Biol. 226 1143-1159 (1992)
  8. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K, Irie A, Sorimachi H, Bourenkow G, Bartunik H, Suzuki K, Bode W. Proc. Natl. Acad. Sci. U.S.A. 97 588-592 (2000)
  9. Two distinct gene subfamilies within the family of cysteine protease genes. Karrer KM, Peiffer SL, DiTomas ME. Proc. Natl. Acad. Sci. U.S.A. 90 3063-3067 (1993)
  10. Families of cysteine peptidases. Rawlings ND, Barrett AJ. Methods Enzymol 244 461-486 (1994)
  11. A Ca(2+) switch aligns the active site of calpain. Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL. Cell 108 649-660 (2002)
  12. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. Kamphuis IG, Drenth J, Baker EN. J. Mol. Biol. 182 317-329 (1985)
  13. Buried waters and internal cavities in monomeric proteins. Williams MA, Goodfellow JM, Thornton JM. Protein Sci. 3 1224-1235 (1994)
  14. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. Kullik I, Toledano MB, Tartaglia LA, Storz G. J. Bacteriol. 177 1275-1284 (1995)
  15. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R. EMBO J. 21 3213-3224 (2002)
  16. Hydrogen bond stereochemistry in protein structure and function. Ippolito JA, Alexander RS, Christianson DW. J. Mol. Biol. 215 457-471 (1990)
  17. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WE. Eur. J. Biochem. 267 4878-4887 (2000)
  18. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Argos P. J. Mol. Biol. 211 943-958 (1990)
  19. The 1.8 A crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from escherichia coli. Davies C, Heath RJ, White SW, Rock CO. Structure 8 185-195 (2000)
  20. Crystal structure of beta-ketoacyl-acyl carrier protein synthase II from E.coli reveals the molecular architecture of condensing enzymes. Huang W, Jia J, Edwards P, Dehesh K, Schneider G, Lindqvist Y. EMBO J. 17 1183-1191 (1998)
  21. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Ring CS, Sun E, McKerrow JH, Lee GK, Rosenthal PJ, Kuntz ID, Cohen FE. Proc. Natl. Acad. Sci. U.S.A. 90 3583-3587 (1993)
  22. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. Zong Y, Bice TW, Ton-That H, Schneewind O, Narayana SV. J. Biol. Chem. 279 31383-31389 (2004)
  23. Cloning and sequencing of papain-encoding cDNA. Cohen LW, Coghlan VM, Dihel LC. Gene 48 219-227 (1986)
  24. Structure of ferricytochrome c' from Rhodospirillum molischianum at 1.67 A resolution. Finzel BC, Weber PC, Hardman KD, Salemme FR. J. Mol. Biol. 186 627-643 (1985)
  25. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D. Plant Mol. Biol. 30 755-767 (1996)
  26. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D. Structure 6 51-61 (1998)
  27. Conformations of disulfide bridges in proteins. Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P. Int J Pept Protein Res 36 147-155 (1990)
  28. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Salsbury FR, Knutson ST, Poole LB, Fetrow JS. Protein Sci. 17 299-312 (2008)
  29. Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. Guarné A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T. EMBO J. 17 7469-7479 (1998)
  30. Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Pedersen LC, Yee VC, Bishop PD, Le Trong I, Teller DC, Stenkamp RE. Protein Sci. 3 1131-1135 (1994)
  31. Taxonomy and conformational analysis of loops in proteins. Ring CS, Kneller DG, Langridge R, Cohen FE. J. Mol. Biol. 224 685-699 (1992)
  32. Letter Crystal structure of human cathepsin K complexed with a potent inhibitor. McGrath ME, Klaus JL, Barnes MG, Brömme D. Nat. Struct. Biol. 4 105-109 (1997)
  33. Novel method for the rapid evaluation of packing in protein structures. Gregoret LM, Cohen FE. J. Mol. Biol. 211 959-974 (1990)
  34. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. Proc. Natl. Acad. Sci. U.S.A. 101 302-307 (2004)
  35. Refined structure of dienelactone hydrolase at 1.8 A. Pathak D, Ollis D. J. Mol. Biol. 214 497-525 (1990)
  36. A procedure for detecting structural domains in proteins. Swindells MB. Protein Sci 4 103-112 (1995)
  37. Identification of the active site residues in the nsP2 proteinase of Sindbis virus. Strauss EG, De Groot RJ, Levinson R, Strauss JH. Virology 191 932-940 (1992)
  38. Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Joshua-Tor L, Xu HE, Johnston SA, Rees DC. Science 269 945-950 (1995)
  39. Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1.8 A resolution. Wright CS. J. Mol. Biol. 194 501-529 (1987)
  40. Catalytic activity and denaturation of enzymes in water/organic cosolvent mixtures. Alpha-chymotrypsin and laccase in mixed water/alcohol, water/glycol and water/formamide solvents. Mozhaev VV, Khmelnitsky YL, Sergeeva MV, Belova AB, Klyachko NL, Levashov AV, Martinek K. Eur. J. Biochem. 184 597-602 (1989)
  41. Structural and functional characterization of Falcipain-2, a hemoglobinase from the malarial parasite Plasmodium falciparum. Hogg T, Nagarajan K, Herzberg S, Chen L, Shen X, Jiang H, Wecke M, Blohmke C, Hilgenfeld R, Schmidt CL. J Biol Chem 281 25425-25437 (2006)
  42. X-ray crystallographic structure of a papain-leupeptin complex. Schröder E, Phillips C, Garman E, Harlos K, Crawford C. FEBS Lett. 315 38-42 (1993)
  43. Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site. Hilgers MT, Ludwig ML. Proc. Natl. Acad. Sci. U.S.A. 98 11169-11174 (2001)
  44. General architecture of the alpha-helical globule. Murzin AG, Finkelstein AV. J. Mol. Biol. 204 749-769 (1988)
  45. Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors. Selzer PM, Chen X, Chan VJ, Cheng M, Kenyon GL, Kuntz ID, Sakanari JA, Cohen FE, McKerrow JH. Exp. Parasitol. 87 212-221 (1997)
  46. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M, Snijder EJ, Mark BL, Kikkert M. Proc. Natl. Acad. Sci. U.S.A. 110 E838-47 (2013)
  47. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. Jia Z, Hasnain S, Hirama T, Lee X, Mort JS, To R, Huber CP. J. Biol. Chem. 270 5527-5533 (1995)
  48. 1H-NMR stereospecific assignments by conformational data-base searches. Nilges M, Clore GM, Gronenborn AM. Biopolymers 29 813-822 (1990)
  49. An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins. Sowdhamini R, Blundell TL. Protein Sci. 4 506-520 (1995)
  50. Characterization of a partially folded intermediate of stem bromelain at low pH. Haq SK, Rasheedi S, Khan RH. Eur. J. Biochem. 269 47-52 (2002)
  51. Three-dimensional, sequence order-independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: potential implications to evolution and to protein folding. Fischer D, Wolfson H, Lin SL, Nussinov R. Protein Sci 3 769-778 (1994)
  52. The prosequence of procaricain forms an alpha-helical domain that prevents access to the substrate-binding cleft. Groves MR, Taylor MA, Scott M, Cummings NJ, Pickersgill RW, Jenkins JA. Structure 4 1193-1203 (1996)
  53. Assigning secondary structure from protein coordinate data. King SM, Johnson WC. Proteins 35 313-320 (1999)
  54. Identification of the active-site residues of the L proteinase of foot-and-mouth disease virus. Piccone ME, Zellner M, Kumosinski TF, Mason PW, Grubman MJ. J. Virol. 69 4950-4956 (1995)
  55. Crystal structures of calpain-E64 and -leupeptin inhibitor complexes reveal mobile loops gating the active site. Moldoveanu T, Campbell RL, Cuerrier D, Davies PL. J. Mol. Biol. 343 1313-1326 (2004)
  56. Substitution of cysteine 192 in a highly conserved Streptococcus pyogenes extracellular cysteine protease (interleukin 1beta convertase) alters proteolytic activity and ablates zymogen processing. Musser JM, Stockbauer K, Kapur V, Rudgers GW. Infect. Immun. 64 1913-1917 (1996)
  57. Cooperative DNA binding of the human HoxB5 (Hox-2.1) protein is under redox regulation in vitro. Galang CK, Hauser CA. Mol. Cell. Biol. 13 4609-4617 (1993)
  58. Recombinant chicken egg white cystatin variants of the QLVSG region. Auerswald EA, Genenger G, Assfalg-Machleidt I, Machleidt W, Engh RA, Fritz H. Eur. J. Biochem. 209 837-845 (1992)
  59. Active site residues in m-calpain: identification by site-directed mutagenesis. Arthur JS, Gauthier S, Elce JS. FEBS Lett. 368 397-400 (1995)
  60. Structure of the cyclomodulin Cif from pathogenic Escherichia coli. Hsu Y, Jubelin G, Taieb F, Nougayrède JP, Oswald E, Stebbins CE. J. Mol. Biol. 384 465-477 (2008)
  61. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham CM, Salih E, Frazao C, Kowlessur D, Overington JP, Thomas M, Brocklehurst SM, Patel M, Thomas EW, Brocklehurst K. Biochem. J. 280 ( Pt 1) 79-92 (1991)
  62. Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution. Stehle T, Ahmed SA, Claiborne A, Schulz GE. J. Mol. Biol. 221 1325-1344 (1991)
  63. Crystal structure of papain-E64-c complex. Binding diversity of E64-c to papain S2 and S3 subsites. Kim MJ, Yamamoto D, Matsumoto K, Inoue M, Ishida T, Mizuno H, Sumiya S, Kitamura K. Biochem. J. 287 ( Pt 3) 797-803 (1992)
  64. Crystal structure of cathepsin X: a flip-flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Guncar G, Klemencic I, Turk B, Turk V, Karaoglanovic-Carmona A, Juliano L, Turk D. Structure 8 305-313 (2000)
  65. The amino acid sequence of chymopapain from Carica papaya. Watson DC, Yaguchi M, Lynn KR. Biochem. J. 266 75-81 (1990)
  66. Nitric oxide inhibits cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi. Venturini G, Salvati L, Muolo M, Colasanti M, Gradoni L, Ascenzi P. Biochem. Biophys. Res. Commun. 270 437-441 (2000)
  67. Thermodynamics of the temperature-induced unfolding of globular proteins. Khechinashvili NN, Janin J, Rodier F. Protein Sci. 4 1315-1324 (1995)
  68. Contributions of left-handed helical residues to the structure and stability of bacteriophage T4 lysozyme. Nicholson H, Söderlind E, Tronrud DE, Matthews BW. J. Mol. Biol. 210 181-193 (1989)
  69. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K. Ma S, Devi-Kesavan LS, Gao J. J. Am. Chem. Soc. 129 13633-13645 (2007)
  70. The crystal structure of porcine reproductive and respiratory syndrome virus nonstructural protein Nsp1beta reveals a novel metal-dependent nuclease. Xue F, Sun Y, Yan L, Zhao C, Chen J, Bartlam M, Li X, Lou Z, Rao Z. J. Virol. 84 6461-6471 (2010)
  71. Beta-breakers: an aperiodic secondary structure. Colloc'h N, Cohen FE. J. Mol. Biol. 221 603-613 (1991)
  72. Structural basis for possible calcium-induced activation mechanisms of calpains. Reverter D, Strobl S, Fernandez-Catalan C, Sorimachi H, Suzuki K, Bode W. Biol. Chem. 382 753-766 (2001)
  73. Characterisation of Tc-cpl-1, a cathepsin L-like cysteine protease from Toxocara canis infective larvae. Loukas A, Selzer PM, Maizels RM. Mol. Biochem. Parasitol. 92 275-289 (1998)
  74. Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment. Salih E, Malthouse JP, Kowlessur D, Jarvis M, O'Driscoll M, Brocklehurst K. Biochem. J. 247 181-193 (1987)
  75. The active site of papain. All-atom study of interactions with protein matrix and solvent. Rullmann JA, Bellido MN, van Duijnen PT. J. Mol. Biol. 206 101-118 (1989)
  76. NADH binding site and catalysis of NADH peroxidase. Stehle T, Claiborne A, Schulz GE. Eur. J. Biochem. 211 221-226 (1993)
  77. Stabilization of enzymes in ionic liquids via modification of enzyme charge. Nordwald EM, Kaar JL. Biotechnol. Bioeng. 110 2352-2360 (2013)
  78. Crystal structures of Cif from bacterial pathogens Photorhabdus luminescens and Burkholderia pseudomallei. Crow A, Race PR, Jubelin G, Varela Chavez C, Escoubas JM, Oswald E, Banfield MJ. PLoS ONE 4 e5582 (2009)
  79. Zn2+-dependent redox switch in the intracellular T1-T1 interface of a Kv channel. Wang G, Strang C, Pfaffinger PJ, Covarrubias M. J. Biol. Chem. 282 13637-13647 (2007)
  80. Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway. Horsman GP, Ke J, Dai S, Seah SY, Bolin JT, Eltis LD. Biochemistry 45 11071-11086 (2006)
  81. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Franco OL, Grossi de Sá MF, Sales MP, Mello LV, Oliveira AS, Rigden DJ. Proteins 49 335-341 (2002)
  82. Structural models of ribonuclease H domains in reverse transcriptases from retroviruses. Nakamura H, Katayanagi K, Morikawa K, Ikehara M. Nucleic Acids Res. 19 1817-1823 (1991)
  83. A novel cathepsin B active site motif is shared by helminth bloodfeeders. Baig S, Damian RT, Peterson DS. Exp. Parasitol. 101 83-89 (2002)
  84. An evolutionarily conserved tripartite tryptophan motif stabilizes the prodomains of cathepsin L-like cysteine proteases. Kreusch S, Fehn M, Maubach G, Nissler K, Rommerskirch W, Schilling K, Weber E, Wenz I, Wiederanders B. Eur. J. Biochem. 267 2965-2972 (2000)
  85. Structure/function relationships of adipose phospholipase A2 containing a cys-his-his catalytic triad. Pang XY, Cao J, Addington L, Lovell S, Battaile KP, Zhang N, Rao JL, Dennis EA, Moise AR. J. Biol. Chem. 287 35260-35274 (2012)
  86. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Brocklehurst K, Kowlessur D, Patel G, Templeton W, Quigley K, Thomas EW, Wharton CW, Willenbrock F, Szawelski RJ. Biochem. J. 250 761-772 (1988)
  87. Trifluoroethanol-induced "molten globule" state in stem bromelain. Gupta P, Khan RH, Saleemuddin M. Arch. Biochem. Biophys. 413 199-206 (2003)
  88. Structural characterization of the papaya cysteine proteinases at low pH. Huet J, Looze Y, Bartik K, Raussens V, Wintjens R, Boussard P. Biochem. Biophys. Res. Commun. 341 620-626 (2006)
  89. Circular dichroism of stem bromelain: a third spectral class within the family of cysteine proteinases. Arroyo-Reyna A, Hernandez-Arana A, Arreguin-Espinosa R. Biochem. J. 300 ( Pt 1) 107-110 (1994)
  90. Crystal structure of a caricain D158E mutant in complex with E-64. Katerelos NA, Taylor MA, Scott M, Goodenough PW, Pickersgill RW. FEBS Lett. 392 35-39 (1996)
  91. Ionization characteristics and chemical influences of aspartic acid residue 158 of papain and caricain determined by structure-related kinetic and computational techniques: multiple electrostatic modulators of active-centre chemistry. Noble MA, Gul S, Verma CS, Brocklehurst K. Biochem. J. 351 Pt 3 723-733 (2000)
  92. The electrostatic fields in the active-site clefts of actinidin and papain. Pickersgill RW, Goodenough PW, Sumner IG, Collins ME. Biochem. J. 254 235-238 (1988)
  93. An approach to computer-aided inhibitor design: application to cathepsin L. Sudarsanam S, Virca GD, March CJ, Srinivasan S. J. Comput. Aided Mol. Des. 6 223-233 (1992)
  94. Cathepsin L is an intracellular and extracellular protease in Paramecium tetraurelia. Purification, cloning, sequencing and specific inhibition by its expressed propeptide. Völkel H, Kurz U, Linder J, Klumpp S, Gnau V, Jung G, Schultz JE. Eur. J. Biochem. 238 198-206 (1996)
  95. Cloning and expression of cathepsin L-like proteinases in the hepatopancreas of the shrimp Penaeus vannamei during the intermolt cycle. Le Boulay C, Van Wormhoudt A, Sellos D. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 166 310-318 (1996)
  96. Electrostatic properties in the catalytic site of papain: A possible regulatory mechanism for the reactivity of the ion pair. Dardenne LE, Werneck AS, de Oliveira Neto M, Bisch PM. Proteins 52 236-253 (2003)
  97. Papain kinetics in the presence of a water-miscible organic solvent. Fernandez MM, Clark DS, Blanch HW. Biotechnol. Bioeng. 37 967-972 (1991)
  98. Rubella virus nonstructural protein protease domains involved in trans- and cis-cleavage activities. Liang Y, Yao J, Gillam S. J. Virol. 74 5412-5423 (2000)
  99. Structural characterization of a highly stable cysteine protease ervatamin C. Kundu S, Sundd M, Jagannadham MV. Biochem. Biophys. Res. Commun. 264 635-642 (1999)
  100. Thiol protease-like active site found in the enzyme dienelactone hydrolase: localization using biochemical, genetic, and structural tools. Pathak D, Ashley G, Ollis D. Proteins 9 267-279 (1991)
  101. Cysteine proteases such as papain are not inhibited by substrate analogue peptidyl boronic acids. Martichonok V, Jones JB. Bioorg. Med. Chem. 5 679-684 (1997)
  102. Immunogenicity and antigenicity of synthetic peptides derived from the mite allergen Der p I. Jeannin P, Delneste Y, Buisine E, Le Mao J, Didierlaurent A, Stewart GA, Tartar A, Tonnel AB, Pestel J. Mol. Immunol. 30 1511-1518 (1993)
  103. Comparative behaviour of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases. Pliura DH, Bonaventura BJ, Smith RA, Coles PJ, Krantz A. Biochem. J. 288 ( Pt 3) 759-762 (1992)
  104. Low versus high molecular weight poly(ethylene glycol)-induced states of stem bromelain at low pH: stabilization of molten globule and unfolded states. Ahmad B, Ansari MA, Sen P, Khan RH. Biopolymers 81 350-359 (2006)
  105. QM/MM study of the active site of free papain and of the NMA-papain complex. Han WG, Tajkhorshid E, Suhai S. J. Biomol. Struct. Dyn. 16 1019-1032 (1999)
  106. Studies on the aminopeptidase activity of rat cathepsin H. Rothe M, Dodt J. Eur. J. Biochem. 210 759-764 (1992)
  107. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states. Nallamsetty S, Dubey VK, Pande M, Ambasht PK, Jagannadham MV. Biochimie 89 1416-1424 (2007)
  108. Crystal structure of rat trypsin-S195C at -150 degrees C. Analysis of low activity of recombinant and semisynthetic thiol proteases. Wilke ME, Higaki JN, Craik CS, Fletterick RJ. J. Mol. Biol. 219 511-523 (1991)
  109. MHC class II-restricted presentation of the major house dust mite allergen Der p 1 Is GILT-dependent: implications for allergic asthma. West LC, Grotzke JE, Cresswell P. PLoS ONE 8 e51343 (2013)
  110. Mechanism of solvent induced thermal stabilization of papain. Sathish HA, Kumar PR, Prakash V. Int. J. Biol. Macromol. 41 383-390 (2007)
  111. Hieronymain I, a new cysteine peptidase isolated from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae). Bruno MA, Pardo MF, Caffini NO, López LM. J Protein Chem 22 127-134 (2003)
  112. Inhibitory effect of post-micellar SDS concentration on thermal aggregation and activity of papain. Qadeer A, Zaman M, Khan RH. Biochemistry (Mosc) 79 785-796 (2014)
  113. Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P. Proteins 52 212-224 (2003)
  114. Differences in substrate specificities between cysteine protease CPB isoforms of Leishmania mexicana are mediated by a few amino acid changes. Juliano MA, Brooks DR, Selzer PM, Pandolfo HL, Judice WA, Juliano L, Meldal M, Sanderson SJ, Mottram JC, Coombs GH. Eur. J. Biochem. 271 3704-3714 (2004)
  115. Dual concentration-dependent activity of thyroglobulin type-1 domain of testican: specific inhibitor and substrate of cathepsin L. Meh P, Pavsic M, Turk V, Baici A, Lenarcic B. Biol. Chem. 386 75-83 (2005)
  116. Factors effecting the thermostability of cysteine proteinases from Carica papaya. Sumner IG, Harris GW, Taylor MA, Pickersgill RW, Owen AJ, Goodenough PW. Eur. J. Biochem. 214 129-134 (1993)
  117. Flexibility analysis and structure comparison of two crystal forms of calcium-free human m-calpain. Reverter D, Braun M, Fernandez-Catalan C, Strobl S, Sorimachi H, Bode W. Biol. Chem. 383 1415-1422 (2002)
  118. Human cathepsin H: deletion of the mini-chain switches substrate specificity from aminopeptidase to endopeptidase. Dodt J, Reichwein J. Biol. Chem. 384 1327-1332 (2003)
  119. Improved calculations of compactness and a reevaluation of continuous compact units. Zehfus MH. Proteins 16 293-300 (1993)
  120. Investigating the substrate specificity and oligomerisation of the leader protease of foot and mouth disease virus using NMR. Cencic R, Mayer C, Juliano MA, Juliano L, Konrat R, Kontaxis G, Skern T. J. Mol. Biol. 373 1071-1087 (2007)
  121. Letter Structural and electrostatic differences between actinidin and papain account for differences in activity. Pickersgill RW, Sumner IG, Collins ME, Goodenough PW. Biochem. J. 257 310-312 (1989)
  122. Variation in the pH-dependent pre-steady-state and steady-state kinetic characteristics of cysteine-proteinase mechanism: evidence for electrostatic modulation of catalytic-site function by the neighbouring carboxylate anion. Hussain S, Pinitglang S, Bailey TS, Reid JD, Noble MA, Resmini M, Thomas EW, Greaves RB, Verma CS, Brocklehurst K. Biochem. J. 372 735-746 (2003)
  123. Acid and chemical induced conformational changes of ervatamin B. Presence of partially structured multiple intermediates. Sundd M, Kundu S, Jagannadham MV. J. Biochem. Mol. Biol. 35 143-154 (2002)
  124. Correlation of co-ordinated amino acid changes at the two-domain interface of cysteine proteases with protein stability. Vernet T, Tessier DC, Khouri HE, Altschuh D. J. Mol. Biol. 224 501-509 (1992)
  125. Interaction between cystatin-derived peptides and papain. Lalmanach G, Hoebeke J, Moreau T, Brillard-Bourdet M, Ferrer-Ditt Martino M, Borras-Cuesta F, Gauthier F. J. Protein Chem. 12 23-31 (1993)
  126. Modelling family 2 cystatins and their interaction with papain. Nandy SK, Bhuyan R, Seal A. J. Biomol. Struct. Dyn. 31 649-664 (2013)
  127. Molecular dynamics studies of caspase-3. Sulpizi M, Rothlisberger U, Carloni P. Biophys. J. 84 2207-2215 (2003)
  128. Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure. Kreisberg R, Buchner V, Arad D. Protein Sci. 4 2405-2410 (1995)
  129. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain. Thomas MP, Topham CM, Kowlessur D, Mellor GW, Thomas EW, Whitford D, Brocklehurst K. Biochem. J. 300 ( Pt 3) 805-820 (1994)
  130. Characterization of a novel heterodimeric cathepsin L-like protease and cDNA encoding the catalytic subunit of the protease in embryos of Artemia franciscana. Butler AM, Aiton AL, Warner AH. Biochem. Cell Biol. 79 43-56 (2001)
  131. Modulation of the electrostatic charge at the active site of foot-and-mouth-disease-virus leader proteinase, an unusual papain-like enzyme. Schlick P, Kronovetr J, Hampoelz B, Skern T. Biochem. J. 363 493-501 (2002)
  132. Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba. Payrol JA, Obregón WD, Trejo SA, Caffini NO. Protein J. 27 88-96 (2008)
  133. Thermal motion of whole protein molecules in protein solids. Morozov VN, Morozova TYa. J. Theor. Biol. 121 73-88 (1986)
  134. Variation in aspects of cysteine proteinase catalytic mechanism deduced by spectroscopic observation of dithioester intermediates, kinetic analysis and molecular dynamics simulations. Reid JD, Hussain S, Sreedharan SK, Bailey TS, Pinitglang S, Thomas EW, Verma CS, Brocklehurst K. Biochem. J. 357 343-352 (2001)
  135. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin. Patel M, Kayani IS, Mellor GW, Sreedharan S, Templeton W, Thomas EW, Thomas M, Brocklehurst K. Biochem. J. 281 ( Pt 2) 553-559 (1992)
  136. Foot-and-mouth disease virus leader proteinase: a papain-like enzyme requiring an acidic environment in the active site. Kronovetr J, Skern T. FEBS Lett. 528 58-62 (2002)
  137. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: a unique cytoplasmic cysteine protease. Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-Coates JA, Burke RD, Miller KM. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 149 477-489 (2008)
  138. Merging homogeneous catalysis with biocatalysis; papain as hydrogenation catalyst. Panella L, Broos J, Jin J, Fraaije MW, Janssen DB, Jeronimus-Stratingh M, Feringa BL, Minnaard AJ, de Vries JG. Chem. Commun. (Camb.) 5656-5658 (2005)
  139. Molecular cloning of two cysteine proteinases from paw-paw (Carica papaya). McKee RA, Adams S, Matthews JA, Smith CJ, Smith H. Biochem. J. 237 105-110 (1986)
  140. Mutational and structural study of RipA, a key enzyme in Mycobacterium tuberculosis cell division: evidence for the L-to-D inversion of configuration of the catalytic cysteine. Squeglia F, Ruggiero A, Romano M, Vitagliano L, Berisio R. Acta Crystallogr. D Biol. Crystallogr. 70 2295-2300 (2014)
  141. Proposed amino acid sequence and the 1.63 A X-ray crystal structure of a plant cysteine protease, ervatamin B: some insights into the structural basis of its stability and substrate specificity. Biswas S, Chakrabarti C, Kundu S, Jagannadham MV, Dattagupta JK. Proteins 51 489-497 (2003)
  142. Reversible modification of thiol-containing polypeptides with poly (ethylene glycol) through formation of mixed disulfide bonds. The case of papaya proteinase III. Musu T, Azarkan M, Brygier J, Paul C, Vincentelli J, Baeyens-Volant D, Guermant C, Nijs M, Looze Y. Appl. Biochem. Biotechnol. 56 243-263 (1996)
  143. Synthesis of papain in Escherichia coli. Cohen LW, Fluharty C, Dihel LC. Gene 88 263-267 (1990)
  144. The structure of a thermostable mutant of pro-papain reveals its activation mechanism. Roy S, Choudhury D, Aich P, Dattagupta JK, Biswas S. Acta Crystallogr. D Biol. Crystallogr. 68 1591-1603 (2012)
  145. A re-appraisal of the structural basis of stereochemical recognition in papain. Insensitivity of binding-site-catalytic-site signalling to P2-chirality in a time-dependent inhibition. Templeton W, Kowlessur D, Thomas EW, Topham CM, Brocklehurst K. Biochem. J. 266 645-651 (1990)
  146. Challenging a paradigm: theoretical calculations of the protonation state of the Cys25-His159 catalytic diad in free papain. Shokhen M, Khazanov N, Albeck A. Proteins 77 916-926 (2009)
  147. Protein immobilization to alumina supports: II. Papain immobilization to alumina via organophosphate linkers. Hyndman D, Burrell R, Lever G, Flynn TG. Biotechnol. Bioeng. 40 1328-1336 (1992)
  148. The catalytic mode of cysteine proteinases of papain (C1) family. Theodorou LG, Bieth JG, Papamichael EM. Bioresour. Technol. 98 1931-1939 (2007)
  149. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases. Beveridge AJ. Protein Sci. 5 1355-1365 (1996)
  150. Conserved water-mediated H-bonding dynamics of catalytic His159 and Asp158: insight into a possible acid-base coupled mechanism in plant thiol protease. Nandi TK, Bairagya HR, Mukhopadhyay BP, Mallik P, Sukul D, Bera AK. J Mol Model 18 2633-2644 (2012)
  151. Description of local and global shape properties of protein helices. Guo Z, Kraka E, Cremer D. J Mol Model 19 2901-2911 (2013)
  152. Induction of 'molten globule' like state in acid-denatured state of unmodified preparation of stem bromelain: implications of disulfides in protein folding. Gupta P, Khan RH, Saleemuddin M. Int. J. Biol. Macromol. 33 167-174 (2003)
  153. Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain? Zheng YJ, Bruice TC. Proc. Natl. Acad. Sci. U.S.A. 94 4285-4288 (1997)
  154. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy. Lee GM, Balouch E, Goetz DH, Lazic A, McKerrow JH, Craik CS. Biochemistry 51 10087-10098 (2012)
  155. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis. Butts CT, Bierma JC, Martin RW. Proteins 84 1517-1533 (2016)
  156. Crystal structures of protein glutaminase and its pro forms converted into enzyme-substrate complex. Hashizume R, Maki Y, Mizutani K, Takahashi N, Matsubara H, Sugita A, Sato K, Yamaguchi S, Mikami B. J. Biol. Chem. 286 38691-38702 (2011)
  157. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy. Ping ZA, Butterfiel DA. Biophys. J. 60 623-628 (1991)
  158. Effect of carbohydrate position on lysosomal transport of procathepsin L. Lingeman RG, Joy DS, Sherman MA, Kane SE. Mol. Biol. Cell 9 1135-1147 (1998)
  159. Inhibition of papain with 2-benzyl-3,4-epoxybutanoic acid esters. Mechanistic and stereochemical probe for cysteine protease catalysis. Kim DH, Jin Y, Ryu CH. Bioorg. Med. Chem. 5 2103-2108 (1997)
  160. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : understanding the basis of differential inhibition and the role of water. Bhattacharya S, Ghosh S, Chakraborty S, Bera AK, Mukhopadhayay BP, Dey I, Banerjee A. BMC Struct. Biol. 1 4 (2001)
  161. Replacement of histidine 340 with alanine inactivates the group A Streptococcus extracellular cysteine protease virulence factor. Gubba S, Cipriano V, Musser JM. Infect. Immun. 68 3716-3719 (2000)
  162. The thiol proteinases from the latex of Carica papaya L. IV. Proteolytic specificities of chymopapain and papaya proteinase omega determined by digestion of alpha-globin chains. Jacquet A, Kleinschmidt T, Dubois T, Schnek AG, Looze Y, Braunitzer G. Biol Chem Hoppe Seyler 370 819-829 (1989)
  163. Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity? Czaplewski C, Grzonka Z, Jaskólski M, Kasprzykowski F, Kozak M, Politowska E, Ciarkowski J. Biochim. Biophys. Acta 1431 290-305 (1999)
  164. Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease. Nandi TK, Bairagya HR, Mukhopadhyay BP, Sekar K, Sukul D, Bera AK. J. Biosci. 34 27-34 (2009)
  165. Electrostatic recognition between enzyme and inhibitor: interaction between papain and leupeptin. Costabel M, Vallejo DF, Grigera JR. Arch. Biochem. Biophys. 394 161-166 (2001)
  166. Mapping, complementation, and targets of the cysteine protease actinidin in kiwifruit. Nieuwenhuizen NJ, Maddumage R, Tsang GK, Fraser LG, Cooney JM, De Silva HN, Green S, Richardson KA, Atkinson RG. Plant Physiol. 158 376-388 (2012)
  167. Non-homology knowledge-based prediction of the papain prosegment folding pattern: a description of plausible folding and activation mechanisms. Padilla-Zúñiga AJ, Rojo-Domínguez A. Fold Des 3 271-284 (1998)
  168. Structure-function relationship of Chikungunya nsP2 protease: A comparative study with papain. Ramakrishnan C, Kutumbarao NHV, Suhitha S, Velmurugan D. Chem Biol Drug Des 89 772-782 (2017)
  169. Temperature-dependences of the kinetics of reactions of papain and actinidin with a series of reactivity probes differing in key molecular recognition features. Gul S, Mellor GW, Thomas EW, Brocklehurst K. Biochem. J. 396 17-21 (2006)
  170. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development. Morin V, Sanchez-Rubio A, Aze A, Iribarren C, Fayet C, Desdevises Y, Garcia-Huidobro J, Imschenetzky M, Puchi M, Genevière AM. PLoS ONE 7 e46850 (2012)
  171. pH-Dependent urea-induced unfolding of stem bromelain: unusual stability against urea at neutral pH. Ahmad B, Rathar GM, Varshney A, Khan RH. Biochemistry Mosc. 74 1337-1343 (2009)
  172. Characterization of cDNA clones encoding two distinct cathepsins with restricted expression pattern in a marine pelagic fish. Ahsan MN, Aoki H, Watabe S. Mol. Biol. Rep. 33 233-241 (2006)
  173. Families and clans of cysteine peptidases. Barrett AJ, Rawlings ND. Perspect Drug Discov Des 6 1-11 (1996)
  174. Flexsim-R: a virtual affinity fingerprint descriptor to calculate similarities of functional groups. Weber A, Teckentrup A, Briem H. J. Comput. Aided Mol. Des. 16 903-916 (2002)
  175. Molecular and enzymatic properties of a cathepsin L-like proteinase with distinct substrate specificity from northern shrimp (Pandalus borealis). Aoki H, Ahsan MN, Watabe S. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. 174 59-69 (2004)
  176. Statistical relationships among docking scores for different protein binding sites. Koehler RT, Villar HO. J. Comput. Aided Mol. Des. 14 23-37 (2000)
  177. Structural similarity of chymopapain forms as indicated by circular dichroism. Solis-Mendiola S, Zubillaga-Luna R, Rojo-Dominguez A, Hernandez-Arana A. Biochem. J. 257 183-186 (1989)
  178. Synthesis of five enantiomerically pure haptens designed for in vitro evolution of antibodies with peptidase activity. Wagner J, Lerner RA, Barbas CF. Bioorg. Med. Chem. 4 901-916 (1996)
  179. The pseudomolecule method and the structure of globular proteins. II. The example of ribonuclease F1 and T1. Peters D, Peters J. Biopolymers 59 402-410 (2001)
  180. Development of papain containing pellets produced by extrusion-spheronization: an operational stage approach. Varca GH, Lopes PS, Ferraz HG. Drug Dev Ind Pharm 41 430-435 (2015)
  181. Homology Models and Molecular Dynamics Simulations of Main Proteinase from Coronavirus Associated with Severe Acute Respiratory Syndrome (SARS). Liu HL, Lin JC, Ho Y, Hsieh WC, Chen CW, Su YC. J Chin Chem Soc 51 889-900 (2004)
  182. Homology models of main proteinase from coronavirus associated with SARS. Liu HL, Lin JC, Ho Y, Chen CW. Chem Phys Lett 401 24-29 (2005)
  183. Immobilization of modified papain with anhydride groups on activated cotton fabric. Xue Y, Nie H, Zhu L, Li S, Zhang H. Appl. Biochem. Biotechnol. 160 109-121 (2010)
  184. Insights into Ubiquitin Product Release in Hydrolysis Catalyzed by the Bacterial Deubiquitinase SdeA. Sheedlo MJ, Kenny S, Podkorytov IS, Brown K, Ma J, Iyer S, Hewitt CS, Arbough T, Mikhailovskii O, Flaherty DP, Wilson MA, Skrynnikov NR, Das C. Biochemistry 60 584-596 (2021)
  185. Molecular dynamics simulation of a leucine zipper motif predicted for the integrase of human immunodeficiency virus type 1. Wang CY, Yang CF, Lai MC, Lee YH, Lee TL, Lin TH. Biopolymers 34 1027-1036 (1994)
  186. Multi-Approach Analysis for the Identification of Proteases within Birch Pollen. McKenna OE, Posselt G, Briza P, Lackner P, Schmitt AO, Gadermaier G, Wessler S, Ferreira F. Int J Mol Sci 18 (2017)
  187. Rational Design of Recombinant Papain-Like Cysteine Protease: Optimal Domain Structure and Expression Conditions for Wheat-Derived Enzyme Triticain-α. Gorokhovets NV, Makarov VA, Petushkova AI, Prokopets OS, Rubtsov MA, Savvateeva LV, Zernii EY, Zamyatnin AA. Int J Mol Sci 18 (2017)
  188. Semi-Solid Pharmaceutical Formulations for the Delivery of Papain Nanoparticles. Lima CSA, Varca JPRO, Nogueira KM, Fazolin GN, Freitas LF, Souza EW, Lugão AB, Varca GHC. Pharmaceutics 12 E1170 (2020)
  189. Solution structure of papain as studied by molecular mechanics and molecular dynamics techniques. Kandadai NS, Reddy MR. J Comput Chem 17 1328-1338 (1996)
  190. Studies on activation and inhibition of cathepsin B from buffalo liver. Salahuddin A, Kaur H. J. Protein Chem. 15 87-93 (1996)
  191. Thermal characterization and cytotoxicity of complexes formed by papain and cyclodextrin. Varca GH, Andréo-Filho N, Fraceto LF, Kaneko TM, Ferraz HG, Esteves NM, Issa MG, Mathor MB, Lopes PS. J Biol Phys 33 463-475 (2007)
  192. Adsorption of Papain on solid substrates of different hydrophobicity. Lachmanová Š, Kolivoška V, Pospíšil L, Fanelli N, Hromadová M. Biointerphases 11 031003 (2016)
  193. Carboxymethyl Cellulose-Based Polymers as Promising Matrices for Ficin Immobilization. Sorokin AV, Goncharova SS, Lavlinskaya MS, Holyavka MG, Faizullin DA, Kondratyev MS, Kannykin SV, Zuev YF, Artyukhov VG. Polymers (Basel) 15 649 (2023)
  194. Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A, Ali N, Ahmad S, Khan MS. Sci Rep 9 13826 (2019)
  195. Computational investigation of the key factors affecting the second stage activation mechanisms of domain II m-calpain. Bhatti G, Jayanthi L, VandeVord P, Gebremichael Y. J Mol Model 19 779-792 (2013)
  196. Displaying inter-main chain hydrogen bond patterns in proteins. Belhadj-Mostefa K, Poet R, Milner-White EJ. J Mol Graph 9 194-7, 168 (1991)
  197. Ligand-induced conformational selection predicts the selectivity of cysteine protease inhibitors. Sartori GR, Leitão A, Montanari CA, Laughton CA. PLoS ONE 14 e0222055 (2019)
  198. Monomer Choice Influences N-Acryloyl Amino Acid Grafter Conversion via Protease Catalysis. Edson CB, Liu M, Totsingan F, O'Berg E, Salvucci J, Dao U, Khare SD, Gross RA. Biomacromolecules 24 1798-1809 (2023)
  199. Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features. Holyavka MG, Goncharova SS, Sorokin AV, Lavlinskaya MS, Redko YA, Faizullin DA, Baidamshina DR, Zuev YF, Kondratyev MS, Kayumov AR, Artyukhov VG. Polymers (Basel) 14 5110 (2022)
  200. Editorial Preface. Westwood JD. Stud Health Technol Inform 184 v-vi (2013)
  201. Structural basis of substrate recognition by a polypeptide processing and secretion transporter. Kieuvongngam V, Olinares PDB, Palillo A, Oldham ML, Chait BT, Chen J. Elife 9 (2020)
  202. Synthesis of papain nanoparticles by electron beam irradiation - A pathway for controlled enzyme crosslinking. Varca GH, Kadlubowski S, Wolszczak M, Lugão AB, Rosiak JM, Ulanski P. Int. J. Biol. Macromol. 92 654-659 (2016)
  203. The ribbon of hydrogen bonds in globular proteins. IV. The example of the papain family. Peters D, Peters J. Biopolymers 73 178-191 (2004)


Related citations provided by authors (5)

  1. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain.. Kamphuis IG, Drenth J, Baker EN J Mol Biol 182 317-29 (1985)
  2. Binding of chloromethyl ketone substrate analogues to crystalline papain.. Drenth J, Kalk KH, Swen HM Biochemistry 15 3731-8 (1976)
  3. The Structure of Papain. Drenth J, Jansonius JN, Koekoek R, Wolthers BG Adv. Protein Chem. 25 79- (1971)
  4. The Structure of the Papain Molecule. Drenth J, Jansonius JN, Koekoek R, Sluyterman LAA, Wolthers BG Philos. Trans. R. Soc. London,Ser. B 257 231- (1970)
  5. Structure of Papain. Drenth J, Jansonius JN, Koekoek R, Swen HM, Wolthers BG Nature 218 929- (1968)