9ins Citations

Monovalent cation binding to cubic insulin crystals.

Biophys J 61 604-11 (1992)
Cited: 32 times
EuropePMC logo PMID: 1504238

Abstract

Two localized monovalent cation binding sites have been identified in cubic insulin from 2.8 A-resolution difference electron density maps comparing crystals in which the Na+ ions have been replaced by Tl+. One cation is buried in a closed cavity between insulin dimers and is stabilized by interaction with protein carbonyl dipoles in two juxtaposed alternate positions related by the crystal dyad. The second cation binding site, which also involves ligation with carbonyl dipoles, is competitively occupied by one position of two alternate His B10 side chain conformations. The cation occupancy in both sites depends on the net charge on the protein which was varied by equilibrating crystals in the pH range 7-10. Detailed structures of the cation binding sites were inferred from the refined 2-A resolution map of the sodium-insulin crystal at pH 9. At pH 9, the localized monovalent cations account for less than one of the three to four positive counterion charges necessary to neutralize the negative charge on each protein molecule. The majority of the monovalent counterions are too mobile to show up in the electron density maps calculated using data only at resolution higher than 10 A. Monovalent cations of ionic radius less than 1.5 A are required for crystal stability. Replacing Na+ with Cs+, Mg++, Ca++ or La+++ disrupts the lattice order, but crystals at pH 9 with 0.1 M Li+, K+, NH4+, Rb+ or Tl+ diffract to at least 2.8 A resolution.

Reviews - 9ins mentioned but not cited (4)

  1. Breaking symmetry in protein dimers: designs and functions. Brown JH. Protein Sci. 15 1-13 (2006)
  2. Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Iwaoka M, Isozumi N. Molecules 17 7266-7283 (2012)
  3. In Quest for Improved Drugs against Diabetes: The Added Value of X-ray Powder Diffraction Methods. Karavassili F, Valmas A, Fili S, Georgiou CD, Margiolaki I. Biomolecules 7 (2017)
  4. Progress in Simulation Studies of Insulin Structure and Function. Gorai B, Vashisth H. Front Endocrinol (Lausanne) 13 908724 (2022)

Articles - 9ins mentioned but not cited (12)

  1. Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Meents A, Gutmann S, Wagner A, Schulze-Briese C. Proc. Natl. Acad. Sci. U.S.A. 107 1094-1099 (2010)
  2. Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. Sajid W, Kulahin N, Schluckebier G, Ribel U, Henderson HR, Tatar M, Hansen BF, Svendsen AM, Kiselyov VV, Nørgaard P, Wahlund PO, Brandt J, Kohanski RA, Andersen AS, De Meyts P. J. Biol. Chem. 286 661-673 (2011)
  3. In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Huang CY, Olieric V, Ma P, Howe N, Vogeley L, Liu X, Warshamanage R, Weinert T, Panepucci E, Kobilka B, Diederichs K, Wang M, Caffrey M. Acta Crystallogr D Struct Biol 72 93-112 (2016)
  4. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. Roedig P, Duman R, Sanchez-Weatherby J, Vartiainen I, Burkhardt A, Warmer M, David C, Wagner A, Meents A. J Appl Crystallogr 49 968-975 (2016)
  5. The mechanism of enhanced insulin amyloid fibril formation by NaCl is better explained by a conformational change model. Muzaffar M, Ahmad A. PLoS ONE 6 e27906 (2011)
  6. The use of trimethylamine N-oxide as a primary precipitating agent and related methylamine osmolytes as cryoprotective agents for macromolecular crystallography. Marshall H, Venkat M, Seng NS, Cahn J, Juers DH. Acta Crystallogr. D Biol. Crystallogr. 68 69-81 (2012)
  7. A multi-dataset data-collection strategy produces better diffraction data. Liu ZJ, Chen L, Wu D, Ding W, Zhang H, Zhou W, Fu ZQ, Wang BC. Acta Crystallogr., A, Found. Crystallogr. 67 544-549 (2011)
  8. Fast high-pressure freezing of protein crystals in their mother liquor. Burkhardt A, Warmer M, Panneerselvam S, Wagner A, Zouni A, Glöckner C, Reimer R, Hohenberg H, Meents A. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 495-500 (2012)
  9. Examining protein surface structure in highly conserved sequence variants with mass spectrometry. Tao Y, Julian RR. Biochemistry 51 1796-1802 (2012)
  10. X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction. Blum MM, Tomanicek SJ, John H, Hanson BL, Rüterjans H, Schoenborn BP, Langan P, Chen JC. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 379-385 (2010)
  11. The T2 structure of polycrystalline cubic human insulin. Triandafillidis DP, Karavassili F, Spiliopoulou M, Valmas A, Athanasiadou M, Nikolaras G, Fili S, Kontou P, Bowler MW, Chasapis CT, Von Dreele RB, Fitch AN, Margiolaki I. Acta Crystallogr D Struct Biol 79 374-386 (2023)
  12. X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography. Foos N, Seuring C, Schubert R, Burkhardt A, Svensson O, Meents A, Chapman HN, Nanao MH. Acta Crystallogr D Struct Biol 74 366-378 (2018)


Articles citing this publication (16)

  1. Protein-protein interaction at crystal contacts. Janin J, Rodier F. Proteins 23 580-587 (1995)
  2. Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jørgensen TJ, Haselmann KF. Rapid Commun. Mass Spectrom. 26 1181-1193 (2012)
  3. Beamline 08ID-1, the prime beamline of the Canadian Macromolecular Crystallography Facility. Grochulski P, Fodje MN, Gorin J, Labiuk SL, Berg R. J Synchrotron Radiat 18 681-684 (2011)
  4. Conformational changes in cubic insulin crystals in the pH range 7-11. Gursky O, Badger J, Li Y, Caspar DL. Biophys. J. 63 1210-1220 (1992)
  5. From protein denaturant to protectant: comparative molecular dynamics study of alcohol/protein interactions. Shao Q, Fan Y, Yang L, Gao YQ. J Chem Phys 136 115101 (2012)
  6. Multiple hydration layers in cubic insulin crystals. Badger J. Biophys. J. 65 1656-1659 (1993)
  7. Neutron protein crystallography: beyond the folding structure of biological macromolecules. Niimura N, Bau R. Acta Crystallogr., A, Found. Crystallogr. 64 12-22 (2008)
  8. Trace fluorescent labeling for high-throughput crystallography. Forsythe E, Achari A, Pusey ML. Acta Crystallogr. D Biol. Crystallogr. 62 339-346 (2006)
  9. Stereospecific dihaloalkane binding in a pH-sensitive cavity in cubic insulin crystals. Gursky O, Fontano E, Bhyravbhatla B, Caspar DL. Proc. Natl. Acad. Sci. U.S.A. 91 12388-12392 (1994)
  10. Structure and selectivity of a monovalent cation binding site in cubic insulin crystals. Badger J, Kapulsky A, Gursky O, Bhyravbhatla B, Caspar DL. Biophys. J. 66 286-292 (1994)
  11. Thallium counterion distribution in cubic insulin crystals determined from anomalous x-ray diffraction data. Badger J, Li Y, Caspar DL. Proc. Natl. Acad. Sci. U.S.A. 91 1224-1228 (1994)
  12. Efficient cryoprotection of macromolecular crystals using vapor diffusion of volatile alcohols. Farley C, Juers DH. J. Struct. Biol. 188 102-106 (2014)
  13. Cryophotolysis of a caged oxygen compound for use in low temperature biological studies. Howard-Jones AR, Adam V, Cowley A, Baldwin JE, Bourgeois D. Photochem. Photobiol. Sci. 8 1150-1156 (2009)
  14. Metal induced structural changes observed in hexameric insulin. Sreekanth R, Pattabhi V, Rajan SS. Int. J. Biol. Macromol. 44 29-36 (2009)
  15. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain. Hexnerová R, Křížková K, Fábry M, Sieglová I, Kedrová K, Collinsová M, Ullrichová P, Srb P, Williams C, Crump MP, Tošner Z, Jiráček J, Veverka V, Žáková L. J. Biol. Chem. 291 21234-21245 (2016)
  16. Display and interpretation of solvent electron density distributions in insulin crystals. Badger J. J Mol Graph 11 218-21, 233 (1993)


Related citations provided by authors (3)

  1. Structure of the Pig Insulin Dimer in the Cubic Crystal. Badger J, Harris MR, Reynolds CD, Evans AC, Dodson EJ, Dodson GG, North ACT Acta Crystallogr., B 47 127- (1991)
  2. Water Structure in Cubic Insulin Crystals. Badger J, Caspar DLD Proc. Natl. Acad. Sci. U.S.A. 88 622- (1991)
  3. Zinc-free cubic pig insulin: crystallization and structure determination.. Dodson EJ, Dodson GG, Lewitova A, Sabesan M J Mol Biol 125 387-96 (1978)