8xia Citations

X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator.

Proc Natl Acad Sci U S A 86 4440-4 (1989)
Cited: 70 times
EuropePMC logo PMID: 2734296

Abstract

The structures of crystalline D-xylose isomerase (D-xylose ketol-isomerase; EC 5.3.1.5) from Streptomyces rubiginosus and of its complexes with substrate and with an active-site-directed inhibitor have been determined by x-ray diffraction techniques and refined to 1.9-A resolution. This study identifies the active site, as well as two metal-binding sites. The metal ions are important in maintaining the structure of the active-site region and one of them binds C3-O and C5-O of the substrate forming a six-membered ring. This study has revealed a very close contact between histidine and C1 of a substrate, suggesting that this is the active-site base that abstracts a proton from substrate. The mechanism-based inhibitor is a substrate analog and is turned over by the enzyme to give a product that alkylates this same histidine, reinforcing our interpretation. The changes in structure of the native enzyme, the enzyme with bound substrate, and the alkylated enzyme indicate that the mechanism involves an "open-chain" conformation of substrate and that the intermediate in the isomerization reaction is probably a cis-ene diol because the active-site histidine is correctly placed to abstract a proton from C1 or C2 of the substrate. A water molecule binds to C1O and C2O of the substrate and so may act as a proton donor or acceptor in the enolization of a ring-opened substrate.

Articles - 8xia mentioned but not cited (4)

  1. Multiple structural alignment by secondary structures: algorithm and applications. Dror O, Benyamini H, Nussinov R, Wolfson HJ. Protein Sci 12 2492-2507 (2003)
  2. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. Zhang S, Golbraikh A, Tropsha A. J Med Chem 49 2713-2724 (2006)
  3. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. Heymann M, Opthalage A, Wierman JL, Akella S, Szebenyi DM, Gruner SM, Fraden S. IUCrJ 1 349-360 (2014)
  4. A rule-based algorithm for automatic bond type perception. Zhang Q, Zhang W, Li Y, Wang J, Zhang L, Hou T. J Cheminform 4 26 (2012)


Reviews citing this publication (5)

  1. Mechanisms and free energies of enzymatic reactions. Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG. Chem Rev 106 3188-3209 (2006)
  2. Molecular and industrial aspects of glucose isomerase. Bhosale SH, Rao MB, Deshpande VV. Microbiol Rev 60 280-300 (1996)
  3. A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Borders CL, Broadwater JA, Bekeny PA, Salmon JE, Lee AS, Eldridge AM, Pett VB. Protein Sci 3 541-548 (1994)
  4. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules. Oksanen E, Chen JC, Fisher SZ. Molecules 22 E596 (2017)
  5. Sequence similarity between xylose isomerase and replicase: another TIM-barrel in the replicase structure? Janecek S. Int J Biol Macromol 21 277-280 (1997)

Articles citing this publication (61)

  1. Three-dimensional structure of a barley beta-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Varghese JN, Hrmova M, Fincher GB. Structure 7 179-190 (1999)
  2. Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. Poornima CS, Dean PM. J Comput Aided Mol Des 9 500-512 (1995)
  3. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Whitlow M, Howard AJ, Finzel BC, Poulos TL, Winborne E, Gilliland GL. Proteins 9 153-173 (1991)
  4. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes. García-Sosa AT, Mancera RL, Dean PM. J Mol Model 9 172-182 (2003)
  5. Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography. Tsutakawa SE, Hura GL, Frankel KA, Cooper PK, Tainer JA. J Struct Biol 158 214-223 (2007)
  6. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. Dekker K, Yamagata H, Sakaguchi K, Udaka S. J Bacteriol 173 3078-3083 (1991)
  7. Structure and mechanism of L-fucose isomerase from Escherichia coli. Seemann JE, Schulz GE. J Mol Biol 273 256-268 (1997)
  8. Catalytic metal ion rearrangements underline promiscuity and evolvability of a metalloenzyme. Ben-David M, Wieczorek G, Elias M, Silman I, Sussman JL, Tawfik DS. J Mol Biol 425 1028-1038 (2013)
  9. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose. Gärtner D, Degenkolb J, Ripperger JA, Allmansberger R, Hillen W. Mol Gen Genet 232 415-422 (1992)
  10. Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. Collyer CA, Blow DM. Proc Natl Acad Sci U S A 87 1362-1366 (1990)
  11. Characterization of functionalized nanoporous supports for protein confinement. Lei C, Shin Y, Magnuson JK, Fryxell G, Lasure LL, Elliott DC, Liu J, Ackerman EJ. Nanotechnology 17 5531-5538 (2006)
  12. Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil. Zhu GP, Xu C, Teng MK, Tao LM, Zhu XY, Wu CJ, Hang J, Niu LW, Wang YZ. Protein Eng 12 635-638 (1999)
  13. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489. Liu SY, Wiegel J, Gherardini FC. J Bacteriol 178 5938-5945 (1996)
  14. Recognition of distantly related proteins through energy calculations. Abagyan R, Frishman D, Argos P. Proteins 19 132-140 (1994)
  15. Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus: possible structural determinants of thermostability. Chang C, Park BC, Lee DS, Suh SW. J Mol Biol 288 623-634 (1999)
  16. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Purification and properties. Smith CA, Rangarajan M, Hartley BS. Biochem J 277 ( Pt 1) 255-261 (1991)
  17. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Scheler A, Rygus T, Allmansberger R, Hillen W. Arch Microbiol 155 526-534 (1991)
  18. Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket. Meng M, Lee C, Bagdasarian M, Zeikus JG. Proc Natl Acad Sci U S A 88 4015-4019 (1991)
  19. Crystal structure of the DNA repair enzyme ultraviolet damage endonuclease. Paspaleva K, Thomassen E, Pannu NS, Iwai S, Moolenaar GF, Goosen N, Abrahams JP. Structure 15 1316-1324 (2007)
  20. Enhancing the thermostability of glucose isomerase by protein engineering. Quax WJ, Mrabet NT, Luiten RG, Schuurhuizen PW, Stanssens P, Lasters I. Biotechnology (N Y) 9 738-742 (1991)
  21. Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases. Epting KL, Vieille C, Zeikus JG, Kelly RM. FEBS J 272 1454-1464 (2005)
  22. Localization of the essential histidine and carboxylate group in D-xylose isomerases. Vangrysperre W, Van Damme J, Vandekerckhove J, De Bruyne CK, Cornelis R, Kersters-Hilderson H. Biochem J 265 699-705 (1990)
  23. The catalytic domain of endoglucanase A from Clostridium cellulolyticum: effects of arginine 79 and histidine 122 mutations on catalysis. Belaich A, Fierobe HP, Baty D, Busetta B, Bagnara-Tardif C, Gaudin C, Belaich JP. J Bacteriol 174 4677-4682 (1992)
  24. The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ. FEBS J 273 2594-2606 (2006)
  25. The effect of tightly bound water molecules on the structural interpretation of ligand-derived pharmacophore models. Lloyd DG, García-Sosa AT, Alberts IL, Todorov NP, Manceral RL. J Comput Aided Mol Des 18 89-100 (2004)
  26. A common mechanism underlying amyloid fibrillation and protein crystallization revealed by the effects of ultrasonication. Kitayama H, Yoshimura Y, So M, Sakurai K, Yagi H, Goto Y. Biochim Biophys Acta 1834 2640-2646 (2013)
  27. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase. Batt CA, Jamieson AC, Vandeyar MA. Proc Natl Acad Sci U S A 87 618-622 (1990)
  28. Cloning and expression of the genes for xylose isomerase and xylulokinase from Klebsiella pneumoniae 1033 in Escherichia coli K12. Feldmann SD, Sahm H, Sprenger GA. Mol Gen Genet 234 201-210 (1992)
  29. D-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and D-xylulose production from β-1,3-xylan. Umemoto Y, Shibata T, Araki T. Mar Biotechnol (NY) 14 10-20 (2012)
  30. Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. Kristo P, Saarelainen R, Fagerström R, Aho S, Korhola M. Eur J Biochem 237 240-246 (1996)
  31. Multivariate phase combination improves automated crystallographic model building. Skubák P, Waterreus WJ, Pannu NS. Acta Crystallogr D Biol Crystallogr 66 783-788 (2010)
  32. Visible, EPR and electron nuclear double-resonance spectroscopic studies on the two metal-binding sites of oxovanadium (IV)-substituted D-xylose isomerase. Bogumil R, Hüttermann J, Kappl R, Stabler R, Sudfeldt C, Witzel H. Eur J Biochem 196 305-312 (1991)
  33. Catalytic reaction mechanism of Pseudomonas stutzeri L-rhamnose isomerase deduced from X-ray structures. Yoshida H, Yamaji M, Ishii T, Izumori K, Kamitori S. FEBS J 277 1045-1057 (2010)
  34. Glucose isomerase of the Streptomyces sp. SK strain: purification, sequence analysis and implication of alanine 103 residue in the enzyme thermostability and acidotolerance. Borgi MA, Srih-Belguith K, Ben Ali M, Mezghani M, Tranier S, Haser R, Bejar S. Biochimie 86 561-568 (2004)
  35. Thermotoga neapolitana homotetrameric xylose isomerase is expressed as a catalytically active and thermostable dimer in Escherichia coli. Hess JM, Tchernajenko V, Vieille C, Zeikus JG, Kelly RM. Appl Environ Microbiol 64 2357-2360 (1998)
  36. A quasi-Laue neutron crystallographic study of D-xylose isomerase. Meilleur F, Snell EH, van der Woerd MJ, Judge RA, Myles DA. Eur Biophys J 35 601-609 (2006)
  37. Role of electrostatics at the catalytic metal binding site in xylose isomerase action: Ca(2+)-inhibition and metal competence in the double mutant D254E/D256E. Fuxreiter M, Böcskei Z, Szeibert A, Szabó E, Dallmann G, Naray-Szabo G, Asboth B. Proteins 28 183-193 (1997)
  38. Kinetic studies of Mg(2+)-, Co(2+)- and Mn(2+)-activated D-xylose isomerases. van Bastelaere P, Vangrysperre W, Kersters-Hilderson H. Biochem J 278 ( Pt 1) 285-292 (1991)
  39. Restoration of a defective Lactococcus lactis xylose isomerase. Park JH, Batt CA. Appl Environ Microbiol 70 4318-4325 (2004)
  40. Binding energy and catalysis by D-xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde. Toteva MM, Silvaggi NR, Allen KN, Richard JP. Biochemistry 50 10170-10181 (2011)
  41. Spectroscopic studies on the metal-ion-binding sites of Co2(+)-substituted D-xylose isomerase from Streptomyces rubiginosus. Sudfeldt C, Schäffer A, Kägi JH, Bogumil R, Schulz HP, Wulff S, Witzel H. Eur J Biochem 193 863-871 (1990)
  42. The contribution of polystyrene nanospheres towards the crystallization of proteins. Kallio JM, Hakulinen N, Kallio JP, Niemi MH, Kärkkäinen S, Rouvinen J. PLoS One 4 e4198 (2009)
  43. Binding characteristics of Mn2+, Co2+ and Mg2+ ions with several D-xylose isomerases. Van Bastelaere PB, Callens M, Vangrysperre WA, Kersters-Hilderson HL. Biochem J 286 ( Pt 3) 729-735 (1992)
  44. Characterization of the pH-dependent dissociation of a multimeric metalloprotein Streptomyces rubiginosus xylose isomerase by ESI FT-ICR mass spectrometry. Jänis J, Pasanen S, Rouvinen J, Vainiotalo P. J Mass Spectrom 43 1376-1380 (2008)
  45. Molecular mechanics simulations of a conformational rearrangement of D-xylose in the active site of D-xylose isomerase. Smart OS, Akins J, Blow DM. Proteins 13 100-111 (1992)
  46. Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant. Munshi P, Snell EH, van der Woerd MJ, Judge RA, Myles DA, Ren Z, Meilleur F. Acta Crystallogr D Biol Crystallogr 70 414-420 (2014)
  47. Wild-type and mutant D-xylose isomerase from Actinoplanes missouriensis: metal-ion dissociation constants, kinetic parameters of deuterated and non-deuterated substrates and solvent-isotope effects. van Bastelaere PB, Kersters-Hilderson HL, Lambeir AM. Biochem J 307 ( Pt 1) 135-142 (1995)
  48. Optimizing crystal volume for neutron diffraction: D-xylose isomerase. Snell EH, van der Woerd MJ, Damon M, Judge RA, Myles DA, Meilleur F. Eur Biophys J 35 621-632 (2006)
  49. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism. Peek J, Roman J, Moran GR, Christendat D. Mol Microbiol 103 39-54 (2017)
  50. The role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase. Meng M, Bagdasarian M, Zeikus JG. Proc Natl Acad Sci U S A 90 8459-8463 (1993)
  51. Arthrobacter D-xylose isomerase: protein-engineered subunit interfaces. Varsani L, Cui T, Rangarajan M, Hartley BS, Goldberg J, Collyer C, Blow DM. Biochem J 291 ( Pt 2) 575-583 (1993)
  52. L-Arabinose binding, isomerization, and epimerization by D-xylose isomerase: X-ray/neutron crystallographic and molecular simulation study. Langan P, Sangha AK, Wymore T, Parks JM, Yang ZK, Hanson BL, Fisher Z, Mason SA, Blakeley MP, Forsyth VT, Glusker JP, Carrell HL, Smith JC, Keen DA, Graham DE, Kovalevsky A. Structure 22 1287-1300 (2014)
  53. Study of potential binding of biologically important sugars with a dinuclear cobalt(II) complex. Bera M, Patra A. Carbohydr Res 346 733-738 (2011)
  54. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates. Yoshida H, Yoshihara A, Ishii T, Izumori K, Kamitori S. Appl Microbiol Biotechnol 100 10403-10415 (2016)
  55. X- and Q-band EPR studies on the two Mn(2+)-substituted metal-binding sites of D-xylose isomerase. Bogumil R, Kappl R, Hüttermann J, Sudfeldt C, Witzel H. Eur J Biochem 213 1185-1192 (1993)
  56. Analysis of oscillatory rocking curve by dynamical diffraction in protein crystals. Suzuki R, Koizumi H, Hirano K, Kumasaka T, Kojima K, Tachibana M. Proc Natl Acad Sci U S A 115 3634-3639 (2018)
  57. Multi-frequency high-field EPR studies on metal-substituted xylose isomerase. Kappl R, Ranguelova K, Koch B, Duboc C, Hüttermann J. Magn Reson Chem 43 Spec no. S65-73 (2005)
  58. Site-directed mutagenesis applied to glucose isomerase from Streptomyces violaceoniger and Streptomyces olivochromogenes. Sicard PJ, Leleu JB, Duflot P, Drocourt D, Martin F, Tiraby G, Petsko G, Glasfeld A. Ann N Y Acad Sci 613 371-375 (1990)
  59. Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site. Yoshida H, Yoshihara A, Teraoka M, Yamashita S, Izumori K, Kamitori S. FEBS Open Bio 3 35-40 (2013)
  60. Di-tert-butyl diethylphosphoramidite as the phosphitylating reagent in the preparation of 3-deoxy-3-C-methylene-D-ribo-hexose-6-phosphate and 3-deoxy-3-C-methylene-D-erythro-pentose-5-phosphate. Burger A, Tritsch D, Biellmann JF. Carbohydr Res 332 141-149 (2001)
  61. Using neutron protein crystallography to understand enzyme mechanisms. Glusker JP, Carrell HL, Kovalevsky AY, Hanson L, Fisher SZ, Mustyakimov M, Mason S, Forsyth T, Langan P. Acta Crystallogr D Biol Crystallogr 66 1257-1261 (2010)


Related citations provided by authors (2)

  1. Comparison of Backbone Structures of Glucose Isomerase from Streptomyces and Arthrobacter. Henrick K, Blow DM, Carrell HL, Glusker JP Protein Eng. 1 467- (1987)
  2. X-Ray Crystal Structure of D-Xylose Isomerase at 4-Angstroms Resolution. Carrell HL, Rubin BH, Hurley TJ, Glusker JP J. Biol. Chem. 259 3230- (1984)