7cat Citations

The NADPH binding site on beef liver catalase.

Proc Natl Acad Sci U S A 82 1604-8 (1985)
Cited: 93 times
EuropePMC logo PMID: 3856839

Abstract

Beef liver and human erythrocyte catalases (EC 1.11.1.6) bind NADP tenaciously [Kirkman, H. N. & Gaetani, G. F. (1984) Proc. Natl. Acad. Sci. USA 81, 4343-4348]. The position of NADP on beef liver catalase corresponds to the carboxyl-terminal polypeptide hinge in Penicillium vitale fungal catalase, which connects the common catalase structure to the additional flavodoxin-like domain. In contrast to nearly all other known structures of protein-bound NADP, NAD, and FAD, the NADP molecule of beef liver catalase is folded into a right-handed helix and bound, in part, in the vicinity of the carboxyl end of two alpha-helices. A water molecule (W7) occupies a pseudosubstrate site close to the C4 position of the nicotinamide and is hydrogen bonded to His-304. Although the NADP and heme groups approach each other to within 13.7 A, there is no direct interaction. The function of the NADP remains a mystery.

Articles - 7cat mentioned but not cited (12)

  1. Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a gaussian mixture model. Kawabata T. Biophys J 95 4643-4658 (2008)
  2. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. Zhang S, Golbraikh A, Tropsha A. J Med Chem 49 2713-2724 (2006)
  3. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy. Matsuo K, Sakurada Y, Yonehara R, Kataoka M, Gekko K. Biophys J 92 4088-4096 (2007)
  4. Undistorted structural analysis of soluble proteins by attenuated total reflectance infrared spectroscopy. Goldberg ME, Chaffotte AF. Protein Sci 14 2781-2792 (2005)
  5. Circular dichroism spectroscopy has intrinsic limitations for protein secondary structure analysis. Khrapunov S. Anal Biochem 389 174-176 (2009)
  6. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz. Das R. PLoS One 8 e74830 (2013)
  7. In silico prediction and characterization of 3D structure and binding properties of catalase from the commercially important crab, Scylla serrata. Paital B, Kumar S, Farmer R, Tripathy NK, Chainy GB. Interdiscip Sci 3 110-120 (2011)
  8. Effects of Moringa oleifera Leaf Extract on Diabetes-Induced Alterations in Paraoxonase 1 and Catalase in Rats Analyzed through Progress Kinetic and Blind Docking. Sierra-Campos E, Valdez-Solana M, Avitia-Domínguez C, Campos-Almazán M, Flores-Molina I, García-Arenas G, Téllez-Valencia A. Antioxidants (Basel) 9 E840 (2020)
  9. PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Kuzu G, Keskin O, Nussinov R, Gursoy A. Acta Crystallogr D Struct Biol 72 1137-1148 (2016)
  10. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps. Bettadapura R, Rasheed M, Vollrath A, Bajaj C. PLoS Comput Biol 11 e1004289 (2015)
  11. Computing the protein binding sites. Guo F, Wang L. BMC Bioinformatics 13 Suppl 10 S2 (2012)
  12. Hydrothermal synthesis of multi-cationic high-entropy layered double hydroxides. Knorpp AJ, Zawisza A, Huangfu S, Borzì A, Clark AH, Kata D, Graule T, Stuer M. RSC Adv 12 26362-26371 (2022)


Reviews citing this publication (12)

  1. 3D domain swapping: as domains continue to swap. Liu Y, Eisenberg D. Protein Sci 11 1285-1299 (2002)
  2. Mammalian catalase: a venerable enzyme with new mysteries. Kirkman HN, Gaetani GF. Trends Biochem Sci 32 44-50 (2007)
  3. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Zámocký M, Koller F. Prog Biophys Mol Biol 72 19-66 (1999)
  4. NAD(+)-dependent formate dehydrogenase. Popov VO, Lamzin VS. Biochem J 301 ( Pt 3) 625-643 (1994)
  5. Metabolism and genetics of Helicobacter pylori: the genome era. Marais A, Mendz GL, Hazell SL, Mégraud F. Microbiol Mol Biol Rev 63 642-674 (1999)
  6. Human catalase: looking for complete identity. Goyal MM, Basak A. Protein Cell 1 888-897 (2010)
  7. Thirty years of heme catalases structural biology. Díaz A, Loewen PC, Fita I, Carpena X. Arch Biochem Biophys 525 102-110 (2012)
  8. The widespread role of non-enzymatic reactions in cellular metabolism. Keller MA, Piedrafita G, Ralser M. Curr Opin Biotechnol 34 153-161 (2015)
  9. Fungal catalases: function, phylogenetic origin and structure. Hansberg W, Salas-Lizana R, Domínguez L. Arch Biochem Biophys 525 170-180 (2012)
  10. Computer simulation of native epidermal enzyme structures in the presence and absence of hydrogen peroxide (H2O2): potential and pitfalls. Gibbons NC, Wood JM, Rokos H, Schallreuter KU. J Invest Dermatol 126 2576-2582 (2006)
  11. Mechanisms of oxidant generation by catalase. Heck DE, Shakarjian M, Kim HD, Laskin JD, Vetrano AM. Ann N Y Acad Sci 1203 120-125 (2010)
  12. Monofunctional Heme-Catalases. Hansberg W. Antioxidants (Basel) 11 2173 (2022)

Articles citing this publication (69)

  1. Multi-resolution contour-based fitting of macromolecular structures. Chacón P, Wriggers W. J Mol Biol 317 375-384 (2002)
  2. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. Putnam CD, Arvai AS, Bourne Y, Tainer JA. J Mol Biol 296 295-309 (2000)
  3. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Hurley JH, Thorsness PE, Ramalingam V, Helmers NH, Koshland DE, Stroud RM. Proc Natl Acad Sci U S A 86 8635-8639 (1989)
  4. Loopy proteins appear conserved in evolution. Liu J, Tan H, Rost B. J Mol Biol 322 53-64 (2002)
  5. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. von Ossowski I, Mulvey MR, Leco PA, Borys A, Loewen PC. J Bacteriol 173 514-520 (1991)
  6. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Donate LE, Gherardi E, Srinivasan N, Sowdhamini R, Aparicio S, Blundell TL. Protein Sci 3 2378-2394 (1994)
  7. Topological distribution of four-alpha-helix bundles. Presnell SR, Cohen FE. Proc Natl Acad Sci U S A 86 6592-6596 (1989)
  8. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Adams MJ, Ellis GH, Gover S, Naylor CE, Phillips C. Structure 2 651-668 (1994)
  9. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Cohen G, Rapatz W, Ruis H. Eur J Biochem 176 159-163 (1988)
  10. Structure of catalase determined by MicroED. Nannenga BL, Shi D, Hattne J, Reyes FE, Gonen T. Elife 3 e03600 (2014)
  11. Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of yeast catalase T. Hartig A, Ruis H. Eur J Biochem 160 487-490 (1986)
  12. Catalases are NAD(P)H-dependent tellurite reductases. Calderón IL, Arenas FA, Pérez JM, Fuentes DE, Araya MA, Saavedra CP, Tantaleán JC, Pichuantes SE, Youderian PA, Vásquez CC. PLoS One 1 e70 (2006)
  13. Crystal structure of catalase HPII from Escherichia coli. Bravo J, Verdaguer N, Tormo J, Betzel C, Switala J, Loewen PC, Fita I. Structure 3 491-502 (1995)
  14. Intramolecular C(sp(3))H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts. Bordeaux M, Singh R, Fasan R. Bioorg Med Chem 22 5697-5704 (2014)
  15. Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase. Hérouart D, Sigaud S, Moreau S, Frendo P, Touati D, Puppo A. J Bacteriol 178 6802-6809 (1996)
  16. Geometry of proline-containing alpha-helices in proteins. Sankararamakrishnan R, Vishveshwara S. Int J Pept Protein Res 39 356-363 (1992)
  17. Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. Rocha ER, Smith CJ. J Bacteriol 177 3111-3119 (1995)
  18. Catalase gene of the yeast Candida tropicalis. Sequence analysis and comparison with peroxisomal and cytosolic catalases from other sources. Okada H, Ueda M, Sugaya T, Atomi H, Mozaffar S, Hishida T, Teranishi Y, Okazaki K, Takechi T, Kamiryo T. Eur J Biochem 170 105-110 (1987)
  19. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates. Terner J, Palaniappan V, Gold A, Weiss R, Fitzgerald MM, Sullivan AM, Hosten CM. J Inorg Biochem 100 480-501 (2006)
  20. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes. Hillar A, Nicholls P, Switala J, Loewen PC. Biochem J 300 ( Pt 2) 531-539 (1994)
  21. Interaction of nitric oxide with catalase: structural and kinetic analysis. Purwar N, McGarry JM, Kostera J, Pacheco AA, Schmidt M. Biochemistry 50 4491-4503 (2011)
  22. A peroxide/ascorbate-inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katE gene product. Bishai WR, Smith HO, Barcak GJ. J Bacteriol 176 2914-2921 (1994)
  23. Structure of catalase HPII from Escherichia coli at 1.9 A resolution. Bravo J, Mate MJ, Schneider T, Switala J, Wilson K, Loewen PC, Fita I. Proteins 34 155-166 (1999)
  24. Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: a comparison with NAD bound to the oxidoreductase enzymes. Bell CE, Yeates TO, Eisenberg D. Protein Sci 6 2084-2096 (1997)
  25. Catalase from the silkworm, Bombyx mori: gene sequence, distribution, and overexpression. Yamamoto K, Banno Y, Fujii H, Miake F, Kashige N, Aso Y. Insect Biochem Mol Biol 35 277-283 (2005)
  26. Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. Lemcke T, Christensen IT, Jørgensen FS. Bioorg Med Chem 7 1003-1011 (1999)
  27. A mechanism for NADPH inhibition of catalase compound II formation. Hillar A, Nicholls P. FEBS Lett 314 179-182 (1992)
  28. On the multiplicity of the enzyme catalase in mammalian liver. Masters C, Pegg M, Crane D. Mol Cell Biochem 70 113-120 (1986)
  29. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+. Didierjean C, Rahuel-Clermont S, Vitoux B, Dideberg O, Branlant G, Aubry A. J Mol Biol 268 739-759 (1997)
  30. Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery. Giovagnoli S, Blasi P, Ricci M, Rossi C. AAPS PharmSciTech 5 e51 (2004)
  31. Low catalase activity in xeroderma pigmentosum fibroblasts and SV40-transformed human cell lines is directly related to decreased intracellular levels of the cofactor, NADPH. Hoffschir F, Daya-Grosjean L, Petit PX, Nocentini S, Dutrillaux B, Sarasin A, Vuillaume M. Free Radic Biol Med 24 809-816 (1998)
  32. Multi-resolution anchor-point registration of biomolecular assemblies and their components. Birmanns S, Wriggers W. J Struct Biol 157 271-280 (2007)
  33. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase. Gaetani GF, Ferraris AM, Sanna P, Kirkman HN. Biochem J 385 763-768 (2005)
  34. The attachment of catalase and poly-l-lysine to plasma immersion ion implantation-treated polyethylene. Nosworthy NJ, Ho JP, Kondyurin A, McKenzie DR, Bilek MM. Acta Biomater 3 695-704 (2007)
  35. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P. Tanner JJ, Tu SC, Barbour LJ, Barnes CL, Krause KL. Protein Sci 8 1725-1732 (1999)
  36. Complete amino acid sequence of Proteus mirabilis PR catalase. Occurrence of a methionine sulfone in the close proximity of the active site. Buzy A, Bracchi V, Sterjiades R, Chroboczek J, Thibault P, Gagnon J, Jouve HM, Hudry-Clergeon G. J Protein Chem 14 59-72 (1995)
  37. Cloning, characterization and tissue expression of disk abalone (Haliotis discus discus) catalase. Ekanayake PM, De Zoysa M, Kang HS, Wan Q, Jee Y, Lee YH, Kim SJ, Lee J. Fish Shellfish Immunol 24 267-278 (2008)
  38. Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. Wang X, Liu X, Yan X, Zhao P, Ding Y, Xu P. PLoS One 6 e24207 (2011)
  39. Heme-protein fission under nondenaturing conditions. Smith ML, Paul J, Ohlsson PI, Hjortsberg K, Paul KG. Proc Natl Acad Sci U S A 88 882-886 (1991)
  40. Characterisation of the katA gene encoding a catalase and evidence for at least a second catalase activity in Staphylococcus xylosus, bacteria used in food fermentation. Barrière C, Brückner R, Centeno D, Talon R. FEMS Microbiol Lett 216 277-283 (2002)
  41. RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). Zhao H, Yi X, Hu Z, Hu M, Chen S, Muhammad RU, Dong X, Gong L. PLoS One 8 e59527 (2013)
  42. Role of the lateral channel in catalase HPII of Escherichia coli. Sevinc MS, Maté MJ, Switala J, Fita I, Loewen PC. Protein Sci 8 490-498 (1999)
  43. Molecular identification, heterologous expression and properties of light-insensitive plant catalases. Engel N, Schmidt M, Lütz C, Feierabend J. Plant Cell Environ 29 593-607 (2006)
  44. Theoretical study of model compound I complexes of horseradish peroxidase and catalase. Du P, Loew GH. Biophys J 68 69-80 (1995)
  45. Production, characterization, cloning and sequence analysis of a monofunctional catalase from Serratia marcescens SYBC08. Zeng HW, Cai YJ, Liao XR, Zhang F, Zhang DB. J Basic Microbiol 51 205-214 (2011)
  46. Influence of different types of effectors on the kinetic parameters of suicide inactivation of catalase by hydrogen peroxide. Ghadermarzi M, Moosavi-Movahedi AA. Biochim Biophys Acta 1431 30-36 (1999)
  47. Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis. Carot-Sans G, Muñoz L, Piulachs MD, Guerrero A, Rosell G. Insect Mol Biol 24 82-92 (2015)
  48. Solution structure of the recombinant human oncoprotein p13MTCP1. Yang YS, Guignard L, Padilla A, Hoh F, Strub MP, Stern MH, Lhoste JM, Roumestand C. J Biomol NMR 11 337-354 (1998)
  49. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin. Moore EJ, Fasan R. Tetrahedron 75 2357-2363 (2019)
  50. Role of water molecules in the crystal structure of Gly-L-Ala-L-Phe: a possible sequence preference for nucleation of alpha-helix? Ramasubbu N, Parthasarathy R. Biopolymers 28 1259-1269 (1989)
  51. An investigation of the molecular basis of the spontaneous occurrence of a catalase-negative phenotype in Helicobacter pylori. Manos J, Kolesnikow T, Hazell SL. Helicobacter 3 28-38 (1998)
  52. Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Tong L, Huang S, Shen Y, Liu S, Ma X, Zhu F, Chen G, Ouyang G. Nat Commun 13 951 (2022)
  53. Flavonoid-induced conversion of catalase to its inactive form--Compound II. Krych J, Gebicki JL, Gebicka L. Free Radic Res 48 1334-1341 (2014)
  54. Aldehyde and Ketone Synthesis by P450-Catalyzed Oxidative Deamination of Alkyl Azides. Giovani S, Alwaseem H, Fasan R. ChemCatChem 8 2609-2613 (2016)
  55. Resonance Raman investigation of cyanide ligated beef liver and Aspergillus niger catalases. al-Mustafa J, Sykora M, Kincaid JR. J Biol Chem 270 10449-10460 (1995)
  56. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases. Kitlar T, Döring F, Diedrich DF, Frank R, Wallmeier H, Kinne RK, Deutscher J. Protein Sci 3 696-700 (1994)
  57. The molecular characterization of a catalase from Chinese mitten crab Eriocheir sinensis. Wang M, Wang L, Zhou Z, Gao Y, Wang L, Shi X, Gai Y, Mu C, Song L. Int J Immunogenet 40 230-240 (2013)
  58. Purification, cloning, expression, and biochemical characterization of a monofunctional catalase, KatP, from Pigmentiphaga sp. DL-8. Dong W, Hou Y, Li S, Wang F, Zhou J, Li Z, Wang Y, Huang F, Fu L, Huang Y, Cui Z. Protein Expr Purif 108 54-61 (2015)
  59. Structure of the monofunctional heme catalase DR1998 from Deinococcus radiodurans. Borges PT, Frazão C, Miranda CS, Carrondo MA, Romão CV. FEBS J 281 4138-4150 (2014)
  60. The antiproliferative activity of di-2-pyridylketone dithiocarbamate is partly attributed to catalase inhibition: detailing the interaction by spectroscopic methods. Li C, Liu Y, Fu Y, Huang T, Kang L, Li C. Mol Biosyst 13 1817-1826 (2017)
  61. Iterative screen optimization maximizes the efficiency of macromolecular crystallization. Jones HG, Wrapp D, Gilman MSA, Battles MB, Wang N, Sacerdote S, Chuang GY, Kwong PD, McLellan JS. Acta Crystallogr F Struct Biol Commun 75 123-131 (2019)
  62. Loop anchor modification causes the population of an alternative native state in an SH3-like domain. Knappenberger JA, Lecomte JT. Protein Sci 16 863-879 (2007)
  63. Scanning electron microscopy of negatively stained catalase on a silicon wafer. Furuno T, Ulmer KM, Sasabe H. Microsc Res Tech 21 32-38 (1992)
  64. Steric hindrance controls pyridine nucleotide specificity of a flavin-dependent NADH:quinone oxidoreductase. Ball J, Reis RAG, Agniswamy J, Weber IT, Gadda G. Protein Sci 28 167-175 (2019)
  65. Structural analysis of NADPH depleted bovine liver catalase and its inhibitor complexes. Sugadev R, Ponnuswamy MN, Sekar K. Int J Biochem Mol Biol 2 67-77 (2011)
  66. cDNA and deduced amino acid sequences of dog catalase. Nakamura K, Watanabe M, Ikeda T. DNA Seq 9 347-352 (1998)
  67. cDNA cloning of mutant catalase in acatalasemic beagle dog: single nucleotide substitution leading to thermal-instability and enhanced proteolysis of mutant enzyme. Nakamura K, Watanabe M, Takanaka K, Sasaki Y, Ikeda T. Int J Biochem Cell Biol 32 1183-1193 (2000)
  68. Effect of pH on the Electrochemical Behavior of Hydrogen Peroxide in the Presence of Pseudomonas aeruginosa. Espinoza-Vergara J, Molina P, Walter M, Gulppi M, Vejar N, Melo F, Urzua M, Muñoz H, Zagal JH, Zhou X, Azocar MI, Paez MA. Front Bioeng Biotechnol 9 749057 (2021)
  69. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III. Foroughi LM, Kang YN, Matzger AJ. Acta Crystallogr D Biol Crystallogr 67 756-762 (2011)


Related citations provided by authors (9)

  1. The Refined Structure of Beef Liver Catalase at 2.5 Angstroms Resolution. Fita I, Silva AM, Murthy MRN, Rossmann MG Acta Crystallogr., B 42 497- (1986)
  2. Comparison of Beef Liver and Penicillium Vitale Catalases. Melik-Adamyan WR, Barynin VV, Vagin AA, Borisov VV, Vainshtein BK, Fita I, Murthy MRN, Rossmann MG J. Mol. Biol. 188 63- (1986)
  3. The Active Center of Catalase. Fita I, Rossmann MG J. Mol. Biol. 185 21- (1985)
  4. Structure of Beef Liver Catalase. Murthy MRN, Reid III TJ, Sicignano A, Tanaka N, Rossmann MG J. Mol. Biol. 152 465- (1981)
  5. The Structure of Beef Liver Catalase. Murthy MRN, Reid III TJ, Sicignano A, Tanaka N, Rossmann MG Kristallografiya 26 1017- (1981)
  6. The Structure of Beef Liver Catalase. Murthy MRN, Reid III TJ, Sicignano A, Tanaka N, Rossmann MG Sov. Phys. Crystallogr. 26 577- (1981)
  7. Structure and Heme Environment of Beef Liver Catalase at 2.5 Angstroms Resolution. Reid III TJ, Murthy MRN, Sicignano A, Tanaka N, Musick WDL, Rossmann MG Proc. Natl. Acad. Sci. U.S.A. 78 4767- (1981)
  8. Crystalline Bovine Liver Catalase. Eventoff W, Tanaka N, Rossmann MG J. Mol. Biol. 103 799- (1976)
  9. The Molecular Symmetry of Bovine Liver Catalase. Eventoff W, Gurskaya GV J. Mol. Biol. 93 55- (1975)