6be6 Citations

Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10.

Abstract

Cleavage of membrane-anchored proteins by ADAM (a disintegrin and metalloproteinase) endopeptidases plays a key role in a wide variety of biological signal transduction and protein turnover processes. Among ADAM family members, ADAM10 stands out as particularly important because it is both responsible for regulated proteolysis of Notch receptors and catalyzes the non-amyloidogenic α-secretase cleavage of the Alzheimer's precursor protein (APP). We present here the X-ray crystal structure of the ADAM10 ectodomain, which, together with biochemical and cellular studies, reveals how access to the enzyme active site is regulated. The enzyme adopts an unanticipated architecture in which the C-terminal cysteine-rich domain partially occludes the enzyme active site, preventing unfettered substrate access. Binding of a modulatory antibody to the cysteine-rich domain liberates the catalytic domain from autoinhibition, enhancing enzymatic activity toward a peptide substrate. Together, these studies reveal a mechanism for regulation of ADAM activity and offer a roadmap for its modulation.

Reviews - 6be6 mentioned but not cited (7)

  1. Biophysics of Notch Signaling. Sprinzak D, Blacklow SC. Annu Rev Biophys 50 157-189 (2021)
  2. Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer's Disease Treatment. Peron R, Vatanabe IP, Manzine PR, Camins A, Cominetti MR. Pharmaceuticals (Basel) 11 E12 (2018)
  3. Mechanisms of Disulfide Bond Formation in Nascent Polypeptides Entering the Secretory Pathway. Robinson PJ, Bulleid NJ. Cells 9 E1994 (2020)
  4. Domain integration of ADAM family proteins: Emerging themes from structural studies. Seegar TC, Blacklow SC. Exp Biol Med (Maywood) 244 1510-1519 (2019)
  5. Functional Characterization of Colon Cancer-Associated Mutations in ADAM17: Modifications in the Pro-Domain Interfere with Trafficking and Maturation. Pavlenko E, Cabron AS, Arnold P, Dobert JP, Rose-John S, Zunke F. Int J Mol Sci 20 E2198 (2019)
  6. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Vasconcelos AA, Estrada JC, David V, Wermelinger LS, Almeida FCL, Zingali RB. Front Mol Biosci 8 783301 (2021)
  7. ADAM10-a "multitasker" in sepsis: focus on its posttranslational target. Liao S, Lin Y, Liu L, Yang S, Lin Y, He J, Shao Y. Inflamm Res 72 395-423 (2023)

Articles - 6be6 mentioned but not cited (11)

  1. Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10. Seegar TCM, Killingsworth LB, Saha N, Meyer PA, Patra D, Zimmerman B, Janes PW, Rubinstein E, Nikolov DB, Skiniotis G, Kruse AC, Blacklow SC. Cell 171 1638-1648.e7 (2017)
  2. ADAM10 sheddase activation is controlled by cell membrane asymmetry. Bleibaum F, Sommer A, Veit M, Rabe B, Andrä J, Kunzelmann K, Nehls C, Correa W, Gutsmann T, Grötzinger J, Bhakdi S, Reiss K. J Mol Cell Biol 11 979-993 (2019)
  3. A model for COVID-19-induced dysregulation of ACE2 shedding by ADAM17. Healy EF, Lilic M. Biochem Biophys Res Commun 573 158-163 (2021)
  4. Identifying Drug Targets in Pancreatic Ductal Adenocarcinoma Through Machine Learning, Analyzing Biomolecular Networks, and Structural Modeling. Yan W, Liu X, Wang Y, Han S, Wang F, Liu X, Xiao F, Hu G. Front Pharmacol 11 534 (2020)
  5. The metalloproteinase ADAM10 requires its activity to sustain surface expression. Seifert A, Düsterhöft S, Wozniak J, Koo CZ, Tomlinson MG, Nuti E, Rossello A, Cuffaro D, Yildiz D, Ludwig A. Cell Mol Life Sci 78 715-732 (2021)
  6. Meprin β induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage. Wichert R, Scharfenberg F, Colmorgen C, Koudelka T, Schwarz J, Wetzel S, Potempa B, Potempa J, Bartsch JW, Sagi I, Tholey A, Saftig P, Rose-John S, Becker-Pauly C. FASEB J 33 11925-11940 (2019)
  7. Protein secondary structure determines the temporal relationship between folding and disulfide formation. Robinson PJ, Kanemura S, Cao X, Bulleid NJ. J Biol Chem 295 2438-2448 (2020)
  8. In Search of Selectivity in Inhibition of ADAM10. Mahasenan KV, Ding D, Gao M, Nguyen TT, Suckow MA, Schroeder VA, Wolter WR, Chang M, Mobashery S. ACS Med Chem Lett 9 708-713 (2018)
  9. Sex-Biased Gene Expression of Mesobuthus martensii Collected from Gansu Province, China, Reveals Their Different Therapeutic Potentials. Gao S, Wu F, Chen X, Yang Y, Zhu Y, Xiao L, Shang J, Bao X, Luo Y, Chen H, Liu Q. Evid Based Complement Alternat Med 2021 1967158 (2021)
  10. An In Silico Study for Expanding the Utility of Cannabidiol in Alzheimer's Disease Therapeutic Development. Choi K, Lee Y, Kim C. Int J Mol Sci 24 16013 (2023)
  11. Distinct role of ERp57 and ERdj5 as a disulfide isomerase and reductase during ER protein folding. Robinson PJ, Pringle MA, Fleming B, Bulleid NJ. J Cell Sci 136 jcs260656 (2023)


Reviews citing this publication (29)

  1. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. Lichtenthaler SF, Lemberg MK, Fluhrer R. EMBO J 37 e99456 (2018)
  2. The emerging role of ADAM metalloproteinases in immunity. Lambrecht BN, Vanderkerken M, Hammad H. Nat Rev Immunol 18 745-758 (2018)
  3. Notch signaling pathway: architecture, disease, and therapeutics. Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, Chu Q. Signal Transduct Target Ther 7 95 (2022)
  4. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ. Transl Neurodegener 9 10 (2020)
  5. Mechanisms of Notch signaling: a simple logic deployed in time and space. Henrique D, Schweisguth F. Development 146 dev172148 (2019)
  6. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Cell Mol Life Sci 76 3055-3081 (2019)
  7. Targeting ADAM10 in Cancer and Autoimmunity. Smith TM, Tharakan A, Martin RK. Front Immunol 11 499 (2020)
  8. Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Calligaris M, Cuffaro D, Bonelli S, Spanò DP, Rossello A, Nuti E, Scilabra SD. Molecules 26 944 (2021)
  9. ADAM proteases: Emerging role and targeting of the non-catalytic domains. Saha N, Robev D, Himanen JP, Nikolov DB. Cancer Lett 467 50-57 (2019)
  10. Key metalloproteinase-mediated pathways in the kidney. Wozniak J, Floege J, Ostendorf T, Ludwig A. Nat Rev Nephrol 17 513-527 (2021)
  11. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Alabi RO, Farber G, Blobel CP. Physiol Rev 98 2025-2061 (2018)
  12. An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. Chou CW, Huang YK, Kuo TT, Liu JP, Sher YP. Int J Mol Sci 21 E7790 (2020)
  13. Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. Harrison N, Koo CZ, Tomlinson MG. Int J Mol Sci 22 6707 (2021)
  14. Regulation of Leukocytes by TspanC8 Tetraspanins and the "Molecular Scissor" ADAM10. Matthews AL, Koo CZ, Szyroka J, Harrison N, Kanhere A, Tomlinson MG. Front Immunol 9 1451 (2018)
  15. Regulation of the alternative β-secretase meprin β by ADAM-mediated shedding. Scharfenberg F, Armbrust F, Marengo L, Pietrzik C, Becker-Pauly C. Cell Mol Life Sci 76 3193-3206 (2019)
  16. Modulation of Immune Responses by Platelet-Derived ADAM10. Maurer S, Kopp HG, Salih HR, Kropp KN. Front Immunol 11 44 (2020)
  17. On the cutting edge: protease-based methods for sensing and controlling cell biology. Chung HK, Lin MZ. Nat Methods 17 885-896 (2020)
  18. Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Kim N, Lee HJ. Int J Mol Sci 22 7697 (2021)
  19. ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease. Tosetti F, Alessio M, Poggi A, Zocchi MR. Int J Mol Sci 22 4969 (2021)
  20. Regulation of Fibrotic Processes in the Liver by ADAM Proteases. Schmidt-Arras D, Rose-John S. Cells 8 E1226 (2019)
  21. Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer's Disease Development. Urban AS, Pavlov KV, Kamynina AV, Okhrimenko IS, Arseniev AS, Bocharov EV. Molecules 26 2897 (2021)
  22. Scramblases as Regulators of Proteolytic ADAM Function. Reiss K, Leitzke S, Seidel J, Sperrhacke M, Bhakdi S. Membranes (Basel) 12 185 (2022)
  23. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Killingsworth L, Spudich S. Semin Immunopathol 44 709-724 (2022)
  24. Stage-dependent involvement of ADAM10 and its significance in epileptic seizures. Zhou X, Tao H, Cai Y, Cui L, Zhao B, Li K. J Cell Mol Med 23 4494-4504 (2019)
  25. Novel Approaches and Challenges of Discovery of Exosite Modulators of a Disintegrin and Metalloprotease 10. Minond D. Front Mol Biosci 7 75 (2020)
  26. Structural biology of cell surface receptors implicated in Alzheimer's disease. Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Biophys Rev 14 233-255 (2022)
  27. Developments in Carbohydrate-Based Metzincin Inhibitors. Cuffaro D, Nuti E, D'Andrea F, Rossello A. Pharmaceuticals (Basel) 13 E376 (2020)
  28. Inducing prion protein shedding as a neuroprotective and regenerative approach in pathological conditions of the brain: from theory to facts. Matamoros-Angles A, Mohammadi B, Song F, Shafiq M, Brenna S, Puig B, Glatzel M, Altmeppen HC. Neural Regen Res 18 1869-1875 (2023)
  29. The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases. Iemmolo M, Ghersi G, Bivona G. Int J Mol Sci 24 8026 (2023)

Articles citing this publication (33)

  1. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A, Dentro SC, Fowler JC, Herms A, King C, Ong SH, Sood RK, Gerstung M, Martincorena I, Hall BA, Jones PH. Nat Genet 52 604-614 (2020)
  2. Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. Trotter JH, Hao J, Maxeiner S, Tsetsenis T, Liu Z, Zhuang X, Südhof TC. J Cell Biol 218 2677-2698 (2019)
  3. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Scharfenberg F, Helbig A, Sammel M, Benzel J, Schlomann U, Peters F, Wichert R, Bettendorff M, Schmidt-Arras D, Rose-John S, Moali C, Lichtenthaler SF, Pietrzik CU, Bartsch JW, Tholey A, Becker-Pauly C. Cell Mol Life Sci 77 331-350 (2020)
  4. A novel pan-cancer biomarker plasma heat shock protein 90alpha and its diagnosis determinants in clinic. Liu W, Li J, Zhang P, Hou Q, Feng S, Liu L, Cui D, Shi H, Fu Y, Luo Y. Cancer Sci 110 2941-2959 (2019)
  5. The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation. Brummer T, Pigoni M, Rossello A, Wang H, Noy PJ, Tomlinson MG, Blobel CP, Lichtenthaler SF. FASEB J 32 3560-3573 (2018)
  6. Proteolytic processing of platelet receptors. Gardiner EE. Res Pract Thromb Haemost 2 240-250 (2018)
  7. TspanC8 tetraspanins differentially regulate ADAM10 endocytosis and half-life. Eschenbrenner E, Jouannet S, Clay D, Chaker J, Boucheix C, Brou C, Tomlinson MG, Charrin S, Rubinstein E. Life Sci Alliance 3 e201900444 (2020)
  8. Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries. Zhou J, Li S, Leung KK, O'Donovan B, Zou JY, DeRisi JL, Wells JA. Proc Natl Acad Sci U S A 117 25464-25475 (2020)
  9. Substrate-selective protein ectodomain shedding by ADAM17 and iRhom2 depends on their juxtamembrane and transmembrane domains. Tang B, Li X, Maretzky T, Perez-Aguilar JM, McIlwain D, Xie Y, Zheng Y, Mak TW, Weinstein H, Blobel CP. FASEB J 34 4956-4969 (2020)
  10. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Yang ZJ, Yu ZY, Cai YM, Du RR, Cai L. Commun Biol 3 116 (2020)
  11. ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. Li B, Zhu C, Dong L, Qin J, Xiang W, Davidson AJ, Feng S, Wang Y, Shen X, Weng C, Wang C, Zhu T, Teng L, Wang J, Englert C, Chen J, Jiang H. J Pathol 252 274-289 (2020)
  12. Role of ADAM10 and ADAM17 in Regulating CD137 Function. Seidel J, Leitzke S, Ahrens B, Sperrhacke M, Bhakdi S, Reiss K. Int J Mol Sci 22 2730 (2021)
  13. An ADAM-10 dependent EPCR shedding links meningococcal interaction with endothelial cells to purpura fulminans. Lécuyer H, Virion Z, Barnier JP, Matczak S, Bourdoulous S, Bianchini E, Saller F, Borgel D, Nassif X, Coureuil M. PLoS Pathog 14 e1006981 (2018)
  14. Crystal structure of the Tspan15 LEL domain reveals a conserved ADAM10 binding site. Lipper CH, Gabriel KH, Seegar TCM, Dürr KL, Tomlinson MG, Blacklow SC. Structure 30 206-214.e4 (2022)
  15. Exploring the landscape of ectodomain shedding by quantitative protein terminomics. Tsumagari K, Chang CH, Ishihama Y. iScience 24 102259 (2021)
  16. Nmnat2 attenuates amyloidogenesis and up-regulates ADAM10 in AMPK activity-dependent manner. Cheng XS, Shi FX, Zhao KP, Lin W, Li XY, Zhang J, Bu YY, Zhu R, Li XH, Duan DX, Ji XY, Wei JS, Wang JZ, Du J, Zhou XW. Aging (Albany NY) 13 23620-23636 (2021)
  17. Penicilazaphilone C, a New Azaphilone, Induces Apoptosis in Gastric Cancer by Blocking the Notch Signaling Pathway. Wang M, Zhao H, Hu J, Xu Z, Lin Y, Zhou S. Front Oncol 10 116 (2020)
  18. Transcranial Direct Current Stimulation Alleviates Neurovascular Unit Dysfunction in Mice With Preclinical Alzheimer's Disease. Luo Y, Yang H, Yan X, Wu Y, Wei G, Wu X, Tian X, Xiong Y, Wu G, Wen H. Front Aging Neurosci 14 857415 (2022)
  19. Identification of Molecular Determinants in iRhoms1 and 2 That Contribute to the Substrate Selectivity of Stimulated ADAM17. Zhao Y, Dávila EM, Li X, Tang B, Rabinowitsch AI, Perez-Aguilar JM, Blobel CP. Int J Mol Sci 23 12796 (2022)
  20. A structural model of the iRhom-ADAM17 sheddase complex reveals functional insights into its trafficking and activity. Kahveci-Türköz S, Bläsius K, Wozniak J, Rinkens C, Seifert A, Kasparek P, Ohm H, Oltzen S, Nieszporek M, Schwarz N, Babendreyer A, Preisinger C, Sedlacek R, Ludwig A, Düsterhöft S. Cell Mol Life Sci 80 135 (2023)
  21. Fully human monoclonal antibody targeting activated ADAM10 on colorectal cancer cells. Saha N, Baek DS, Mendoza RP, Robev D, Xu Y, Goldgur Y, De La Cruz MJ, de Stanchina E, Janes PW, Xu K, Dimitrov DS, Nikolov DB. Biomed Pharmacother 161 114494 (2023)
  22. Simultaneous detection of multiple proteases using a non-array nanopore platform. Chen X, Zhang Y, Guan X. Nanoscale 13 13658-13664 (2021)
  23. Structural basis for membrane-proximal proteolysis of substrates by ADAM10. Lipper CH, Egan ED, Gabriel KH, Blacklow SC. Cell 186 3632-3641.e10 (2023)
  24. A Bioengineering Strategy to Control ADAM10 Activity in Living Cells. Pastore F, Battistoni M, Sollazzo R, Renna P, Paciello F, Li Puma DD, Barone E, Dagliyan O, Ripoli C, Grassi C. Int J Mol Sci 24 917 (2023)
  25. Bayesian nonparametric method for genetic dissection of brain activation region. Jin Z, Kang J, Yu T. Front Neurosci 17 1235321 (2023)
  26. Glycomic, Glycoproteomic, and Proteomic Profiling of Philippine Lung Cancer and Peritumoral Tissues: Case Series Study of Patients Stages I-III. Alvarez MR, Zhou Q, Tena J, Barboza M, Wong M, Xie Y, Lebrilla CB, Cabanatan M, Barzaga MT, Tan-Liu N, Heralde FM, Serrano L, Nacario RC, Completo GC. Cancers (Basel) 15 1559 (2023)
  27. Heparin-binding epidermal growth factor and fibroblast growth factor 2 rescue Müller glia-derived progenitor cell formation in microglia- and macrophage-ablated chick retinas. El-Hodiri HM, Bentley JR, Reske AG, Taylor OB, Palazzo I, Campbell WA, Halloy NR, Fischer AJ. Development 150 dev202070 (2023)
  28. MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Chen K, Yuan X, Wang S, Zheng F, Fu Z, Shen Z, Cheng X, Wang Y, Tang S, Ni H, Wang F, Lu G, Wu Y, Xia D, Lu W. Oncogene 42 1438-1452 (2023)
  29. Preferential Antibody and Drug Conjugate Targeting of the ADAM10 Metalloprotease in Tumours. Yan H, Vail ME, Hii L, Guo N, McMurrick PJ, Oliva K, Wilkins S, Saha N, Nikolov DB, Lee FT, Scott AM, Janes PW. Cancers (Basel) 14 3171 (2022)
  30. Role of redox-sensitive catalytic interaction with ADAM10 in mutant-selective extracellular shedding of prion protein. Shin Y, Jo KS, Shin M, Lee D, Yeo H, Song Y, Kang SW. Redox Biol 56 102456 (2022)
  31. Shifting the balance: soluble ADAM10 as a potential treatment for Alzheimer's disease. Hershkovits AS, Gelley S, Hanna R, Kleifeld O, Shulman A, Fishman A. Front Aging Neurosci 15 1171123 (2023)
  32. Soluble and multivalent Jag1 DNA origami nanopatterns activate Notch without pulling force. Smyrlaki I, Fördős F, Rocamonde-Lago I, Wang Y, Shen B, Lentini A, Luca VC, Reinius B, Teixeira AI, Högberg B. Nat Commun 15 465 (2024)
  33. The US9-Derived Protein gPTB9TM Modulates APP Processing Without Targeting Secretase Activities. Brandimarti R, Irollo E, Meucci O. Mol Neurobiol 60 1811-1825 (2023)