5v7z Citations

The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex.

Cell 173 1244-1253.e10 (2018)
Cited: 132 times
EuropePMC logo PMID: 29681455

Abstract

The RIPK1-RIPK3 necrosome is an amyloid signaling complex that initiates TNF-induced necroptosis, serving in human immune defense, cancer, and neurodegenerative diseases. RIPK1 and RIPK3 associate through their RIP homotypic interaction motifs with consensus sequences IQIG (RIPK1) and VQVG (RIPK3). Using solid-state nuclear magnetic resonance, we determined the high-resolution structure of the RIPK1-RIPK3 core. RIPK1 and RIPK3 alternately stack (RIPK1, RIPK3, RIPK1, RIPK3, etc.) to form heterotypic β sheets. Two such β sheets bind together along a compact hydrophobic interface featuring an unusual ladder of alternating Ser (from RIPK1) and Cys (from RIPK3). The crystal structure of a four-residue RIPK3 consensus sequence is consistent with the architecture determined by NMR. The RIPK1-RIPK3 core is the first detailed structure of a hetero-amyloid and provides a potential explanation for the specificity of hetero- over homo-amyloid formation and a structural basis for understanding the mechanisms of signal transduction.

Reviews - 5v7z mentioned but not cited (3)

  1. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. Chem Rev 122 9848-9879 (2022)
  2. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Front Mol Neurosci 14 670513 (2021)
  3. The regulation of necroptosis by post-translational modifications. Meng Y, Sandow JJ, Czabotar PE, Murphy JM. Cell Death Differ (2021)

Articles - 5v7z mentioned but not cited (5)

  1. The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex. Mompeán M, Li W, Li J, Laage S, Siemer AB, Bozkurt G, Wu H, McDermott AE. Cell 173 1244-1253.e10 (2018)
  2. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies. Pham CL, Shanmugam N, Strange M, O'Carroll A, Brown JW, Sierecki E, Gambin Y, Steain M, Sunde M. EMBO Rep 20 (2019)
  3. The amyloid structure of mouse RIPK3 (receptor interacting protein kinase 3) in cell necroptosis. Wu XL, Hu H, Dong XQ, Zhang J, Wang J, Schwieters CD, Liu J, Wu GX, Li B, Lin JY, Wang HY, Lu JX. Nat Commun 12 1627 (2021)
  4. Protein Amyloid Cofactors: Charged Side-Chain Arrays Meet Their Match? Lewkowicz E, Jayaraman S, Gursky O. Trends Biochem Sci 46 626-629 (2021)
  5. RIP3-mediated necroptosis is regulated by inter-filament assembly of RIP homotypic interaction motif. Hu H, Wu X, Wu G, Nan N, Zhang J, Zhu X, Zhang Y, Shu Z, Liu J, Liu X, Lu J, Wang H. Cell Death Differ 28 251-266 (2021)


Reviews citing this publication (50)

  1. Lytic cell death in metabolic liver disease. Gautheron J, Gores GJ, Rodrigues CMP. J Hepatol 73 394-408 (2020)
  2. The Killer Pseudokinase Mixed Lineage Kinase Domain-Like Protein (MLKL). Murphy JM. Cold Spring Harb Perspect Biol 12 a036376 (2020)
  3. From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Wang Y, Kanneganti TD. Comput Struct Biotechnol J 19 4641-4657 (2021)
  4. Higher-order assemblies in innate immune and inflammatory signaling: A general principle in cell biology. Shi M, Zhang P, Vora SM, Wu H. Curr Opin Cell Biol 63 194-203 (2020)
  5. The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Samir P, Malireddi RKS, Kanneganti TD. Front Cell Infect Microbiol 10 238 (2020)
  6. The pathological features of regulated necrosis. Tonnus W, Meyer C, Paliege A, Belavgeni A, von Mässenhausen A, Bornstein SR, Hugo C, Becker JU, Linkermann A. J Pathol 247 697-707 (2019)
  7. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Newton K. Cold Spring Harb Perspect Biol 12 a036368 (2020)
  8. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Signal Transduct Target Ther 7 286 (2022)
  9. Functional Mammalian Amyloids and Amyloid-Like Proteins. Rubel MS, Fedotov SA, Grizel AV, Sopova JV, Malikova OA, Chernoff YO, Rubel AA. Life (Basel) 10 E156 (2020)
  10. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Cell Death Discov 7 210 (2021)
  11. The molecular machinery of regulated cell death. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. Cell Res. 29 347-364 (2019)
  12. The Evolutionary Origins of Programmed Cell Death Signaling. Hofmann K. Cold Spring Harb Perspect Biol 12 a036442 (2020)
  13. The expanding amyloid family: Structure, stability, function, and pathogenesis. Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS. Cell 184 4857-4873 (2021)
  14. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Front Bioeng Biotechnol 9 641372 (2021)
  15. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. Zhou Y, Liao J, Mei Z, Liu X, Ge J. Oxid Med Cell Longev 2021 9991001 (2021)
  16. The Role of Necroptosis: Biological Relevance and Its Involvement in Cancer. Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. Cancers (Basel) 13 684 (2021)
  17. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Verzella D, Pescatore A, Capece D, Vecchiotti D, Ursini MV, Franzoso G, Alesse E, Zazzeroni F. Cell Death Dis 11 210 (2020)
  18. The role of regulated necrosis in endocrine diseases. Tonnus W, Belavgeni A, Beuschlein F, Eisenhofer G, Fassnacht M, Kroiss M, Krone NP, Reincke M, Bornstein SR, Linkermann A. Nat Rev Endocrinol 17 497-510 (2021)
  19. Mechanics of a molecular mousetrap-nucleation-limited innate immune signaling. Rodríguez Gama A, Miller T, Halfmann R. Biophys J 120 1150-1160 (2021)
  20. Targeting RIP Kinases in Chronic Inflammatory Disease. Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Biomolecules 11 646 (2021)
  21. Regulation of the Drosophila Imd pathway by signaling amyloids. Kleino A, Silverman N. Insect Biochem Mol Biol 108 16-23 (2019)
  22. Structure and Aggregation Mechanisms in Amyloids. Almeida ZL, Brito RMM. Molecules 25 (2020)
  23. Targeting intrinsic cell death pathways to control fungal pathogens. Kulkarni M, Stolp ZD, Hardwick JM. Biochem Pharmacol 162 71-78 (2019)
  24. The role of necroptosis in disease and treatment. Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. MedComm (2020) 2 730-755 (2021)
  25. Mechanisms of TNF-independent RIPK3-mediated cell death. Tummers B, Green DR. Biochem J 479 2049-2062 (2022)
  26. Microbial functional amyloids serve diverse purposes for structure, adhesion and defence. Shanmugam N, Baker MODG, Ball SR, Steain M, Pham CLL, Sunde M. Biophys Rev 11 287-302 (2019)
  27. Prothymosin α Plays Role as a Brain Guardian through Ecto-F1 ATPase-P2Y12 Complex and TLR4/MD2. Ueda H. Cells 12 496 (2023)
  28. RIP3 in Necroptosis: Underlying Contributions to Traumatic Brain Injury. Wang L, Zhang Y, Huang M, Yuan Y, Liu X. Neurochem Res (2023)
  29. RIPK1-Associated Inborn Errors of Innate Immunity. Zhang J, Jin T, Aksentijevich I, Zhou Q. Front Immunol 12 676946 (2021)
  30. Role of necroptosis in kidney health and disease. Kolbrink B, von Samson-Himmelstjerna FA, Murphy JM, Krautwald S. Nat Rev Nephrol 19 300-314 (2023)
  31. The Simple Biology of Flipons and Condensates Enhances the Evolution of Complexity. Herbert A. Molecules 26 4881 (2021)
  32. The therapeutic potential of targeting regulated non-apoptotic cell death. Hadian K, Stockwell BR. Nat Rev Drug Discov 22 723-742 (2023)
  33. Breaking bad: necroptosis in the pathogenesis of gastrointestinal diseases. Patankar JV, Bubeck M, Acera MG, Becker C. Front Immunol 14 1203903 (2023)
  34. Emergence of the fungal immune system. Daskalov A. iScience 26 106793 (2023)
  35. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Siegmund D, Zaitseva O, Wajant H. Front Cell Dev Biol 11 1267837 (2023)
  36. Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis: A Novel Therapeutic Target in Nervous System Diseases. Tang L, Liu S, Li S, Chen Y, Xie B, Zhou J. Int J Mol Sci 24 10127 (2023)
  37. Mechanisms and pathology of protein misfolding and aggregation. Louros N, Schymkowitz J, Rousseau F. Nat Rev Mol Cell Biol 24 912-933 (2023)
  38. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Front Immunol 14 1191815 (2023)
  39. Necroptosis in the pathophysiology of preeclampsia. Yu H, Chen L, Du B. Cell Cycle 22 1713-1725 (2023)
  40. Necroptosis: a crucial pathogenic mediator of human disease. Choi ME, Price DR, Ryter SW, Choi AMK. JCI Insight 4 (2019)
  41. Primary and Secondary Cone Cell Death Mechanisms in Inherited Retinal Diseases and Potential Treatment Options. Brunet AA, Harvey AR, Carvalho LS. Int J Mol Sci 23 726 (2022)
  42. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Int J Mol Sci 19 (2018)
  43. RIPK3: A New Player in Renal Fibrosis. Shi Y, Chen X, Huang C, Pollock C. Front Cell Dev Biol 8 502 (2020)
  44. Role of Necroptosis in Intervertebral Disc Degeneration. Khaleque MA, Kim JH, Hwang BJ, Kang JK, Quan M, Kim YY. Int J Mol Sci 24 15292 (2023)
  45. Roles of RIPK3 in necroptosis, cell signaling, and disease. Morgan MJ, Kim YS. Exp Mol Med 54 1695-1704 (2022)
  46. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Park CK, Horton NC. Biophys Rev 11 927-994 (2019)
  47. The Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis in Inflammatory Bowel Disease, Colorectal Cancer, and Intestinal Injury. Zhou P, Zhang S, Wang M, Zhou J. Biomolecules 13 820 (2023)
  48. The Many Faces of MLKL, the Executor of Necroptosis. Martinez-Osorio V, Abdelwahab Y, Ros U. Int J Mol Sci 24 10108 (2023)
  49. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis. Purnama CA, Meiliana A, Barliana MI, Lestari K. Cell Div 18 5 (2023)
  50. What makes functional amyloids work? Siemer AB. Crit Rev Biochem Mol Biol 57 399-411 (2022)

Articles citing this publication (74)

  1. O-GlcNAc Transferase Suppresses Inflammation and Necroptosis by Targeting Receptor-Interacting Serine/Threonine-Protein Kinase 3. Li X, Gong W, Wang H, Li T, Attri KS, Lewis RE, Kalil AC, Bhinderwala F, Powers R, Yin G, Herring LE, Asara JM, Lei YL, Yang X, Rodriguez DA, Yang M, Green DR, Singh PK, Wen H. Immunity 50 576-590.e6 (2019)
  2. Conformational interconversion of MLKL and disengagement from RIPK3 precede cell death by necroptosis. Garnish SE, Meng Y, Koide A, Sandow JJ, Denbaum E, Jacobsen AV, Yeung W, Samson AL, Horne CR, Fitzgibbon C, Young SN, Smith PPC, Webb AI, Petrie EJ, Hildebrand JM, Kannan N, Czabotar PE, Koide S, Murphy JM. Nat Commun 12 2211 (2021)
  3. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Hervas R, Rau MJ, Park Y, Zhang W, Murzin AG, Fitzpatrick JAJ, Scheres SHW, Si K. Science 367 1230-1234 (2020)
  4. The three-dimensional structure of human β-endorphin amyloid fibrils. Seuring C, Verasdonck J, Gath J, Ghosh D, Nespovitaya N, Wälti MA, Maji SK, Cadalbert R, Güntert P, Meier BH, Riek R. Nat Struct Mol Biol 27 1178-1184 (2020)
  5. Distinct pseudokinase domain conformations underlie divergent activation mechanisms among vertebrate MLKL orthologues. Davies KA, Fitzgibbon C, Young SN, Garnish SE, Yeung W, Coursier D, Birkinshaw RW, Sandow JJ, Lehmann WIL, Liang LY, Lucet IS, Chalmers JD, Patrick WM, Kannan N, Petrie EJ, Czabotar PE, Murphy JM. Nat Commun 11 3060 (2020)
  6. Maturation of the functional mouse CRES amyloid from globular form. Hewetson A, Khan NH, Dominguez MJ, Do HQ, Kusko RE, Borcik CG, Rigden DJ, Keegan RM, Sutton RB, Latham MP, Wylie BJ, Cornwall GA. Proc Natl Acad Sci U S A 117 16363-16372 (2020)
  7. Herpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles. Ali M, Roback L, Mocarski ES. J Biol Chem 294 991-1004 (2019)
  8. CK1α, CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Hanna-Addams S, Liu S, Liu H, Chen S, Wang Z. Proc Natl Acad Sci U S A 117 1962-1970 (2020)
  9. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. J Biol Chem 298 102498 (2022)
  10. Evolutionary Profile for (Host and Viral) MLKL Indicates Its Activities as a Battlefront for Extensive Counteradaptation. Palmer SN, Chappidi S, Pinkham C, Hancks DC. Mol Biol Evol 38 5405-5422 (2021)
  11. Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Meng Y, Davies KA, Fitzgibbon C, Young SN, Garnish SE, Horne CR, Luo C, Garnier JM, Liang LY, Cowan AD, Samson AL, Lessene G, Sandow JJ, Czabotar PE, Murphy JM. Nat Commun 12 6783 (2021)
  12. RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes. Li X, Zhong CQ, Wu R, Xu X, Yang ZH, Cai S, Wu X, Chen X, Yin Z, He Q, Li D, Xu F, Yan Y, Qi H, Xie C, Shuai J, Han J. Protein Cell 12 858-876 (2021)
  13. Z-RNA and the Flipside of the SARS Nsp13 Helicase: Is There a Role for Flipons in Coronavirus-Induced Pathology? Herbert A, Poptsova M. Front Immunol 13 912717 (2022)
  14. Distinct evolutionary trajectories of SARS-CoV-2-interacting proteins in bats and primates identify important host determinants of COVID-19. Cariou M, Picard L, Guéguen L, Jacquet S, Cimarelli A, Fregoso OI, Molaro A, Navratil V, Etienne L. Proc Natl Acad Sci U S A 119 e2206610119 (2022)
  15. E3 ligase TRIM25 ubiquitinates RIP3 to inhibit TNF induced cell necrosis. Mei P, Xie F, Pan J, Wang S, Gao W, Ge R, Gao B, Gao S, Chen X, Wang Y, Wu J, Ding C, Li J. Cell Death Differ 28 2888-2899 (2021)
  16. HSPA8 acts as an amyloidase to suppress necroptosis by inhibiting and reversing functional amyloid formation. Wu E, He W, Wu C, Chen Z, Zhou S, Wu X, Hu Z, Jia K, Pan J, Wang L, Qin J, Liu D, Lu J, Wang H, Li J, Wang S, Sun L. Cell Res 33 851-866 (2023)
  17. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Taft J, Markson M, Legarda D, Patel R, Chan M, Malle L, Richardson A, Gruber C, Martín-Fernández M, Mancini GMS, van Laar JAM, van Pelt P, Buta S, Wokke BHA, Sabli IKD, Sancho-Shimizu V, Chavan PP, Schnappauf O, Khubchandani R, Cüceoğlu MK, Özen S, Kastner DL, Ting AT, Aksentijevich I, Hollink IHIM, Bogunovic D. Cell 184 4447-4463.e20 (2021)
  18. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Frank D, Vince JE. Cell Death Differ. 26 99-114 (2019)
  19. TRIM21 regulates pyroptotic cell death by promoting Gasdermin D oligomerization. Gao W, Li Y, Liu X, Wang S, Mei P, Chen Z, Liu K, Li S, Xu XW, Gan J, Wu J, Ji C, Ding C, Liu X, Lai Y, He HH, Lieberman J, Wu H, Chen X, Li J. Cell Death Differ 29 439-450 (2022)
  20. The RHIM of the Immune Adaptor Protein TRIF Forms Hybrid Amyloids with Other Necroptosis-Associated Proteins. Baker MODG, Shanmugam N, Pham CLL, Ball SR, Sierecki E, Gambin Y, Steain M, Sunde M. Molecules 27 3382 (2022)
  21. The expanding scope of amyloid signalling. Daskalov A, Saupe SJ. Prion 15 21-28 (2021)
  22. The structure of a minimum amyloid fibril core formed by necroptosis-mediating RHIM of human RIPK3. Wu X, Ma Y, Zhao K, Zhang J, Sun Y, Li Y, Dong X, Hu H, Liu J, Wang J, Zhang X, Li B, Wang H, Li D, Sun B, Lu J, Liu C. Proc Natl Acad Sci U S A 118 e2022933118 (2021)
  23. A common human MLKL polymorphism confers resistance to negative regulation by phosphorylation. Garnish SE, Martin KR, Kauppi M, Jackson VE, Ambrose R, Eng VV, Chiou S, Meng Y, Frank D, Tovey Crutchfield EC, Patel KM, Jacobsen AV, Atkin-Smith GK, Di Rago L, Doerflinger M, Horne CR, Hall C, Young SN, Cook M, Athanasopoulos V, Vinuesa CG, Lawlor KE, Wicks IP, Ebert G, Ng AP, Slade CA, Pearson JS, Samson AL, Silke J, Murphy JM, Hildebrand JM. Nat Commun 14 6046 (2023)
  24. A nucleation barrier spring-loads the CBM signalosome for binary activation. Rodriguez Gama A, Miller T, Lange JJ, Unruh JR, Halfmann R. Elife 11 e79826 (2022)
  25. Autophagy-Related LC3 Accumulation Interacted Directly With LIR Containing RIPK1 and RIPK3, Stimulating Necroptosis in Hypoxic Cardiomyocytes. Huang Y, Feng Y, Cui L, Yang L, Zhang Q, Zhang J, Jiang X, Zhang X, Lv Y, Jia JZ, Zhang DX, Huang YS. Front Cell Dev Biol 9 679637 (2021)
  26. Dysregulation of TDP-43 intracellular localization and early onset ALS are associated with a TARDBP S375G variant. Newell K, Paron F, Mompean M, Murrell J, Salis E, Stuani C, Pattee G, Romano M, Laurents D, Ghetti B, Buratti E. Brain Pathol. 29 397-413 (2019)
  27. Identification of MYC as an antinecroptotic protein that stifles RIPK1-RIPK3 complex formation. Seong D, Jeong M, Seo J, Lee JY, Hwang CH, Shin HC, Shin JY, Nam YW, Jo JY, Lee H, Kim HJ, Kim HR, Oh JH, Ha SJ, Kim SJ, Roe JS, Kim W, Cheong JW, Bae KH, Lee SC, Oberst A, Vandenabeele P, Shin DH, Lee EW, Song J. Proc Natl Acad Sci U S A 117 19982-19993 (2020)
  28. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, Yang Y, Qin J, Liu D, Zhang H, Shao X, Wang J, Wang H, Yang W, Wang H, Chen S, Hu P, Sun L. Cell Res 30 1063-1077 (2020)
  29. Necroptosis at a glance. Kang K, Park C, Chan FK. J Cell Sci 135 jcs260091 (2022)
  30. OASL phase condensation induces amyloid-like fibrillation of RIPK3 to promote virus-induced necroptosis. Lee SA, Chang LC, Jung W, Bowman JW, Kim D, Chen W, Foo SS, Choi YJ, Choi UY, Bowling A, Yoo JS, Jung JU. Nat Cell Biol 25 92-107 (2023)
  31. Phe-Gly motifs drive fibrillization of TDP-43's prion-like domain condensates. Pantoja-Uceda D, Stuani C, Laurents DV, McDermott AE, Buratti E, Mompeán M. PLoS Biol 19 e3001198 (2021)
  32. RIPK1-RIPK3 mediates myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of cardiac fibroblasts. Qiao S, Hong L, Zhu Y, Zha J, Wang A, Qiu J, Li W, Wang C, An J, Zhang H. Cell Death Dis 13 147 (2022)
  33. Structural basis of the interplay between α-synuclein and Tau in regulating pathological amyloid aggregation. Lu J, Zhang S, Ma X, Jia C, Liu Z, Huang C, Liu C, Li D. J Biol Chem 295 7470-7480 (2020)
  34. The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations. Gelenter MD, Smith KJ, Liao SY, Mandala VS, Dregni AJ, Lamm MS, Tian Y, Xu W, Pochan DJ, Tucker TJ, Su Y, Hong M. Nat. Struct. Mol. Biol. 26 592-598 (2019)
  35. The scaffold-dependent function of RIPK1 in dendritic cells promotes injury-induced colitis. Moriwaki K, Park C, Koyama K, Balaji S, Kita K, Yagi R, Komazawa-Sakon S, Semba M, Asuka T, Nakano H, Kamada Y, Miyoshi E, Chan FKM. Mucosal Immunol 15 84-95 (2022)
  36. Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death. Steain M, Baker MODG, Pham CLL, Shanmugam N, Gambin Y, Sierecki E, McSharry BP, Avdic S, Slobedman B, Sunde M, Abendroth A. PLoS Pathog 16 e1008473 (2020)
  37. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Samson AL, Fitzgibbon C, Patel KM, Hildebrand JM, Whitehead LW, Rimes JS, Jacobsen AV, Horne CR, Gavin XJ, Young SN, Rogers KL, Hawkins ED, Murphy JM. Cell Death Differ (2021)
  38. Amyloid-like RIP1/RIP3 RHIM Fragments' Characterization and Application as a Drug Depot. Ismail M, Kanapathipillai M. Molecules 28 1480 (2023)
  39. Cell-free synthesis of amyloid fibrils with infectious properties and amenable to sub-milligram magic-angle spinning NMR analysis. Lends A, Daskalov A, Maleckis A, Delamare A, Berbon M, Grélard A, Morvan E, Shenoy J, Dutour A, Tolchard J, Noubhani A, Giraud MF, Sanchez C, Habenstein B, Guichard G, Compain G, Jaudzems K, Saupe SJ, Loquet A. Commun Biol 5 1202 (2022)
  40. Changes of Necroptosis in Irbesartan Medicated Cardioprotection in Diabetic Rats. Xu Q, Tan X, Xian W, Geng J, Li H, Tang B, Zhang H, Wang H, Gao Q, Kang P. Diabetes Metab Syndr Obes 14 3851-3863 (2021)
  41. Comparative analysis of 13C chemical shifts of β-sheet amyloid proteins and outer membrane proteins. Somberg NH, Gelenter MD, Hong M. J Biomol NMR 75 151-166 (2021)
  42. Conformational heterogeneity coupled with β-fibril formation of a scaffold protein involved in chronic mental illnesses. Cukkemane A, Becker N, Zielinski M, Frieg B, Lakomek NA, Heise H, Schröder GF, Willbold D, Weiergräber OH. Transl Psychiatry 11 639 (2021)
  43. Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A. Göbl C, Morris VK, van Dam L, Visscher M, Polderman PE, Hartlmüller C, de Ruiter H, Hora M, Liesinger L, Birner-Gruenberger R, Vos HR, Reif B, Madl T, Dansen TB. Redox Biol 28 101316 (2020)
  44. Determinants for Antitumor and Protumor Effects of Programmed Cell Death. Workenhe ST, Inkol JM, Westerveld MJ, Verburg SG, Worfolk SM, Walsh SR, Kallio KLF. Cancer Immunol Res 12 7-16 (2024)
  45. Dynamics of necroptosis in kidney ischemia-reperfusion injury. Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Front Immunol 14 1251452 (2023)
  46. Ecdysone signaling mediates the trade-off between immunity and reproduction via suppression of amyloids in the mosquito Aedes aegypti. Wang M, Wang Y, Chang M, Wang X, Shi Z, Raikhel AS, Zou Z. PLoS Pathog 18 e1010837 (2022)
  47. Electrochemotherapy Causes Caspase-Independent Necrotic-Like Death in Pancreatic Cancer Cells. Fernandes P, O'Donovan TR, McKenna SL, Forde PF. Cancers (Basel) 11 (2019)
  48. Fibril structures of TFG protein mutants validate the identification of TFG as a disease-related amyloid protein by the IMPAcT method. Rosenberg GM, Abskharon R, Boyer DR, Ge P, Sawaya MR, Eisenberg DS. PNAS Nexus 2 pgad402 (2023)
  49. From PERK to RIPK1: Design, synthesis and evaluation of novel potent and selective necroptosis inhibitors. Scarpellini C, Valembois S, Goossens K, Vadi M, Lanthier C, Klejborowska G, Van Der Veken P, De Winter H, Bertrand MJM, Augustyns K. Front Chem 11 1160164 (2023)
  50. Generation of transgenic mice expressing a FRET biosensor, SMART, that responds to necroptosis. Murai S, Takakura K, Sumiyama K, Moriwaki K, Terai K, Komazawa-Sakon S, Seki T, Yamaguchi Y, Mikami T, Araki K, Ohmuraya M, Matsuda M, Nakano H. Commun Biol 5 1331 (2022)
  51. Global publication trends and research trends of necroptosis application in tumor: A bibliometric analysis. Wu YY, Li CC, Lin X, Xu F, Shan SK, Guo B, Li FX, Zheng MH, Xu QS, Lei LM, Duan JY, Tang KX, Cao YC, Yuan LQ. Front Pharmacol 14 1112484 (2023)
  52. Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the Caspase-8 activation platform. Matveeva A, Fichtner M, McAllister K, McCann C, Sturrock M, Longley DB, Prehn JHM. PLoS Comput. Biol. 15 e1007374 (2019)
  53. Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Meng Y, Horne CR, Samson AL, Dagley LF, Young SN, Sandow JJ, Czabotar PE, Murphy JM. Cell Death Dis 13 565 (2022)
  54. Identification of a necroptosis-related prognostic gene signature associated with tumor immune microenvironment in cervical carcinoma and experimental verification. Sun K, Huang C, Li JZ, Luo ZX. World J Surg Oncol 20 342 (2022)
  55. LncRNA HABON promoted liver cancer cells survival under hypoxia by inhibiting mPTP opening. Wo L, Zhang X, Ma C, Zhou C, Li J, Hu Z, Gong X, Zhan M, He M, Zhao Q. Cell Death Discov 8 171 (2022)
  56. MLKL deficiency alleviates neuroinflammation and motor deficits in the α-synuclein transgenic mouse model of Parkinson's disease. Geng L, Gao W, Saiyin H, Li Y, Zeng Y, Zhang Z, Li X, Liu Z, Gao Q, An P, Jiang N, Yu X, Chen X, Li S, Chen L, Lu B, Li A, Chen G, Shen Y, Zhang H, Tian M, Zhang Z, Li J. Mol Neurodegener 18 94 (2023)
  57. Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers. Louros N, Ramakers M, Michiels E, Konstantoulea K, Morelli C, Garcia T, Moonen N, D'Haeyer S, Goossens V, Thal DR, Audenaert D, Rousseau F, Schymkowitz J. Nat Commun 13 1351 (2022)
  58. Micellar TIA1 with folded RNA binding domains as a model for reversible stress granule formation. Fritzsching KJ, Yang Y, Pogue EM, Rayman JB, Kandel ER, McDermott AE. Proc Natl Acad Sci U S A 117 31832-31837 (2020)
  59. Micro-electron diffraction structure of the aggregation-driving N terminus of Drosophila neuronal protein Orb2A reveals amyloid-like β-sheets. Bowler JT, Sawaya MR, Boyer DR, Cascio D, Bali M, Eisenberg DS. J Biol Chem 298 102396 (2022)
  60. Mimicry by a viral RHIM. Mompeán M, Bozkurt G, Wu H. EMBO Rep 20 (2019)
  61. Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death. Chen X, Zhu R, Zhong J, Ying Y, Wang W, Cao Y, Cai H, Li X, Shuai J, Han J. Nat Cell Biol 24 471-482 (2022)
  62. NMR characterization of an assembling RHIM (RIP homotypic interaction motif) amyloid reveals a cryptic region for self-recognition. Pham CLL, Titaux-Delgado GA, Varghese NR, Polonio P, Wilde KL, Sunde M, Mompeán M. J Biol Chem 299 104568 (2023)
  63. Newly Identified Function of Caspase-6 in ZBP1-mediated Innate Immune Responses, NLRP3 Inflammasome Activation, PANoptosis, and Host Defense. Zheng M, Kanneganti TD. J Cell Immunol 2 341-347 (2020)
  64. Pannexin-1 limits the production of proinflammatory cytokines during necroptosis. Douanne T, André-Grégoire G, Trillet K, Thys A, Papin A, Feyeux M, Hulin P, Chiron D, Gavard J, Bidère N. EMBO Rep. 20 e47840 (2019)
  65. Partial Prion Cross-Seeding between Fungal and Mammalian Amyloid Signaling Motifs. Bardin T, Daskalov A, Barrouilhet S, Granger-Farbos A, Salin B, Blancard C, Kauffmann B, Saupe SJ, Coustou V. mBio 12 (2021)
  66. Phosphorylation-dependent pseudokinase domain dimerization drives full-length MLKL oligomerization. Meng Y, Garnish SE, Davies KA, Black KA, Leis AP, Horne CR, Hildebrand JM, Hoblos H, Fitzgibbon C, Young SN, Dite T, Dagley LF, Venkat A, Kannan N, Koide A, Koide S, Glukhova A, Czabotar PE, Murphy JM. Nat Commun 14 6804 (2023)
  67. Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation. Horváth D, Dürvanger Z, K Menyhárd D, Sulyok-Eiler M, Bencs F, Gyulai G, Horváth P, Taricska N, Perczel A. Nat Commun 14 4621 (2023)
  68. Repurposing of Ibrutinib and Quizartinib as potent inhibitors of necroptosis. Huang F, Liang J, Lin Y, Chen Y, Hu F, Feng J, Zeng Q, Han Z, Lin Q, Li Y, Li J, Wu L, Li L. Commun Biol 6 972 (2023)
  69. Structural polymorphism of the low-complexity C-terminal domain of TDP-43 amyloid aggregates revealed by solid-state NMR. Shenoy J, Lends A, Berbon M, Bilal M, El Mammeri N, Bertoni M, Saad A, Morvan E, Grélard A, Lecomte S, Theillet FX, Buell AK, Kauffmann B, Habenstein B, Loquet A. Front Mol Biosci 10 1148302 (2023)
  70. TAT-RHIM: a more complex issue than expected. Kolbrink B, Riebeling T, Teiwes NK, Steinem C, Kalbacher H, Kunzendorf U, Krautwald S. Biochem J 479 259-272 (2022)
  71. TRAF6 regulates the abundance of RIPK1 and inhibits the RIPK1/RIPK3/MLKL necroptosis signaling pathway and affects the progression of colorectal cancer. Lin P, Lin C, He R, Chen H, Teng Z, Yao H, Liu S, Hoffman RM, Ye J, Zhu G. Cell Death Dis 14 6 (2023)
  72. The role of RHIM in necroptosis. Riebeling T, Kunzendorf U, Krautwald S. Biochem Soc Trans 50 1197-1205 (2022)
  73. TmDOTP: An NMR-based thermometer for magic angle spinning NMR experiments. Zhang D, Itin B, McDermott AE. J Magn Reson 308 106574 (2019)
  74. USP22 controls necroptosis by regulating receptor-interacting protein kinase 3 ubiquitination. Roedig J, Kowald L, Juretschke T, Karlowitz R, Ahangarian Abhari B, Roedig H, Fulda S, Beli P, van Wijk SJ. EMBO Rep 22 e50163 (2021)