5v37 Citations

Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation.

Abstract

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.

Reviews - 5v37 mentioned but not cited (1)

  1. Lysine methyltransferase inhibitors: where we are now. Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. RSC Chem Biol 3 359-406 (2022)

Articles - 5v37 mentioned but not cited (2)

  1. Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation. Thomenius MJ, Totman J, Harvey D, Mitchell LH, Riera TV, Cosmopoulos K, Grassian AR, Klaus C, Foley M, Admirand EA, Jahic H, Majer C, Wigle T, Jacques SL, Gureasko J, Brach D, Lingaraj T, West K, Smith S, Rioux N, Waters NJ, Tang C, Raimondi A, Munchhof M, Mills JE, Ribich S, Porter Scott M, Kuntz KW, Janzen WP, Moyer M, Smith JJ, Chesworth R, Copeland RA, Boriack-Sjodin PA. PLoS One 13 e0197372 (2018)
  2. Discovery of Isoxazole Amides as Potent and Selective SMYD3 Inhibitors. Su DS, Qu J, Schulz M, Blackledge CW, Yu H, Zeng J, Burgess J, Reif A, Stern M, Nagarajan R, Pappalardi MB, Wong K, Graves AP, Bonnette W, Wang L, Elkins P, Knapp-Reed B, Carson JD, McHugh C, Mohammad H, Kruger R, Luengo J, Heerding DA, Creasy CL. ACS Med Chem Lett 11 133-140 (2020)


Reviews citing this publication (11)

  1. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Nat Rev Drug Discov 20 265-286 (2021)
  2. SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Bottino C, Peserico A, Simone C, Caretti G. Cancers (Basel) 12 E142 (2020)
  3. Histone methyltransferase SMYD2: ubiquitous regulator of disease. Yi X, Jiang XJ, Fang ZM. Clin Epigenetics 11 112 (2019)
  4. Discovering and validating cancer genetic dependencies: approaches and pitfalls. Lin A, Sheltzer JM. Nat Rev Genet 21 671-682 (2020)
  5. Epigenetic therapy of Prader-Willi syndrome. Kim Y, Wang SE, Jiang YH. Transl Res 208 105-118 (2019)
  6. Methyltransferase Inhibitors: Competing with, or Exploiting the Bound Cofactor. Ferreira de Freitas R, Ivanochko D, Schapira M. Molecules 24 E4492 (2019)
  7. Targeting protein methylation: from chemical tools to precision medicines. Dilworth D, Barsyte-Lovejoy D. Cell Mol Life Sci 76 2967-2985 (2019)
  8. Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. Yang L, Jin M, Jeong KW. Biology (Basel) 10 581 (2021)
  9. Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Sanese P, Fasano C, Simone C. Cancers (Basel) 13 4427 (2021)
  10. Novel insights into SMYD2 and SMYD3 inhibitors: from potential anti-tumoural therapy to a variety of new applications. Rubio-Tomás T. Mol Biol Rep 48 7499-7508 (2021)
  11. Mechanistic and functional extrapolation of SET and MYND domain-containing protein 2 to pancreatic cancer. Alshammari E, Zhang YX, Yang Z. World J Gastroenterol 28 3753-3766 (2022)

Articles citing this publication (13)

  1. Amplification of SMYD3 promotes tumorigenicity and intrahepatic metastasis of hepatocellular carcinoma via upregulation of CDK2 and MMP2. Wang Y, Xie BH, Lin WH, Huang YH, Ni JY, Hu J, Cui W, Zhou J, Shen L, Xu LF, Lian F, Li HP. Oncogene 38 4948-4961 (2019)
  2. Discovery of Irreversible Inhibitors Targeting Histone Methyltransferase, SMYD3. Huang C, Liew SS, Lin GR, Poulsen A, Ang MJY, Chia BCS, Chew SY, Kwek ZP, Wee JLK, Ong EH, Retna P, Baburajendran N, Li R, Yu W, Koh-Stenta X, Ngo A, Manesh S, Fulwood J, Ke Z, Chung HH, Sepramaniam S, Chew XH, Dinie N, Lee MA, Chew YS, Low CB, Pendharkar V, Manoharan V, Vuddagiri S, Sangthongpitag K, Joy J, Matter A, Hill J, Keller TH, Foo K. ACS Med Chem Lett 10 978-984 (2019)
  3. Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. Sanese P, Fasano C, Buscemi G, Bottino C, Corbetta S, Fabini E, Silvestri V, Valentini V, Disciglio V, Forte G, Lepore Signorile M, De Marco K, Bertora S, Grossi V, Guven U, Porta N, Di Maio V, Manoni E, Giannelli G, Bartolini M, Del Rio A, Caretti G, Ottini L, Simone C. iScience 23 101604 (2020)
  4. SMYD2 targets RIPK1 and restricts TNF-induced apoptosis and necroptosis to support colon tumor growth. Yu YQ, Thonn V, Patankar JV, Thoma OM, Waldner M, Zielinska M, Bao LL, Gonzalez-Acera M, Wallmüller S, Engel FB, Stürzl M, Neurath MF, Liebing E, Becker C. Cell Death Dis 13 52 (2022)
  5. A CRISPR Competition Assay to Identify Cancer Genetic Dependencies. Girish V, Sheltzer JM. Bio Protoc 10 e3682 (2020)
  6. Discovery of an Allosteric Ligand Binding Site in SMYD3 Lysine Methyltransferase. Talibov VO, Fabini E, FitzGerald EA, Tedesco D, Cederfeldt D, Talu MJ, Rachman MM, Mihalic F, Manoni E, Naldi M, Sanese P, Forte G, Lepore Signorile M, Barril X, Simone C, Bartolini M, Dobritzsch D, Del Rio A, Danielson UH. Chembiochem 22 1597-1608 (2021)
  7. SMYD2 facilitates cancer cell malignancy and xenograft tumor development through ERBB2-mediated FUT4 expression in colon cancer. Lai Y, Yang Y. Mol Cell Biochem 477 2149-2159 (2022)
  8. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. Hay J, Gilroy K, Huser C, Kilbey A, Mcdonald A, MacCallum A, Holroyd A, Cameron E, Neil JC. J Cell Biochem 120 18332-18345 (2019)
  9. Identifying novel SMYD3 interactors on the trail of cancer hallmarks. Fasano C, Lepore Signorile M, De Marco K, Forte G, Sanese P, Grossi V, Simone C. Comput Struct Biotechnol J 20 1860-1875 (2022)
  10. Targeting Smyd3 by next-generation antisense oligonucleotides suppresses liver tumor growth. Kontaki H, Koukaki M, Vasilarou M, Giakountis A, Deligianni E, Luo X, Kim Y, Talianidis I. iScience 24 102473 (2021)
  11. Characterizing the Role of SMYD2 in Mammalian Embryogenesis-Future Directions. Jarrell DK, Hassell KN, Crans DC, Lanning S, Brown MA. Vet Sci 7 E63 (2020)
  12. Smyd2 conformational changes in response to p53 binding: role of the C-terminal domain. Chandramouli B, Melino G, Chillemi G. Mol Oncol 13 1450-1461 (2019)
  13. SMYD2 aggravates gastrointestinal stromal tumor via upregulation of EZH2 and downregulation of TET1. Ji Y, Xu X, Long C, Wang J, Ding L, Zheng Z, Wu H, Yang L, Tao L, Gao F. Cell Death Discov 8 274 (2022)