5lnp Citations

Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled.

Mol Cell 64 92-104 (2016)
Related entries: 5suy, 5suz

Cited: 85 times
EuropePMC logo PMID: 27692984

Abstract

Extracellular signals are often transduced by dynamic signaling complexes ("signalosomes") assembled by oligomerizing hub proteins following their recruitment to signal-activated transmembrane receptors. A paradigm is the Wnt signalosome, which is assembled by Dishevelled via reversible head-to-tail polymerization by its DIX domain. Its activity causes stabilization of β-catenin, a Wnt effector with pivotal roles in animal development and cancer. How Wnt triggers signalosome assembly is unknown. Here, we use structural analysis, as well as biophysical and cell-based assays, to show that the DEP domain of Dishevelled undergoes a conformational switch, from monomeric to swapped dimer, to trigger DIX-dependent polymerization and signaling to β-catenin. This occurs in two steps: binding of monomeric DEP to Frizzled followed by DEP domain swapping triggered by its high local concentration upon Wnt-induced recruitment into clathrin-coated pits. DEP domain swapping confers directional bias on signaling, and the dimerization provides cross-linking between Dishevelled polymers, illustrating a key principle underlying signalosome formation.

Reviews - 5lnp mentioned but not cited (1)

  1. Wnt signaling in triple-negative breast cancer. Pohl SG, Brook N, Agostino M, Arfuso F, Kumar AP, Dharmarajan A. Oncogenesis 6 e310 (2017)


Reviews citing this publication (29)

  1. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Nusse R, Clevers H. Cell 169 985-999 (2017)
  2. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Schaefer KN, Peifer M. Dev Cell 48 429-444 (2019)
  3. Protein phase separation and its role in tumorigenesis. Jiang S, Fagman JB, Chen C, Alberti S, Liu B. Elife 9 e60264 (2020)
  4. WNT Signaling in Cardiac and Vascular Disease. Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. Pharmacol. Rev. 70 68-141 (2018)
  5. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Aging Cell 19 e13101 (2020)
  6. Dishevelled: A masterful conductor of complex Wnt signals. Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Cell. Signal. 47 52-64 (2018)
  7. Wnt signalling: conquering complexity. Wiese KE, Nusse R, van Amerongen R. Development 145 (2018)
  8. Targeting the Wnt Pathway in Cancer: A Review of Novel Therapeutics. Tabatabai R, Linhares Y, Bolos D, Mita M, Mita A. Target Oncol 12 623-641 (2017)
  9. Mechanisms of intercellular Wnt transport. Routledge D, Scholpp S. Development 146 (2019)
  10. LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Ren Q, Chen J, Liu Y. Front Cell Dev Biol 9 670960 (2021)
  11. Assembly and architecture of the Wnt/β-catenin signalosome at the membrane. DeBruine ZJ, Xu HE, Melcher K. Br. J. Pharmacol. 174 4564-4574 (2017)
  12. From instruction to output: Wnt/PCP signaling in development and cancer. Humphries AC, Mlodzik M. Curr. Opin. Cell Biol. 51 110-116 (2018)
  13. The function of endocytosis in Wnt signaling. Brunt L, Scholpp S. Cell. Mol. Life Sci. 75 785-795 (2018)
  14. Liquid-liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Zhang JZ, Mehta S, Zhang J. Trends Pharmacol Sci 42 845-856 (2021)
  15. Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Colozza G, Koo BK. Dev Growth Differ 63 199-218 (2021)
  16. Emerging role of contact-mediated cell communication in tissue development and diseases. Mattes B, Scholpp S. Histochem. Cell Biol. 150 431-442 (2018)
  17. Fission Yeast Rho1p-GEFs: From Polarity and Cell Wall Synthesis to Genome Stability. García P, Celador R, Pérez-Parrilla J, Sánchez Y. Int J Mol Sci 23 13888 (2022)
  18. LRPs in WNT Signalling. Davidson G. Handb Exp Pharmacol 269 45-73 (2021)
  19. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Mehta S, Hingole S, Chaudhary V. Front Cell Dev Biol 9 714746 (2021)
  20. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Signal Transduct Target Ther 7 3 (2022)
  21. Decoding Dishevelled-Mediated Wnt Signaling in Vertebrate Early Development. Shi DL. Front Cell Dev Biol 8 588370 (2020)
  22. GPCRs that Rhoar the Guanine nucleotide exchange factors. Omble A, Kulkarni K. Small GTPases 13 84-99 (2022)
  23. Non-canonical non-genomic morphogen signaling in anucleate platelets: a critical determinant of prothrombotic function in circulation. Kulkarni PP, Ekhlak M, Dash D. Cell Commun Signal 22 13 (2024)
  24. Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Yokoyama N, Nakayama H, Iwabuchi K. Cells 12 322 (2023)
  25. Protein Phase Separation: New Insights into Carcinogenesis. Luo Y, Xiang S, Feng J. Cancers (Basel) 14 5971 (2022)
  26. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Front Cell Dev Biol 9 631623 (2021)
  27. The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Ponomarev LC, Ksiazkiewicz J, Staring MW, Luttun A, Zwijsen A. Int J Mol Sci 22 6364 (2021)
  28. The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome. Zhang L, Adu IK, Zhang H, Wang J. Int Urol Nephrol (2023)
  29. The roles of KLHL family members in human cancers. Ye G, Wang J, Yang W, Li J, Ye M, Jin X. Am J Cancer Res 12 5105-5139 (2022)

Articles citing this publication (55)

  1. Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. Gammons MV, Rutherford TJ, Steinhart Z, Angers S, Bienz M. J. Cell. Sci. 129 3892-3902 (2016)
  2. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Nile AH, Mukund S, Stanger K, Wang W, Hannoush RN. Proc. Natl. Acad. Sci. U.S.A. 114 4147-4152 (2017)
  3. Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization. DeBruine ZJ, Ke J, Harikumar KG, Gu X, Borowsky P, Williams BO, Xu W, Miller LJ, Xu HE, Melcher K. Genes Dev. 31 916-926 (2017)
  4. A molecular mechanism for Wnt ligand-specific signaling. Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru AC, Koehler M, Gut P, Alsteens D, Stainier DYR, Stainier DYR, Garcia-Pino A, Vanhollebeke B. Science 361 (2018)
  5. The N-Terminal Part of the Dishevelled DEP Domain Is Required for Wnt/β-Catenin Signaling in Mammalian Cells. Paclíková P, Bernatík O, Radaszkiewicz TW, Bryja V. Mol. Cell. Biol. 37 (2017)
  6. Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ, Shi DL. J. Biol. Chem. 292 5898-5908 (2017)
  7. Limited dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction. Kan W, Enos MD, Korkmazhan E, Muennich S, Chen DH, Gammons MV, Vasishtha M, Bienz M, Dunn AR, Skiniotis G, Weis WI. Elife 9 (2020)
  8. A direct heterotypic interaction between the DIX domains of Dishevelled and Axin mediates signaling to β-catenin. Yamanishi K, Fiedler M, Terawaki SI, Higuchi Y, Bienz M, Shibata N. Sci Signal 12 (2019)
  9. Residue 6.43 defines receptor function in class F GPCRs. Turku A, Schihada H, Kozielewicz P, Bowin CF, Schulte G. Nat Commun 12 3919 (2021)
  10. Wnt proteins synergize to activate β-catenin signaling. Alok A, Lei Z, Jagannathan NS, Kaur S, Harmston N, Rozen SG, Tucker-Kellogg L, Virshup DM. J. Cell. Sci. 130 1532-1544 (2017)
  11. DIX Domain Polymerization Drives Assembly of Plant Cell Polarity Complexes. van Dop M, Fiedler M, Mutte S, de Keijzer J, Olijslager L, Albrecht C, Liao CY, Janson ME, Bienz M, Weijers D. Cell 180 427-439.e12 (2020)
  12. Substrate clustering potently regulates the activity of WW-HECT domain-containing ubiquitin ligases. Mund T, Pelham HR. J. Biol. Chem. 293 5200-5209 (2018)
  13. Biophysical and functional characterization of Norrin signaling through Frizzled4. Bang I, Kim HR, Beaven AH, Kim J, Ko SB, Lee GR, Kan W, Lee H, Im W, Seok C, Chung KY, Choi HJ. Proc. Natl. Acad. Sci. U.S.A. 115 8787-8792 (2018)
  14. Dishevelled enables casein kinase 1-mediated phosphorylation of Frizzled 6 required for cell membrane localization. Strakova K, Kowalski-Jahn M, Gybel T, Valnohova J, Dhople VM, Harnos J, Bernatik O, Ganji RS, Zdrahal Z, Mulder J, Lindskog C, Bryja V, Schulte G. J. Biol. Chem. 293 18477-18493 (2018)
  15. Regulation of Dishevelled DEP domain swapping by conserved phosphorylation sites. Beitia GJ, Rutherford TJ, Freund SMV, Pelham HR, Bienz M, Gammons MV. Proc Natl Acad Sci U S A 118 e2103258118 (2021)
  16. Regulation of Transmembrane Signaling by Phase Separation. Case LB, Ditlev JA, Rosen MK. Annu Rev Biophys 48 465-494 (2019)
  17. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, Burg JS, Aduri NG, Kossiakoff AA, Gati C, Garcia KC. Elife 9 (2020)
  18. Verification of EZH2 as a druggable target in metastatic uveal melanoma. Jin B, Zhang P, Zou H, Ye H, Wang Y, Zhang J, Yang H, Pan J. Mol Cancer 19 52 (2020)
  19. Comparative membrane lipidomics of hepatocellular carcinoma cells reveals diacylglycerol and ceramide as key regulators of Wnt/β-catenin signaling and tumor growth. Azbazdar Y, Demirci Y, Heger G, Ipekgil D, Karabicici M, Ozhan G. Mol Oncol 17 2314-2336 (2023)
  20. Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Gao XK, Rao XS, Cong XX, Sheng ZK, Sun YT, Xu SB, Wang JF, Liang YH, Lu LR, Ouyang H, Ge H, Guo JS, Wu HJ, Sun QM, Wu HB, Bao Z, Zheng LL, Zhou YT. Cell Discov 8 60 (2022)
  21. Protein phase separation in plant membrane biology: more than just a compartmentalization strategy. Dragwidge JM, Van Damme D. Plant Cell 35 3162-3172 (2023)
  22. RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Johansson J, Naszai M, Hodder MC, Pickering KA, Miller BW, Ridgway RA, Yu Y, Peschard P, Brachmann S, Campbell AD, Cordero JB, Sansom OJ. Cell Stem Cell 24 592-607.e7 (2019)
  23. Synbindin deficiency inhibits colon carcinogenesis by attenuating Wnt cascade and balancing gut microbiome. Ai L, Ren Y, Li Y, Chen H, Qian Y, Lu S, Xu A, Ren L, Zhao S, Chen Z, Chen YX, Xu J, Fang JY. Int J Cancer 145 206-220 (2019)
  24. TMEM59 potentiates Wnt signaling by promoting signalosome formation. Gerlach JP, Jordens I, Tauriello DVF, van 't Land-Kuper I, Bugter JM, Noordstra I, van der Kooij J, Low TY, Pimentel-Muiños FX, Xanthakis D, Fenderico N, Rabouille C, Heck AJR, Egan DA, Maurice MM. Proc. Natl. Acad. Sci. U.S.A. 115 E3996-E4005 (2018)
  25. mTORC1 signaling suppresses Wnt/β-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Zeng H, Lu B, Zamponi R, Yang Z, Wetzel K, Loureiro J, Mohammadi S, Beibel M, Bergling S, Reece-Hoyes J, Russ C, Roma G, Tchorz JS, Capodieci P, Cong F. Proc. Natl. Acad. Sci. U.S.A. 115 E10362-E10369 (2018)
  26. CDK1-mediated BCL9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling. Chen J, Rajasekaran M, Xia H, Kong SN, Deivasigamani A, Sekar K, Gao H, Swa HL, Gunaratne J, Ooi LL, Xie T, Hong W, Hui KM. EMBO J. 37 (2018)
  27. Can We Pharmacologically Target Dishevelled: The Key Signal Transducer in the Wnt Pathways? Micka M, Bryja V. Handb Exp Pharmacol 269 117-135 (2021)
  28. DIX domain containing 1 (DIXDC1) modulates VEGFR2 level in vasculatures to regulate embryonic and postnatal retina angiogenesis. Kim Y, Kim DY, Zhang H, Bae CR, Seong D, Kim Y, Song J, Kim YM, Kwon YG. BMC Biol 20 41 (2022)
  29. Daam2 couples translocation and clustering of Wnt receptor signalosomes through Rac1. Cristobal CD, Ye Q, Jo J, Ding X, Wang CY, Cortes D, Chen Z, Lee HK. J Cell Sci 134 (2021)
  30. Disheveled-1 Interacts with Claudin-5 and Contributes to Norrin-Induced Endothelial Barrier Restoration. Díaz-Coránguez M, González-González L, Wang A, Liu X, Antonetti DA. Cells 12 2402 (2023)
  31. Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Harnoš J, Cañizal MCA, Jurásek M, Kumar J, Holler C, Schambony A, Hanáková K, Bernatík O, Zdráhal Z, Gömöryová K, Gybeľ T, Radaszkiewicz TW, Kravec M, Trantírek L, Ryneš J, Dave Z, Fernández-Llamazares AI, Vácha R, Tripsianes K, Hoffmann C, Bryja V. Nat Commun 10 1804 (2019)
  32. Disturbed flow increases endothelial inflammation and permeability via a Frizzled-4-β-catenin-dependent pathway. Rickman M, Ghim M, Pang K, von Huelsen Rocha AC, Drudi EM, Sureda-Vives M, Ayoub N, Tajadura-Ortega V, George SJ, Weinberg PD, Warboys CM. J Cell Sci 136 jcs260449 (2023)
  33. Employing Genetically Encoded, Biophysical Sensors to Understand WNT/Frizzled Interaction and Receptor Complex Activation. Kozielewicz P, Schihada H, Schulte G. Handb Exp Pharmacol 269 101-115 (2021)
  34. Feedback control of Wnt signaling based on ultrastable histidine cluster co-aggregation between Naked/NKD and Axin. Gammons MV, Renko M, Flack JE, Mieszczanek J, Bienz M. Elife 9 (2020)
  35. Functional dissection of the N-terminal extracellular domains of Frizzled 6 reveals their roles for receptor localization and Dishevelled recruitment. Valnohova J, Kowalski-Jahn M, Sunahara RK, Schulte G. J. Biol. Chem. 293 17875-17887 (2018)
  36. High-resolution structure of a Y27W mutant of the Dishevelled2 DIX domain. Yamanishi K, Sin Y, Terawaki SI, Higuchi Y, Shibata N. Acta Crystallogr F Struct Biol Commun 75 116-122 (2019)
  37. Inhibition of Dishevelled-2 suppresses the biological behavior of pancreatic cancer by downregulating Wnt/β-catenin signaling. Hu W, Li M, Wu J, Chen H, Zhao T, Zhang C, Wang Z. Oncol Lett 22 769 (2021)
  38. Membrane Targeting of Disheveled Can Bypass the Need for Arrow/LRP5. Kaur P, Lam VYM, Mannava AG, Suresh J, Jenny A, Tolwinski NS. Sci Rep 7 6934 (2017)
  39. Modulating PKCα Activity to Target Wnt/β-Catenin Signaling in Colon Cancer. Dupasquier S, Blache P, Picque Lasorsa L, Zhao H, Abraham JD, Haigh JJ, Ychou M, Prévostel C. Cancers (Basel) 11 (2019)
  40. PI(4,5)P2-stimulated positive feedback drives the recruitment of Dishevelled to Frizzled in Wnt-β-catenin signaling. Mahoney JP, Bruguera ES, Vasishtha M, Killingsworth LB, Kyaw S, Weis WI. Sci Signal 15 eabo2820 (2022)
  41. Pathway selectivity in Frizzleds is achieved by conserved micro-switches defining pathway-determining, active conformations. Grätz L, Kowalski-Jahn M, Scharf MM, Kozielewicz P, Jahn M, Bous J, Lambert NA, Gloriam DE, Schulte G. Nat Commun 14 4573 (2023)
  42. Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes. Swartz SZ, Tan TH, Perillo M, Fakhri N, Wessel GM, Wikramanayake AH, Cheeseman IM. Curr Biol 31 5633-5641.e4 (2021)
  43. Reciprocal action of Casein Kinase Iε on core planar polarity proteins regulates clustering and asymmetric localisation. Strutt H, Gamage J, Strutt D. Elife 8 (2019)
  44. Selective function of the PDZ domain of Dishevelled in noncanonical Wnt signalling. Mieszczanek J, Strutt H, Rutherford TJ, Strutt D, Bienz M, Gammons MV. J Cell Sci 135 jcs259547 (2022)
  45. Structural insight into small molecule action on Frizzleds. Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Cañizal MCA, Ono Y, Inoue A, Hoffmann C, Schulte G. Nat Commun 11 414 (2020)
  46. Superresolution microscopy localizes endogenous Dvl2 to Wnt signaling-responsive biomolecular condensates. Schubert A, Voloshanenko O, Ragaller F, Gmach P, Kranz D, Scheeder C, Miersch T, Schulz M, Trümper L, Binder C, Lampe M, Engel U, Boutros M. Proc Natl Acad Sci U S A 119 e2122476119 (2022)
  47. Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM, McKay DJ, Peifer M. PLoS Genet. 14 e1007339 (2018)
  48. Temporal changes in plasma membrane lipid content induce endocytosis to regulate developmental epithelial-to-mesenchymal transition. Piacentino ML, Hutchins EJ, Andrews CJ, Bronner ME. Proc Natl Acad Sci U S A 119 e2212879119 (2022)
  49. The Adenoviral E1B-55k Protein Present in HEK293 Cells Mediates Abnormal Accumulation of Key WNT Signaling Proteins in Large Cytoplasmic Aggregates. Olsen PA, Krauss S. Genes (Basel) 12 1920 (2021)
  50. The Flavonol Quercitrin Hinders GSK3 Activity and Potentiates the Wnt/β-Catenin Signaling Pathway. Predes D, Maia LA, Matias I, Araujo HPM, Soares C, Barros-Aragão FGQ, Oliveira LFS, Reis RR, Amado NG, Simas ABC, Mendes FA, Gomes FCA, Figueiredo CP, Abreu JG. Int J Mol Sci 23 12078 (2022)
  51. The first DEP domain of the RhoGEF P-Rex1 autoinhibits activity and contributes to membrane binding. Ravala SK, Hopkins JB, Plescia CB, Allgood SR, Kane MA, Cash JN, Stahelin RV, Tesmer JJG. J Biol Chem 295 12635-12647 (2020)
  52. The structural biology of canonical Wnt signalling. Agostino M, Pohl SÖ. Biochem Soc Trans 48 1765-1780 (2020)
  53. Volumetric Compression Induces Intracellular Crowding to Control Intestinal Organoid Growth via Wnt/β-Catenin Signaling. Li Y, Chen M, Hu J, Sheng R, Lin Q, He X, Guo M. Cell Stem Cell 28 63-78.e7 (2021)
  54. WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Agajanian MJ, Walker MP, Axtman AD, Ruela-de-Sousa RR, Serafin DS, Rabinowitz AD, Graham DM, Ryan MB, Tamir T, Nakamichi Y, Gammons MV, Bennett JM, Couñago RM, Drewry DH, Elkins JM, Gileadi C, Gileadi O, Godoi PH, Kapadia N, Müller S, Santiago AS, Sorrell FJ, Wells CI, Fedorov O, Willson TM, Zuercher WJ, Major MB. Cell Rep 26 79-93.e8 (2019)
  55. Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. de Man SMA, van Amerongen R. Handb Exp Pharmacol 269 137-173 (2021)