5jjs Citations

Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling.

Abstract

Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket"). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.

Reviews - 5jjs mentioned but not cited (1)

  1. Molecular Insights into the Flavivirus Replication Complex. van den Elsen K, Quek JP, Luo D. Viruses 13 956 (2021)

Articles - 5jjs mentioned but not cited (7)

  1. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. Lim SP, Noble CG, Seh CC, Soh TS, El Sahili A, Chan GK, Lescar J, Arora R, Benson T, Nilar S, Manjunatha U, Wan KF, Dong H, Xie X, Shi PY, Yokokawa F. PLoS Pathog 12 e1005737 (2016)
  2. Molden 2.0: quantum chemistry meets proteins. Schaftenaar G, Vlieg E, Vriend G. J Comput Aided Mol Des 31 789-800 (2017)
  3. Targeting SUMO Modification of the Non-Structural Protein 5 of Zika Virus as a Host-Targeting Antiviral Strategy. Zhu Z, Chu H, Wen L, Yuan S, Chik KK, Yuen TT, Yip CC, Wang D, Zhou J, Yin F, Jin DY, Kok KH, Yuen KY, Chan JF. Int J Mol Sci 20 E392 (2019)
  4. Structural Insights into the Binding Modes of Viral RNA-Dependent RNA Polymerases Using a Function-Site Interaction Fingerprint Method for RNA Virus Drug Discovery. Zhao Z, Bourne PE. J Proteome Res 19 4698-4705 (2020)
  5. Suppression of Zika Virus Infection in the Brain by the Antiretroviral Drug Rilpivirine. Sariyer IK, Gordon J, Burdo TH, Wollebo HS, Gianti E, Donadoni M, Bellizzi A, Cicalese S, Loomis R, Robinson JA, Carnevale V, Steiner J, Ozdener MH, Miller AD, Amini S, Klein ML, Khalili K. Mol Ther 27 2067-2079 (2019)
  6. Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins. Mottin M, Caesar LK, Brodsky D, Mesquita NCMR, de Oliveira KZ, Noske GD, Sousa BKP, Ramos PRPS, Jarmer H, Loh B, Zorn KM, Foil DH, Torres PM, Guido RVC, Oliva G, Scholle F, Ekins S, Cech NB, Andrade CH, Laster SM. Bioorg Chem 120 105649 (2022)
  7. Design, Synthesis, Evaluation and Molecular Dynamics Simulation of Dengue Virus NS5-RdRp Inhibitors. Zong K, Li W, Xu Y, Zhao X, Cao R, Yan H, Li X. Pharmaceuticals (Basel) 16 1625 (2023)


Reviews citing this publication (18)

  1. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Nat Rev Drug Discov 16 565-586 (2017)
  2. Structural Biology of the Zika Virus. Shi Y, Gao GF. Trends Biochem Sci 42 443-456 (2017)
  3. Dengue Virus Non-Structural Protein 5. El Sahili A, Lescar J. Viruses 9 E91 (2017)
  4. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge. Picarazzi F, Vicenti I, Saladini F, Zazzi M, Mori M. Molecules 25 E5695 (2020)
  5. Structure and function of Zika virus NS5 protein: perspectives for drug design. Wang B, Thurmond S, Hai R, Song J. Cell Mol Life Sci 75 1723-1736 (2018)
  6. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Selisko B, Papageorgiou N, Ferron F, Canard B. Viruses 10 E59 (2018)
  7. Inhibitors compounds of the flavivirus replication process. García LL, Padilla L, Castaño JC. Virol J 14 95 (2017)
  8. Current Trends and Limitations in Dengue Antiviral Research. Obi JO, Gutiérrez-Barbosa H, Chua JV, Deredge DJ. Trop Med Infect Dis 6 180 (2021)
  9. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? Valente AP, Moraes AH. J Venom Anim Toxins Incl Trop Dis 25 e20190013 (2019)
  10. Zika Virus Vaccines: Challenges and Perspectives. das Neves Almeida R, Racine T, Magalhães KG, Kobinger GP. Vaccines (Basel) 6 E62 (2018)
  11. Flavivirus: From Structure to Therapeutics Development. Zhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, Cao J. Life (Basel) 11 615 (2021)
  12. Flavivirus RNA-Dependent RNA Polymerase Interacts with Genome UTRs and Viral Proteins to Facilitate Flavivirus RNA Replication. Duan Y, Zeng M, Jiang B, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Viruses 11 E929 (2019)
  13. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Qian X, Qi Z. Viruses 14 1226 (2022)
  14. Flavivirus nonstructural proteins and replication complexes as antiviral drug targets. van den Elsen K, Chew BLA, Ho JS, Luo D. Curr Opin Virol 59 101305 (2023)
  15. Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery. Coggins SA, Mahboubi B, Schinazi RF, Kim B. J Biol Chem 295 13432-13443 (2020)
  16. Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Badolo A, Burt F, Daniel S, Fearns R, Gudo ES, Kielian M, Lescar J, Shi Y, von Brunn A, Weiss SR, Hilgenfeld R. Antiviral Res 162 142-150 (2019)
  17. Recent Advances in Antivirals for Japanese Encephalitis Virus. Zhu Y, Chen S, Lurong Q, Qi Z. Viruses 15 1033 (2023)
  18. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Microorganisms 11 2427 (2023)

Articles citing this publication (41)

  1. Structure and function of the Zika virus full-length NS5 protein. Zhao B, Yi G, Du F, Chuang YC, Vaughan RC, Sankaran B, Kao CC, Li P. Nat Commun 8 14762 (2017)
  2. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Yang S, Xu M, Lee EM, Gorshkov K, Shiryaev SA, He S, Sun W, Cheng YS, Hu X, Tharappel AM, Lu B, Pinto A, Farhy C, Huang CT, Zhang Z, Zhu W, Wu Y, Zhou Y, Song G, Zhu H, Shamim K, Martínez-Romero C, García-Sastre A, Preston RA, Jayaweera DT, Huang R, Huang W, Xia M, Simeonov A, Ming G, Qiu X, Terskikh AV, Tang H, Song H, Zheng W. Cell Discov 4 31 (2018)
  3. The crystal structure of Zika virus NS5 reveals conserved drug targets. Duan W, Song H, Wang H, Chai Y, Su C, Qi J, Shi Y, Gao GF. EMBO J 36 919-933 (2017)
  4. The structure of Zika virus NS5 reveals a conserved domain conformation. Wang B, Tan XF, Thurmond S, Zhang ZM, Lin A, Hai R, Song J. Nat Commun 8 14763 (2017)
  5. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase. Godoy AS, Lima GM, Oliveira KI, Torres NU, Maluf FV, Guido RV, Oliva G. Nat Commun 8 14764 (2017)
  6. Evaluation of Sofosbuvir (β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine) as an inhibitor of Dengue virus replication. Xu HT, Colby-Germinario SP, Hassounah SA, Fogarty C, Osman N, Palanisamy N, Han Y, Oliveira M, Quan Y, Wainberg MA. Sci Rep 7 6345 (2017)
  7. Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. Wang K, Zou C, Wang X, Huang C, Feng T, Pan W, Wu Q, Wang P, Dai J. PLoS Pathog 14 e1007287 (2018)
  8. Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase. Shimizu H, Saito A, Mikuni J, Nakayama EE, Koyama H, Honma T, Shirouzu M, Sekine SI, Shioda T. PLoS Negl Trop Dis 13 e0007894 (2019)
  9. Non-nucleoside Inhibitors of Zika Virus RNA-Dependent RNA Polymerase. Gharbi-Ayachi A, Santhanakrishnan S, Wong YH, Chan KWK, Tan ST, Bates RW, Vasudevan SG, El Sahili A, Lescar J. J Virol 94 e00794-20 (2020)
  10. In Vitro Antiviral Activity of α-Mangostin against Dengue Virus Serotype-2 (DENV-2). Panda K, Alagarasu K, Patil P, Agrawal M, More A, Kumar NV, Mainkar PS, Parashar D, Cherian S. Molecules 26 3016 (2021)
  11. NS5 from Dengue Virus Serotype 2 Can Adopt a Conformation Analogous to That of Its Zika Virus and Japanese Encephalitis Virus Homologues. El Sahili A, Soh TS, Schiltz J, Gharbi-Ayachi A, Seh CC, Shi PY, Lim SP, Lescar J. J Virol 94 e01294-19 (2019)
  12. Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells. Panya A, Songprakhon P, Panwong S, Jantakee K, Kaewkod T, Tragoolpua Y, Sawasdee N, Lee VS, Nimmanpipug P, Yenchitsomanus PT. Molecules 26 3118 (2021)
  13. New tools in nucleoside toolbox of tick-borne encephalitis virus reproduction inhibitors. Orlov AA, Drenichev MS, Oslovsky VE, Kurochkin NN, Solyev PN, Kozlovskaya LI, Palyulin VA, Karganova GG, Mikhailov SN, Osolodkin DI. Bioorg Med Chem Lett 27 1267-1273 (2017)
  14. Structural basis of flavonoids as dengue polymerase inhibitors: insights from QSAR and docking studies. Anusuya S, Gromiha MM. J Biomol Struct Dyn 37 104-115 (2019)
  15. Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Zacheo A, Hodek J, Witt D, Mangiatordi GF, Ong QK, Kocabiyik O, Depalo N, Fanizza E, Laquintana V, Denora N, Migoni D, Barski P, Stellacci F, Weber J, Krol S. Sci Rep 10 9052 (2020)
  16. Identification of a Broad-Spectrum Viral Inhibitor Targeting a Novel Allosteric Site in the RNA-Dependent RNA Polymerases of Dengue Virus and Norovirus. Yi D, Li Q, Pang L, Wang Y, Zhang Y, Duan Z, Liang C, Cen S. Front Microbiol 11 1440 (2020)
  17. Nucleoside Analogs with Selective Antiviral Activity against Dengue Fever and Japanese Encephalitis Viruses. Zandi K, Bassit L, Amblard F, Cox BD, Hassandarvish P, Moghaddam E, Yueh A, Libanio Rodrigues GO, Passos I, Costa VV, AbuBakar S, Zhou L, Kohler J, Teixeira MM, Schinazi RF. Antimicrob Agents Chemother 63 e00397-19 (2019)
  18. [1,2,4]Triazolo[1,5-a]pyrimidine derivative (Mol-5) is a new NS5-RdRp inhibitor of DENV2 proliferation and DENV2-induced inflammation. Wan YH, Wu WY, Guo SX, He SJ, Tang XD, Wu XY, Nandakumar KS, Zou M, Li L, Chen XG, Liu SW, Yao XG. Acta Pharmacol Sin 41 706-718 (2020)
  19. Flavivirus enzymes and their inhibitors. Knyazhanskaya E, Morais MC, Choi KH. Enzymes 49 265-303 (2021)
  20. Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies. Arora R, Liew CW, Soh TS, Otoo DA, Seh CC, Yue K, Nilar S, Wang G, Yokokawa F, Noble CG, Chen YL, Shi PY, Lescar J, Smith TM, Benson TE, Lim SP. J Virol 94 e01130-20 (2020)
  21. In Silico Exploration of Phytoconstituents From Phyllanthus emblica and Aegle marmelos as Potential Therapeutics Against SARS-CoV-2 RdRp. Pandey K, Lokhande KB, Swamy KV, Nagar S, Dake M. Bioinform Biol Insights 15 11779322211027403 (2021)
  22. Development and validation of RdRp Screen, a crystallization screen for viral RNA-dependent RNA polymerases. Riccio F, Talapatra SK, Oxenford S, Angell R, Mazzon M, Kozielski F. Biol Open 8 bio037663 (2019)
  23. Discovery of cyclohexadepsipeptides with anti-Zika virus activities and biosynthesis of the nonproteinogenic building block (3S)-methyl-l-proline. Yuan B, Wu Z, Ji W, Liu D, Guo X, Yang D, Fan A, Jia H, Ma M, Lin W. J Biol Chem 297 100822 (2021)
  24. Using bioinformatics tools for the discovery of Dengue RNA-dependent RNA polymerase inhibitors. Nncube NB, Ramharack P, Soliman MES. PeerJ 6 e5068 (2018)
  25. Discovery of New Zika Protease and Polymerase Inhibitors through the Open Science Collaboration Project OpenZika. Mottin M, de Paula Sousa BK, de Moraes Roso Mesquita NC, de Oliveira KIZ, Noske GD, Sartori GR, de Oliveira Albuquerque A, Urbina F, Puhl AC, Moreira-Filho JT, Souza GE, Guido RVC, Muratov E, Neves BJ, Martins da Silva JH, Clark AE, Siqueira-Neto JL, Perryman AL, Oliva G, Ekins S, Andrade CH. J Chem Inf Model 62 6825-6843 (2022)
  26. Natural Compounds as Non-Nucleoside Inhibitors of Zika Virus Polymerase through Integration of In Silico and In Vitro Approaches. Ramos PRPDS, Mottin M, Lima CS, Assis LR, de Oliveira KZ, Mesquita NCMR, Cassani NM, Santos IA, Borba JVVB, Fiaia Costa VA, Neves BJ, Guido RVC, Oliva G, Jardim ACG, Regasini LO, Andrade CH. Pharmaceuticals (Basel) 15 1493 (2022)
  27. Novel Nonnucleoside Inhibitors of Zika Virus Polymerase Identified through the Screening of an Open Library of Antikinetoplastid Compounds. Sáez-Álvarez Y, Jiménez de Oya N, Del Águila C, Saiz JC, Arias A, Agudo R, Martín-Acebes MA. Antimicrob Agents Chemother 65 e0089421 (2021)
  28. Analysis of worldwide sequence mutations in Zika virus proteins E, NS1, NS3 and NS5 from a structural point of view. Baez CF, Barel VA, de Souza AM, Rodrigues CR, Varella RB, Cirauqui N. Mol Biosyst 13 122-131 (2016)
  29. Antiviral effects of the fused tricyclic derivatives of indoline and imidazolidinone on ZIKV infection and RdRp activities of ZIKV and DENV. Zhou GF, Li F, Xue JX, Qian W, Gu XR, Zheng CB, Li C, Yang LM, Xiong SD, Zhou GC, Zheng YT. Virus Res 326 199062 (2023)
  30. Azelnidipine Exhibits In Vitro and In Vivo Antiviral Effects against Flavivirus Infections by Targeting the Viral RdRp. Wang Z, Yan Y, Dai Q, Xu Y, Yin J, Li W, Li Y, Yang X, Guo X, Liu M, Chen X, Cao R, Zhong W. Viruses 14 1228 (2022)
  31. Pharmacophore-Model-Based Drug Repurposing for the Identification of the Potential Inhibitors Targeting the Allosteric Site in Dengue Virus NS5 RNA-Dependent RNA Polymerase. Kumar S, Bajrai LH, Faizo AA, Khateb AM, Alkhaldy AA, Rana R, Azhar EI, Dwivedi VD. Viruses 14 1827 (2022)
  32. Structures of active Hantaan virus polymerase uncover the mechanisms of Hantaviridae genome replication. Durieux Trouilleton Q, Barata-García S, Arragain B, Reguera J, Malet H. Nat Commun 14 2954 (2023)
  33. Virtual Screening of Drug-Like Compounds as Potential Inhibitors of the Dengue Virus NS5 Protein. García-Ariza LL, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Front Chem 10 637266 (2022)
  34. Antiviral Activity of Flavonoids from Geopropolis of the Brazilian Jandaira Bee against Zika and Dengue Viruses. Silva PGD, Chaves EJF, Silva TMS, Rocha GB, Dantas WM, Oliveira RN, Pena LJ. Pharmaceutics 15 2494 (2023)
  35. Antiviral Activity of an Indole-Type Compound Derived from Natural Products, Identified by Virtual Screening by Interaction on Dengue Virus NS5 Protein. García-Ariza LL, González-Rivillas N, Díaz-Aguirre CJ, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Viruses 15 1563 (2023)
  36. Drugs to limit Zika virus infection and implication for maternal-fetal health. Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Front Virol 2 928599 (2022)
  37. Exploring the inhibitory potential of Nigella sativa against dengue virus NS2B/NS3 protease and NS5 polymerase using computational approaches. Mukhtar M, Khan HA, Zaidi NUSS. RSC Adv 13 18306-18322 (2023)
  38. Repurposing of approved antivirals against dengue virus serotypes: an in silico and in vitro mechanistic study. Rashmi SH, Disha KS, Sudheesh N, Karunakaran J, Joseph A, Jagadesh A, Mudgal PP. Mol Divers (2023)
  39. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. mBio 14 e0309722 (2023)
  40. Targeting Emerging RNA Viruses by Engineered Human Superantibody to Hepatitis C Virus RNA-Dependent RNA Polymerase. Glab-Ampai K, Kaewchim K, Thavorasak T, Saenlom T, Thepsawat W, Mahasongkram K, Thueng-In K, Sookrung N, Chaicumpa W, Chulanetra M. Front Microbiol 13 926929 (2022)
  41. Triphala in Traditional Ayurvedic Medicine Inhibits Dengue Virus Infection in Huh7 Hepatoma Cells. Panya A, Jantakee K, Punwong S, Thongyim S, Kaewkod T, Yenchitsomanus PT, Tragoolpua Y, Pandith H. Pharmaceuticals (Basel) 14 1236 (2021)