5jej Citations

Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins.

Proc Natl Acad Sci U S A 113 E3403-12 (2016)
Related entries: 5jek, 5jel, 5jem, 5jeo, 5jer

Cited: 82 times
EuropePMC logo PMID: 27302953

Abstract

Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.

Reviews - 5jej mentioned but not cited (2)

  1. STING modulators: Predictive significance in drug discovery. Cui X, Zhang R, Cen S, Zhou J. Eur J Med Chem 182 111591 (2019)
  2. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Signal Transduct Target Ther 7 394 (2022)

Articles - 5jej mentioned but not cited (4)

  1. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P. Proc Natl Acad Sci U S A 113 E3403-12 (2016)
  2. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. Heinz LX, Lee J, Kapoor U, Kartnig F, Sedlyarov V, Papakostas K, César-Razquin A, Essletzbichler P, Goldmann U, Stefanovic A, Bigenzahn JW, Scorzoni S, Pizzagalli MD, Bensimon A, Müller AC, King FJ, Li J, Girardi E, Mbow ML, Whitehurst CE, Rebsamen M, Superti-Furga G. Nature 581 316-322 (2020)
  3. Characterization of distinct molecular interactions responsible for IRF3 and IRF7 phosphorylation and subsequent dimerization. Dalskov L, Narita R, Andersen LL, Jensen N, Assil S, Kristensen KH, Mikkelsen JG, Fujita T, Mogensen TH, Paludan SR, Hartmann R. Nucleic Acids Res 48 11421-11433 (2020)
  4. The Structural Basis of IRF-3 Activation upon Phosphorylation. Jing T, Zhao B, Xu P, Gao X, Chi L, Han H, Sankaran B, Li P. J Immunol 205 1886-1896 (2020)


Reviews citing this publication (28)

  1. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. Tao J, Zhou X, Jiang Z. IUBMB Life 68 858-870 (2016)
  2. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Kato K, Omura H, Ishitani R, Nureki O. Annu. Rev. Biochem. 86 541-566 (2017)
  3. Molecular mechanisms and cellular functions of cGAS-STING signalling. Hopfner KP, Hornung V. Nat Rev Mol Cell Biol 21 501-521 (2020)
  4. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Kumar V. Front Immunol 11 624597 (2020)
  5. Fuzziness enables context dependence of protein interactions. Miskei M, Gregus A, Sharma R, Duro N, Zsolyomi F, Fuxreiter M. FEBS Lett. 591 2682-2695 (2017)
  6. When STING Meets Viruses: Sensing, Trafficking and Response. Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. Front Immunol 11 2064 (2020)
  7. Avian Pattern Recognition Receptor Sensing and Signaling. Neerukonda SN, Katneni U. Vet Sci 7 (2020)
  8. Conserved strategies for pathogen evasion of cGAS-STING immunity. Eaglesham JB, Kranzusch PJ. Curr Opin Immunol 66 27-34 (2020)
  9. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. Pu F, Chen F, Liu J, Zhang Z, Shao Z. Onco Targets Ther 14 1501-1516 (2021)
  10. Activation of STING Based on Its Structural Features. Hussain B, Xie Y, Jabeen U, Lu D, Yang B, Wu C, Shang G. Front Immunol 13 808607 (2022)
  11. Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Elkhaligy H, Balbin CA, Gonzalez JL, Liberatore T, Siltberg-Liberles J. Viruses 13 2369 (2021)
  12. ISG15: A link between innate immune signaling, DNA replication, and genome stability. Wardlaw CP, Petrini JHJ. Bioessays 45 e2300042 (2023)
  13. Link between sterile inflammation and cardiovascular diseases: Focus on cGAS-STING pathway in the pathogenesis and therapeutic prospect. Du Y, Zhang H, Nie X, Qi Y, Shi S, Han Y, Zhou W, He C, Wang L. Front Cardiovasc Med 9 965726 (2022)
  14. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Schwanke H, Stempel M, Brinkmann MM. Viruses 12 (2020)
  15. Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System. Antia A, Pinski AN, Ding S. mBio 13 e0130822 (2022)
  16. The Significance of Type-I Interferons in the Pathogenesis and Therapy of Human Immunodeficiency Virus 1 Infection. Wang B, Kang W, Zuo J, Kang W, Sun Y. Front Immunol 8 1431 (2017)
  17. Viral recognition and the antiviral interferon response. Dalskov L, Gad HH, Hartmann R. EMBO J 42 e112907 (2023)
  18. Dermatologic Manifestations of Noninflammasome-Mediated Autoinflammatory Diseases. Symmank D, Borst C, Drach M, Weninger W. JID Innov 3 100176 (2023)
  19. GAS-STING: a classical DNA recognition pathways to tumor therapy. Wang X, Lin M, Zhu L, Ye Z. Front Immunol 14 1200245 (2023)
  20. MicroRNAs in the Regulation of RIG-I-like Receptor Signaling Pathway: Possible Strategy for Viral Infection and Cancer. Chen D, Ji Q, Liu J, Cheng F, Zheng J, Ma Y, He Y, Zhang J, Song T. Biomolecules 13 1344 (2023)
  21. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Kim J, Kim HS, Chung JH. Exp Mol Med 55 510-519 (2023)
  22. Phase separation in cGAS-STING signaling. Li Q, Gao P. Front Med 17 855-866 (2023)
  23. Polyvalent design in the cGAS-STING pathway. Bennett ZT, Li S, Sumer BD, Gao J. Semin Immunol 56 101580 (2021)
  24. The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, Liu E, Gao X, Du M, Wang Q. Acta Pharm Sin B 12 50-75 (2022)
  25. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Duan T, Du Y, Xing C, Wang HY, Wang RF. Front Immunol 13 812774 (2022)
  26. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. Chen Y, Lin J, Zhao Y, Ma X, Yi H. J Zhejiang Univ Sci B 22 609-632 (2021)
  27. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Patel DJ, Yu Y, Xie W. Nat Struct Mol Biol 30 245-260 (2023)
  28. cGAS-STING pathway in ischemia-reperfusion injury: a potential target to improve transplantation outcomes. Chen Z, Liu Y, Lin Z, Huang W. Front Immunol 14 1231057 (2023)

Articles citing this publication (48)

  1. Entirely plasmid-based reverse genetics system for rotaviruses. Kanai Y, Komoto S, Kawagishi T, Nouda R, Nagasawa N, Onishi M, Matsuura Y, Taniguchi K, Kobayashi T. Proc. Natl. Acad. Sci. U.S.A. 114 2349-2354 (2017)
  2. A Highly Versatile Expression System for the Production of Multiply Phosphorylated Proteins. Zhu P, Gafken PR, Mehl RA, Cooley RB. ACS Chem Biol 14 1564-1572 (2019)
  3. Chicken DNA Sensing cGAS-STING Signal Pathway Mediates Broad Spectrum Antiviral Functions. Li S, Yang J, Zhu Y, Ji X, Wang K, Jiang S, Luo J, Wang H, Zheng W, Chen N, Ye J, Meurens F, Zhu J. Vaccines (Basel) 8 E369 (2020)
  4. The STING phase-separator suppresses innate immune signalling. Yu X, Zhang L, Shen J, Zhai Y, Jiang Q, Yi M, Deng X, Ruan Z, Fang R, Chen Z, Ning X, Jiang Z. Nat Cell Biol 23 330-340 (2021)
  5. The eukaryotic linear motif resource - 2018 update. Gouw M, Michael S, Sámano-Sánchez H, Kumar M, Zeke A, Lang B, Bely B, Chemes LB, Davey NE, Deng Z, Diella F, Gürth CM, Huber AK, Kleinsorg S, Schlegel LS, Palopoli N, Roey KV, Altenberg B, Reményi A, Dinkel H, Gibson TJ. Nucleic Acids Res. 46 D428-D434 (2018)
  6. Structural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function. Rengachari S, Groiss S, Devos JM, Caron E, Grandvaux N, Panne D. Proc. Natl. Acad. Sci. U.S.A. 115 E601-E609 (2018)
  7. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Wang Z, Ma Z, Castillo-González C, Sun D, Li Y, Yu B, Zhao B, Li P, Zhang X. Nature 557 516-521 (2018)
  8. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases. Davis KA, Morelli M, Patton JT. MBio 8 (2017)
  9. Structural basis of STING binding with and phosphorylation by TBK1. Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Nature 567 394-398 (2019)
  10. Structural Basis for Shelterin Bridge Assembly. Kim JK, Liu J, Hu X, Yu C, Roskamp K, Sankaran B, Huang L, Komives EA, Qiao F. Mol. Cell 68 698-714.e5 (2017)
  11. MiR-139 Induces an Interferon-β Response in Prostate Cancer Cells by Binding to RIG-1. Nam RK, Benatar T, Amemiya Y, Seth A. Cancer Genomics Proteomics 18 197-206 (2021)
  12. Rotavirus NSP1 Inhibits Type I and Type III Interferon Induction. Iaconis G, Jackson B, Childs K, Boyce M, Goodbourn S, Blake N, Iturriza-Gomara M, Seago J. Viruses 13 589 (2021)
  13. STING inhibitors target the cyclic dinucleotide binding pocket. Hong Z, Mei J, Li C, Bai G, Maimaiti M, Hu H, Yu W, Sun L, Zhang L, Cheng D, Liao Y, Li S, You Y, Sun H, Huang J, Liu X, Lieberman J, Wang C. Proc Natl Acad Sci U S A 118 e2105465118 (2021)
  14. Cellular nucleic acid-binding protein is essential for type I interferon-mediated immunity to RNA virus infection. Chen Y, Lei X, Jiang Z, Fitzgerald KA. Proc Natl Acad Sci U S A 118 e2100383118 (2021)
  15. Ellagic Acid Triggers the Necrosis of Differentiated Human Enterocytes Exposed to 3-Nitro-Tyrosine: An MS-Based Proteomic Study. Díaz-Velasco S, Delgado J, Peña FJ, Estévez M. Antioxidants (Basel) 11 2485 (2022)
  16. Recent progress on the activation of the cGAS-STING pathway and its regulation by biomolecular condensation. Yu X, Zhao Z, Jiang Z. J Mol Cell Biol 14 mjac042 (2022)
  17. Recognition of cyclic dinucleotides and folates by human SLC19A1. Zhang Q, Zhang X, Zhu Y, Sun P, Zhang L, Ma J, Zhang Y, Zeng L, Nie X, Gao Y, Li Z, Liu S, Lou J, Gao A, Zhang L, Gao P. Nature 612 170-176 (2022)
  18. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Moustaqil M, Ollivier E, Chiu HP, Van Tol S, Rudolffi-Soto P, Stevens C, Bhumkar A, Hunter DJB, Freiberg AN, Jacques D, Lee B, Sierecki E, Gambin Y. Emerg Microbes Infect 10 178-195 (2021)
  19. SHP-1 suppresses the antiviral innate immune response by targeting TRAF3. Hao D, Wang Y, Li L, Qian G, Liu J, Li M, Zhang Y, Zhou R, Yan D. FASEB J 34 12392-12405 (2020)
  20. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Wang M, Sooreshjani MA, Mikek C, Opoku-Temeng C, Sintim HO. Future Med Chem 10 1301-1317 (2018)
  21. Transcription factor dimerization activates the p300 acetyltransferase. Ortega E, Rengachari S, Ibrahim Z, Hoghoughi N, Gaucher J, Holehouse AS, Khochbin S, Panne D. Nature 562 538-544 (2018)
  22. A brain-enriched lncRNA shields cancer cells from immune-mediated killing for metastatic colonization in the brain. Liu W, Sun P, Xia L, He X, Xia Z, Huang Y, Liu W, Li L, Chen L. Proc Natl Acad Sci U S A 119 e2200230119 (2022)
  23. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, Liu M, Lei Y, Gao X, Fu X, Zhu F, Liu Y, Laganowsky A, Zheng X, Ji JY, West AP, Watson RO, Li P. Nature 569 718-722 (2019)
  24. All-Atom Simulations Uncover Structural and Dynamical Properties of STING Proteins in the Membrane System. Payne RT, Crivelli S, Watanabe M. J Chem Inf Model 62 4486-4499 (2022)
  25. Alternative splicing of IRF3 plays an important role in the development of hepatocarcinoma. Lv Z, Gao W, Du Z, Zheng Y, Liu T, Hao C, Xue D. Epigenetics 18 2276371 (2023)
  26. An alternative model for type I interferon induction downstream of human TLR2. Oosenbrug T, van de Graaff MJ, Haks MC, van Kasteren S, Ressing ME. J Biol Chem 295 14325-14342 (2020)
  27. Clathrin-associated AP-1 controls termination of STING signalling. Liu Y, Xu P, Rivara S, Liu C, Ricci J, Ren X, Hurley JH, Ablasser A. Nature 610 761-767 (2022)
  28. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Bhowmik D, Du M, Tian Y, Ma S, Wu J, Chen Z, Yin Q, Zhu F. Nucleic Acids Res 49 9389-9403 (2021)
  29. GPR162 activates STING dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer. Long Y, Guo J, Chen J, Sun J, Wang H, Peng X, Wang Z, Lai W, Liu N, Shu L, Chen L, Shi Y, Xiao D, Liu S, Tao Y. Signal Transduct Target Ther 8 48 (2023)
  30. Heat shock protein HSPA13 promotes hepatocellular carcinoma progression by stabilizing TANK. Cen X, Lu Y, Lu J, Luo C, Zhan P, Cheng Y, Yang F, Xie C, Yin Z, Wang F. Cell Death Discov 9 443 (2023)
  31. Identification and Characterization of Small-Molecule IRF3-Dependent Immune Activators for Pharmaceutical Development. Foss MH, Stevens SL, Jin H, Allen EM, Nelson D, DeFilippis V, Nilsen A, Stenzel-Poore MP. ACS Chem Biol 17 1073-1081 (2022)
  32. MAVS deSUMOylation by SENP1 inhibits its aggregation and antagonizes IRF3 activation. Dai T, Zhang L, Ran Y, Zhang M, Yang B, Lu H, Lin S, Zhang L, Zhou F. Nat Struct Mol Biol 30 785-799 (2023)
  33. Modulation of innate immune response to viruses including SARS-CoV-2 by progesterone. Su S, Hua D, Li JP, Zhang XN, Bai L, Cao LB, Guo Y, Zhang M, Dong JZ, Liang XW, Lan K, Hu MM, Shu HB. Signal Transduct Target Ther 7 137 (2022)
  34. Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1. Custódio TF, Killer M, Yu D, Puente V, Teufel DP, Pautsch A, Schnapp G, Grundl M, Kosinski J, Löw C. Nat Commun 14 5696 (2023)
  35. Mutagenesis and structural studies reveal the basis for the specific binding of SARS-CoV-2 SL3 RNA element with human TIA1 protein. Zhang D, Qiao L, Lei X, Dong X, Tong Y, Wang J, Wang Z, Zhou R. Nat Commun 14 3715 (2023)
  36. Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy. Dou Y, Chen R, Liu S, Lee YT, Jing J, Liu X, Ke Y, Wang R, Zhou Y, Huang Y. Nat Commun 14 5461 (2023)
  37. PLP2 Could Be a Prognostic Biomarker and Potential Treatment Target in Glioblastoma Multiforme. Qiao H, Li H. Pharmgenomics Pers Med 16 991-1009 (2023)
  38. STING and cGAS gene expressions were downregulated among HIV-1-infected persons after antiretroviral therapy. de Lima LLP, de Oliveira AQT, Moura TCF, da Silva Graça Amoras E, Lima SS, da Silva ANMR, Queiroz MAF, Cayres-Vallinoto IMV, Ishak R, Vallinoto ACR. Virol J 18 78 (2021)
  39. Structural basis of higher order oligomerization of KSHV inhibitor of cGAS. Bhowmik D, Tian Y, Wang B, Zhu F, Yin Q. Proc Natl Acad Sci U S A 119 e2200285119 (2022)
  40. Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease-associated mutation. Xie Z, Wang Z, Fan F, Zhou J, Hu Z, Wang Q, Wang X, Zeng Q, Zhang Y, Qiu J, Zhou X, Xu H, Bai H, Zhan Z, Ding J, Zhang H, Duan W, Yu X, Geng M. Cell Discov 8 133 (2022)
  41. TBK1 and IRF3 are potential therapeutic targets in Enterovirus A71-associated diseases. Ji W, Sun T, Li D, Chen S, Yang H, Jin Y, Duan G. PLoS Negl Trop Dis 17 e0011001 (2023)
  42. Targeting STING oligomerization with small-molecule inhibitors. Humphries F, Shmuel-Galia L, Jiang Z, Zhou JY, Barasa L, Mondal S, Wilson R, Sultana N, Shaffer SA, Ng SL, Pesiridis GS, Thompson PR, Fitzgerald KA. Proc Natl Acad Sci U S A 120 e2305420120 (2023)
  43. The Chicken cGAS-STING Pathway Exerts Interferon-Independent Antiviral Function via Cell Apoptosis. Jiang S, Lv M, Zhang D, Cao Q, Xia N, Luo J, Zheng W, Chen N, Meurens F, Zhu J. Animals (Basel) 13 2573 (2023)
  44. The Molecular Mechanism of Herpes Simplex Virus 1 UL31 in Antagonizing the Activity of IFN-β. Gong L, Ou X, Hu L, Zhong J, Li J, Deng S, Li B, Pan L, Wang L, Hong X, Luo W, Zeng Q, Zan J, Peng T, Cai M, Li M. Microbiol Spectr 10 e0188321 (2022)
  45. The cooperative assembly of shelterin bridge provides a kinetic gateway that controls telomere length homeostasis. Liu J, Hu X, Bao K, Kim JK, Zhang C, Jia S, Qiao F. Nucleic Acids Res 49 8110-8119 (2021)
  46. Tyrosine phosphorylation of IRF3 by BLK facilitates its sufficient activation and innate antiviral response. Li WW, Fan XX, Zhu ZX, Cao XJ, Zhu ZY, Pei DS, Wang YZ, Zhang JY, Wang YY, Zheng HX. PLoS Pathog 19 e1011742 (2023)
  47. [A plasmid-based reverse genetics system for rotaviruses]. Kanai Y, Kobayashi T. Uirusu 67 99-110 (2017)
  48. β-adrenoreceptor-triggered PKA activation negatively regulates the innate antiviral response. Guo Y, Zhang XN, Su S, Ruan ZL, Hu MM, Shu HB. Cell Mol Immunol 20 175-188 (2023)