5f9r Citations

Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

Science 351 867-71 (2016)
Cited: 318 times
EuropePMC logo PMID: 26841432

Abstract

Bacterial adaptive immunity and genome engineering involving the CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein Cas9 begin with RNA-guided DNA unwinding to form an RNA-DNA hybrid and a displaced DNA strand inside the protein. The role of this R-loop structure in positioning each DNA strand for cleavage by the two Cas9 nuclease domains is unknown. We determine molecular structures of the catalytically active Streptococcus pyogenes Cas9 R-loop that show the displaced DNA strand located near the RuvC nuclease domain active site. These protein-DNA interactions, in turn, position the HNH nuclease domain adjacent to the target DNA strand cleavage site in a conformation essential for concerted DNA cutting. Cas9 bends the DNA helix by 30°, providing the structural distortion needed for R-loop formation.

Reviews - 5f9r mentioned but not cited (19)

  1. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG. Mol Cell 68 15-25 (2017)
  2. Optimization of genome editing through CRISPR-Cas9 engineering. Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Bioengineered 7 166-174 (2016)
  3. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Johnson MB, Chandler M, Afonin KA. Adv Drug Deliv Rev 173 427-438 (2021)
  4. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. Palermo G, Casalino L, Magistrato A, Andrew McCammon J. J Struct Biol 206 267-279 (2019)
  5. Recent Advances in Improving Gene-Editing Specificity through CRISPR-Cas9 Nuclease Engineering. Huang X, Yang D, Zhang J, Xu J, Chen YE. Cells 11 2186 (2022)
  6. Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage. Zuo Z, Liu J. Curr Opin Struct Biol 62 166-174 (2020)
  7. CRISPR RNA-guided autonomous delivery of Cas9. Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B. Nat Struct Mol Biol 26 14-24 (2019)
  8. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects. Rahman MM, Tollefsbol TO. Methods 187 77-91 (2021)
  9. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Front Genet 11 614688 (2020)
  10. CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Gostimskaya I. Biochemistry (Mosc) 87 777-788 (2022)
  11. Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids. Arantes PR, Patel AC, Palermo G. J Mol Biol 434 167518 (2022)
  12. The intrinsic ability of double-stranded DNA to carry out D-loop and R-loop formation. Shibata T, Iwasaki W, Hirota K. Comput Struct Biotechnol J 18 3350-3360 (2020)
  13. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Comput Struct Biotechnol J 18 3649-3665 (2020)
  14. CRISPR-Cas9-Based Technology for Studying Enteric Virus Infection. Hirano J, Murakami K, Hayashi T. Front Genome Ed 4 888878 (2022)
  15. Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Rabinowitz R, Offen D. Mol Ther 29 937-948 (2021)
  16. Twisting and swiveling domain motions in Cas9 to recognize target DNA duplexes, make double-strand breaks, and release cleaved duplexes. Wang J, Arantes PR, Ahsan M, Sinha S, Kyro GW, Maschietto F, Allen B, Skeens E, Lisi GP, Batista VS, Palermo G. Front Mol Biosci 9 1072733 (2022)
  17. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. Bhattacharya S, Satpati P. ACS Omega 8 1817-1837 (2023)
  18. Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. Allemailem KS. Int J Nanomedicine 19 1125-1143 (2024)
  19. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors. Belato HB, Lisi GP. Biomolecules 13 264 (2023)

Articles - 5f9r mentioned but not cited (65)

  1. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA. Nature 550 407-410 (2017)
  2. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA. Science 351 867-871 (2016)
  3. Disabling Cas9 by an anti-CRISPR DNA mimic. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA. Sci Adv 3 e1701620 (2017)
  4. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Huang TP, Zhao KT, Miller SM, Gaudelli NM, Oakes BL, Fellmann C, Savage DF, Liu DR. Nat Biotechnol 37 626-631 (2019)
  5. A Broad-Spectrum Inhibitor of CRISPR-Cas9. Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, Kranzusch PJ, Sontheimer EJ, Davidson AR, Maxwell KL, Doudna JA. Cell 170 1224-1233.e15 (2017)
  6. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System. Xiao Y, Luo M, Hayes RP, Kim J, Ng S, Ding F, Liao M, Ke A. Cell 170 48-60.e11 (2017)
  7. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T, Uchihashi T, Nureki O. Nat Commun 8 1430 (2017)
  8. Highly Parallel Profiling of Cas9 Variant Specificity. Schmid-Burgk JL, Gao L, Li D, Gardner Z, Strecker J, Lash B, Zhang F. Mol Cell 78 794-800.e8 (2020)
  9. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. Proc Natl Acad Sci U S A 114 7260-7265 (2017)
  10. Structural basis for mismatch surveillance by CRISPR-Cas9. Bravo JPK, Liu MS, Hibshman GN, Dangerfield TL, Jung K, McCool RS, Johnson KA, Taylor DW. Nature 603 343-347 (2022)
  11. Structural insights into DNA cleavage activation of CRISPR-Cas9 system. Huai C, Li G, Yao R, Zhang Y, Cao M, Kong L, Jia C, Yuan H, Chen H, Lu D, Huang Q. Nat Commun 8 1375 (2017)
  12. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Zhu X, Clarke R, Puppala AK, Chittori S, Merk A, Merrill BJ, Simonović M, Subramaniam S. Nat Struct Mol Biol 26 679-685 (2019)
  13. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. ACS Cent Sci 2 756-763 (2016)
  14. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations. Zuo Z, Liu J. Sci Rep 5 37584 (2016)
  15. Gaussian accelerated molecular dynamics (GaMD): principles and applications. Wang J, Arantes PR, Bhattarai A, Hsu RV, Pawnikar S, Huang YM, Palermo G, Miao Y. Wiley Interdiscip Rev Comput Mol Sci 11 e1521 (2021)
  16. A Cas9 with PAM recognition for adenine dinucleotides. Chatterjee P, Lee J, Nip L, Koseki SRT, Tysinger E, Sontheimer EJ, Jacobson JM, Jakimo N. Nat Commun 11 2474 (2020)
  17. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheim R, Edraki A, Huang X, Wang M, Wang J, Liu L, Sheng G, Yang Y, Lou J, Sontheimer EJ, Wang Y. Mol Cell 76 938-952.e5 (2019)
  18. CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Oakes BL, Fellmann C, Rishi H, Taylor KL, Ren SM, Nadler DC, Yokoo R, Arkin AP, Doudna JA, Savage DF. Cell 176 254-267.e16 (2019)
  19. Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain. Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA. Q Rev Biophys 51 e91 (2018)
  20. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Jones SK, Hawkins JA, Johnson NV, Jung C, Hu K, Rybarski JR, Chen JS, Doudna JA, Press WH, Finkelstein IJ. Nat Biotechnol 39 84-93 (2021)
  21. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins. Zhu Y, Gao A, Zhan Q, Wang Y, Feng H, Liu S, Gao G, Serganov A, Gao P. Mol Cell 74 296-309.e7 (2019)
  22. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex. Zeng Y, Cui Y, Zhang Y, Zhang Y, Liang M, Chen H, Lan J, Song G, Lou J. Nucleic Acids Res 46 350-361 (2018)
  23. Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Acharya S, Mishra A, Paul D, Ansari AH, Azhar M, Kumar M, Rauthan R, Sharma N, Aich M, Sinha D, Sharma S, Jain S, Ray A, Jain S, Ramalingam S, Maiti S, Chakraborty D. Proc Natl Acad Sci U S A 116 20959-20968 (2019)
  24. Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Ab Initio Molecular Dynamics. Casalino L, Nierzwicki Ł, Jinek M, Palermo G. ACS Catal 10 13596-13605 (2020)
  25. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Kappel K, Liu S, Larsen KP, Skiniotis G, Puglisi EV, Puglisi JD, Zhou ZH, Zhao R, Das R. Nat Methods 15 947-954 (2018)
  26. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes. Vlot M, Houkes J, Lochs SJA, Swarts DC, Zheng P, Kunne T, Mohanraju P, Anders C, Jinek M, van der Oost J, Dickman MJ, Brouns SJJ. Nucleic Acids Res 46 873-885 (2018)
  27. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Riesenberg S, Helmbrecht N, Kanis P, Maricic T, Pääbo S. Nat Commun 13 489 (2022)
  28. Structure and Dynamics of Cas9 HNH Domain Catalytic State. Zuo Z, Liu J. Sci Rep 7 17271 (2017)
  29. Deep mutational scanning of S. pyogenes Cas9 reveals important functional domains. Spencer JM, Zhang X. Sci Rep 7 16836 (2017)
  30. Unified energetics analysis unravels SpCas9 cleavage activity for optimal gRNA design. Zhang D, Hurst T, Duan D, Chen SJ. Proc Natl Acad Sci U S A 116 8693-8698 (2019)
  31. Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5'G-extended sgRNAs. Kulcsár PI, Tálas A, Tóth E, Nyeste A, Ligeti Z, Welker Z, Welker E. Nat Commun 11 1223 (2020)
  32. CRISPR-Cas9 bends and twists DNA to read its sequence. Cofsky JC, Soczek KM, Knott GJ, Nogales E, Doudna JA. Nat Struct Mol Biol 29 395-402 (2022)
  33. Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9. Nierzwicki L, East KW, Morzan UN, Arantes PR, Batista VS, Lisi GP, Palermo G. Elife 10 e73601 (2021)
  34. Establishing the allosteric mechanism in CRISPR-Cas9. Nierzwicki Ł, Arantes PR, Saha A, Palermo G. Wiley Interdiscip Rev Comput Mol Sci 11 e1503 (2021)
  35. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Lim D, Sreekanth V, Cox KJ, Law BK, Wagner BK, Karp JM, Choudhary A. Nat Commun 11 4043 (2020)
  36. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance. Babu K, Amrani N, Jiang W, Yogesha SD, Nguyen R, Qin PZ, Rajan R. Biochemistry 58 1905-1917 (2019)
  37. Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. Zuo Z, Zolekar A, Babu K, Lin VJ, Hayatshahi HS, Rajan R, Wang YC, Liu J. Elife 8 e46500 (2019)
  38. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. Villegas Kcam MC, Tsong AJ, Chappell J. Nucleic Acids Res 49 4793-4802 (2021)
  39. A positive, growth-based PAM screen identifies noncanonical motifs recognized by the S. pyogenes Cas9. Collias D, Leenay RT, Slotkowski RA, Zuo Z, Collins SP, McGirr BA, Liu J, Beisel CL. Sci Adv 6 eabb4054 (2020)
  40. Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination. Li S, Yuan B, Cao J, Chen J, Chen J, Qiu J, Zhao XM, Wang X, Qiu Z, Cheng TL. Nat Commun 11 5827 (2020)
  41. Molecular Dynamics to Predict Cryo-EM: Capturing Transitions and Short-Lived Conformational States of Biomolecules. Nierzwicki Ł, Palermo G. Front Mol Biosci 8 641208 (2021)
  42. Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR-Cas9. Nierzwicki Ł, East KW, Binz JM, Hsu RV, Ahsan M, Arantes PR, Skeens E, Pacesa M, Jinek M, Lisi GP, Palermo G. Nat Catal 5 912-922 (2022)
  43. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Genna V, Colombo M, De Vivo M, Marcia M. Structure 26 40-50.e2 (2018)
  44. Active-Site Models of Streptococcus pyogenes Cas9 in DNA Cleavage State. Tang H, Yuan H, Du W, Li G, Xue D, Huang Q. Front Mol Biosci 8 653262 (2021)
  45. Exploring alternative catalytic mechanisms of the Cas9 HNH domain. Zhao LN, Mondal D, Warshel A. Proteins 88 260-264 (2020)
  46. SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity. Cerchione D, Loveluck K, Tillotson EL, Harbinski F, DaSilva J, Kelley CP, Keston-Smith E, Fernandez CA, Myer VE, Jayaram H, Steinberg BE. PLoS One 15 e0231716 (2020)
  47. Structure of the IscB-ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9. Kato K, Okazaki S, Kannan S, Altae-Tran H, Esra Demircioglu F, Isayama Y, Ishikawa J, Fukuda M, Macrae RK, Nishizawa T, Makarova KS, Koonin EV, Zhang F, Nishimasu H. Nat Commun 13 6719 (2022)
  48. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence. Babu K, Kathiresan V, Kumari P, Newsom S, Parameshwaran HP, Chen X, Liu J, Qin PZ, Rajan R. Biochemistry 60 3783-3800 (2021)
  49. Engineered dual selection for directed evolution of SpCas9 PAM specificity. Goldberg GW, Spencer JM, Giganti DO, Camellato BR, Agmon N, Ichikawa DM, Boeke JD, Noyes MB. Nat Commun 12 349 (2021)
  50. Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Villiger L, Schmidheini L, Mathis N, Rothgangl T, Marquart K, Schwank G. Mol Ther Nucleic Acids 26 502-510 (2021)
  51. Quantitative assessment of engineered Cas9 variants for target specificity enhancement by single-molecule reaction pathway analysis. Bak SY, Jung Y, Park J, Sung K, Jang HK, Bae S, Kim SK. Nucleic Acids Res 49 11312-11322 (2021)
  52. dCas9 binding inhibits the initiation of base excision repair in vitro. Antony JS, Roberts SA, Wyrick JJ, Hinz JM. DNA Repair (Amst) 109 103257 (2022)
  53. Altered DNA repair pathway engagement by engineered CRISPR-Cas9 nucleases. Chauhan VP, Sharp PA, Langer R. Proc Natl Acad Sci U S A 120 e2300605120 (2023)
  54. News Protein-Protein Conjugates: Tyrosine Delivers. Geeson MB, Bernardes GJL. ACS Cent Sci 6 1473-1475 (2020)
  55. Under the Influence: Cas9 Ends and DNA Repair Outcomes. Jasin M. CRISPR J 1 132-134 (2018)
  56. Computational normal mode analysis accurately replicates the activity and specificity profiles of CRISPR-Cas9 and high-fidelity variants. Shor O, Rabinowitz R, Offen D, Benninger F. Comput Struct Biotechnol J 20 2013-2019 (2022)
  57. Computationally designed hyperactive Cas9 enzymes. Vos PD, Rossetti G, Mantegna JL, Siira SJ, Gandadireja AP, Bruce M, Raven SA, Khersonsky O, Fleishman SJ, Filipovska A, Rackham O. Nat Commun 13 3023 (2022)
  58. Molecular mechanisms of Streptococcus pyogenes Cas9: a single-molecule perspective. Zhang Q, Chen Z, Sun B. Biophys Rep 7 475-489 (2021)
  59. The Electronic Structure of Genome Editors from the First Principles. Nierzwicki Ł, Ahsan M, Palermo G. Electron Struct 5 014003 (2023)
  60. A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules. Lim D, Zhou Q, Cox KJ, Law BK, Lee M, Kokkonda P, Sreekanth V, Pergu R, Chaudhary SK, Gangopadhyay SA, Maji B, Lai S, Amako Y, Thompson DB, Subramanian HKK, Mesleh MF, Dančík V, Clemons PA, Wagner BK, Woo CM, Church GM, Choudhary A. Nat Cell Biol 24 1766-1775 (2022)
  61. Comparative structural and dynamics study of free and gRNA-bound FnCas9 and SpCas9 proteins. Panda G, Ray A. Comput Struct Biotechnol J 20 4172-4184 (2022)
  62. Deciphering the QR Code of the CRISPR-Cas9 System: Synergy between Gln768 (Q) and Arg976 (R). Daskalakis V. ACS Phys Chem Au 2 496-505 (2022)
  63. Differential Divalent Metal Binding by SpyCas9's RuvC Active Site Contributes to Nonspecific DNA Cleavage. Newsom SN, Wang DS, Rostami S, Schuster I, Parameshwaran HP, Joseph YG, Qin PZ, Liu J, Rajan R. CRISPR J 6 527-542 (2023)
  64. research-article Identification of Family-Specific Features in Cas9 and Cas12 Proteins: A Machine Learning Approach Using Complete Protein Feature Spectrum. Madugula SS, Pujar P, Bharani N, Wang S, Jayasinghe-Arachchige VM, Pham T, Mashburn D, Artilis M, Liu J. bioRxiv 2024.01.22.576286 (2024)
  65. Structural insights into Cas9 mismatch: promising for development of high-fidelity Cas9 variants. Tang H, Wang D, Shu Y. Signal Transduct Target Ther 7 271 (2022)


Reviews citing this publication (79)

  1. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Anzalone AV, Koblan LW, Liu DR. Nat Biotechnol 38 824-844 (2020)
  2. CRISPR-Cas9 Structures and Mechanisms. Jiang F, Doudna JA. Annu Rev Biophys 46 505-529 (2017)
  3. Diversity, classification and evolution of CRISPR-Cas systems. Koonin EV, Makarova KS, Zhang F. Curr Opin Microbiol 37 67-78 (2017)
  4. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Komor AC, Badran AH, Liu DR. Cell 168 20-36 (2017)
  5. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Tsai SQ, Joung JK. Nat Rev Genet 17 300-312 (2016)
  6. Advances in genome editing through control of DNA repair pathways. Yeh CD, Richardson CD, Corn JE. Nat Cell Biol 21 1468-1478 (2019)
  7. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  8. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Tycko J, Myer VE, Hsu PD. Mol Cell 63 355-370 (2016)
  9. Nascent Connections: R-Loops and Chromatin Patterning. Chédin F. Trends Genet 32 828-838 (2016)
  10. Origins and evolution of CRISPR-Cas systems. Koonin EV, Makarova KS. Philos Trans R Soc Lond B Biol Sci 374 20180087 (2019)
  11. RNA-based recognition and targeting: sowing the seeds of specificity. Gorski SA, Vogel J, Doudna JA. Nat Rev Mol Cell Biol 18 215-228 (2017)
  12. Genome-Editing Technologies: Principles and Applications. Gaj T, Sirk SJ, Shui SL, Liu J. Cold Spring Harb Perspect Biol 8 a023754 (2016)
  13. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing. Swarts DC, Jinek M. Wiley Interdiscip Rev RNA 9 e1481 (2018)
  14. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Kim D, Luk K, Wolfe SA, Kim JS. Annu Rev Biochem 88 191-220 (2019)
  15. CRISPR-Cas12a: Functional overview and applications. Paul B, Montoya G. Biomed J 43 8-17 (2020)
  16. Precise plant genome editing using base editors and prime editors. Molla KA, Sretenovic S, Bansal KC, Qi Y. Nat Plants 7 1166-1187 (2021)
  17. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Koonin EV, Makarova KS. Genome Biol Evol 9 2812-2825 (2017)
  18. Editing the Genome Without Double-Stranded DNA Breaks. Komor AC, Badran AH, Liu DR. ACS Chem Biol 13 383-388 (2018)
  19. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N. Int J Mol Sci 21 E6461 (2020)
  20. Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. Mir A, Edraki A, Lee J, Sontheimer EJ. ACS Chem Biol 13 357-365 (2018)
  21. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Pecori R, Di Giorgio S, Paulo Lorenzo J, Nina Papavasiliou F. Nat Rev Genet 23 505-518 (2022)
  22. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. iScience 23 100789 (2020)
  23. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Petermann E, Lan L, Zou L. Nat Rev Mol Cell Biol 23 521-540 (2022)
  24. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Cebrian-Serrano A, Davies B. Mamm Genome 28 247-261 (2017)
  25. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. Synth Syst Biotechnol 3 135-149 (2018)
  26. Transcription control engineering and applications in synthetic biology. Engstrom MD, Pfleger BF. Synth Syst Biotechnol 2 176-191 (2017)
  27. Emerging roles for R-loop structures in the management of topological stress. Chedin F, Benham CJ. J Biol Chem 295 4684-4695 (2020)
  28. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Nishimasu H, Nureki O. Curr Opin Struct Biol 43 68-78 (2017)
  29. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Salter JD, Smith HC. Trends Biochem Sci 43 606-622 (2018)
  30. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Stella S, Alcón P, Montoya G. Nat Struct Mol Biol 24 882-892 (2017)
  31. Conformational regulation of CRISPR-associated nucleases. Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B. Curr Opin Microbiol 37 110-119 (2017)
  32. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Tang Y, Fu Y. Cell Biosci 8 59 (2018)
  33. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  34. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. Zhu Y, Zhang F, Huang Z. BMC Biol 16 32 (2018)
  35. Advances in Genome Editing With CRISPR Systems and Transformation Technologies for Plant DNA Manipulation. Nadakuduti SS, Enciso-Rodríguez F. Front Plant Sci 11 637159 (2020)
  36. Methods for Enhancing Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Homology-Directed Repair Efficiency. Tang XD, Gao F, Liu MJ, Fan QL, Chen DK, Ma WT. Front Genet 10 551 (2019)
  37. NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. East KW, Skeens E, Cui JY, Belato HB, Mitchell B, Hsu R, Batista VS, Palermo G, Lisi GP. Biophys Rev 12 155-174 (2020)
  38. CRISPR-Cas9 in genome editing: Its function and medical applications. Khadempar S, Familghadakchi S, Motlagh RA, Farahani N, Dashtiahangar M, Rezaei H, Gheibi Hayat SM. J Cell Physiol 234 5751-5761 (2019)
  39. Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review. Long C, Amoasii L, Bassel-Duby R, Olson EN. JAMA Neurol 73 1349-1355 (2016)
  40. Mechanisms and consequences of diversity-generating immune strategies. Westra ER, Sünderhauf D, Landsberger M, Buckling A. Nat Rev Immunol 17 719-728 (2017)
  41. Methods and applications of CRISPR/Cas system for genome editing in stem cells. Yang G, Huang X. Cell Regen 8 33-41 (2019)
  42. The tracrRNA in CRISPR Biology and Technologies. Liao C, Beisel CL. Annu Rev Genet 55 161-181 (2021)
  43. Applications of the CRISPR-Cas9 system in kidney research. Higashijima Y, Hirano S, Nangaku M, Nureki O. Kidney Int 92 324-335 (2017)
  44. CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Ghogare R, Williamson-Benavides B, Ramírez-Torres F, Dhingra A. Transgenic Res 29 1-35 (2020)
  45. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Zhang X, Li T, Ou J, Huang J, Liang P. Protein Cell 13 316-335 (2022)
  46. CRISPR/Cas-Based Modifications for Therapeutic Applications: A Review. Bharathkumar N, Sunil A, Meera P, Aksah S, Kannan M, Saravanan KM, Anand T. Mol Biotechnol 64 355-372 (2022)
  47. How bacteria control the CRISPR-Cas arsenal. Leon LM, Mendoza SD, Bondy-Denomy J. Curr Opin Microbiol 42 87-95 (2018)
  48. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci 26 69-81 (2017)
  49. Classification of CRISPR/Cas system and its application in tomato breeding. Chaudhuri A, Halder K, Datta A. Theor Appl Genet 135 367-387 (2022)
  50. Advances in actinomycete research: an ActinoBase review of 2019. Prudence SMM, Addington E, Castaño-Espriu L, Mark DR, Pintor-Escobar L, Russell AH, McLean TC. Microbiology (Reading) 166 683-694 (2020)
  51. CRISPR editing in biological and biomedical investigation. Huang J, Wang Y, Zhao J. J Cell Physiol 233 3875-3891 (2018)
  52. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, Riaz M, Ashraf MF, Abdalmegeed D, Wang X, Imran M, Manghwar H, Zhou L. Front Plant Sci 13 860281 (2022)
  53. Single-Molecule View of Small RNA-Guided Target Search and Recognition. Globyte V, Kim SH, Joo C. Annu Rev Biophys 47 569-593 (2018)
  54. An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications. Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, Naseem W, Nasir N, Waheed HM. Mol Biotechnol 65 227-242 (2023)
  55. CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. Xiao H, Hu J, Huang C, Feng W, Liu Y, Kumblathan T, Tao J, Xu J, Le XC, Zhang H. Trends Analyt Chem 161 117000 (2023)
  56. Dynamics and mechanisms of CRISPR-Cas9 through the lens of computational methods. Saha A, Arantes PR, Palermo G. Curr Opin Struct Biol 75 102400 (2022)
  57. Localization of RNAs in the nucleus: cis- and trans- regulation. Tong C, Yin Y. RNA Biol 18 2073-2086 (2021)
  58. Type II anti-CRISPR proteins as a new tool for synthetic biology. Zhang Y, Marchisio MA. RNA Biol 18 1085-1098 (2021)
  59. Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Christensen CL, Ashmead RE, Choy FYM. Diseases 7 E47 (2019)
  60. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Mil Med Res 10 32 (2023)
  61. CRISPR genome editing using computational approaches: A survey. Alipanahi R, Safari L, Khanteymoori A. Front Bioinform 2 1001131 (2022)
  62. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Thompson MK, Sobol RW, Prakash A. Biology (Basel) 10 530 (2021)
  63. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Leng F. Biophys Rev 8 197-207 (2016)
  64. Gene editing innovations and their applications in cardiomyopathy research. Kyriakopoulou E, Monnikhof T, van Rooij E. Dis Model Mech 16 dmm050088 (2023)
  65. Machines on Genes through the Computational Microscope. Sinha S, Pindi C, Ahsan M, Arantes PR, Palermo G. J Chem Theory Comput 19 1945-1964 (2023)
  66. The Role of RNA in DNA Breaks, Repair and Chromosomal Rearrangements. Murashko MM, Stasevich EM, Schwartz AM, Kuprash DV, Uvarova AN, Demin DE. Biomolecules 11 550 (2021)
  67. CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer. Almeida RS, Wisnieski F, Takao Real Karia B, Smith MAC. Genes (Basel) 13 2029 (2022)
  68. Helicases in R-loop Formation and Resolution. Yang S, Winstone L, Mondal S, Wu Y. J Biol Chem 299 105307 (2023)
  69. Mechanisms regulating the CRISPR-Cas systems. Zakrzewska M, Burmistrz M. Front Microbiol 14 1060337 (2023)
  70. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Leng F. Biophys Rev 8 123-133 (2016)
  71. Putting CRISPR-Cas system in action: a golden window for efficient and precise genome editing for crop improvement. Tariq A, Mushtaq M, Yaqoob H, Bhat BA, Zargar SM, Raza A, Ali S, Charagh S, Mubarik MS, Zaman QU, Prasad PV, Mir RA. GM Crops Food 14 1-27 (2023)
  72. Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Zhou L, Yao S. Mol Biomed 4 10 (2023)
  73. CRISPR-based nucleic acid diagnostics for pathogens. Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. Trends Analyt Chem 160 116980 (2023)
  74. CRISPR/Cas9 genome editing for neurodegenerative diseases. Nouri Nojadeh J, Bildiren Eryilmaz NS, Ergüder BI. EXCLI J 22 567-582 (2023)
  75. Engineering Cas9: next generation of genomic editors. Kovalev MA, Davletshin AI, Karpov DS. Appl Microbiol Biotechnol 108 209 (2024)
  76. Prime editing: Mechanism insight and recent applications in plants. Vu TV, Nguyen NT, Kim J, Hong JC, Kim JY. Plant Biotechnol J 22 19-36 (2024)
  77. R-Loops in Genome Instability and Cancer. Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. Cancers (Basel) 15 4986 (2023)
  78. Recent advances in genome engineering by CRISPR technology. Lee Y, Oh Y, Lee SH. BMB Rep 57 12-18 (2024)
  79. Unlocking the secrets of ABEs: the molecular mechanism behind their specificity. Chen X, McAndrew MJ, Lapinaite A. Biochem Soc Trans 51 1635-1646 (2023)

Articles citing this publication (155)

  1. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Nature 533 420-424 (2016)
  2. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O. Science 361 1259-1262 (2018)
  3. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Nat Biotechnol 35 371-376 (2017)
  4. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O. Cell 165 949-962 (2016)
  5. Structure and Engineering of Francisella novicida Cas9. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O. Cell 164 950-961 (2016)
  6. The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X, Wang Y. Cell 170 714-726.e10 (2017)
  7. Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities. Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G, Wang Y. Cell 168 121-134.e12 (2017)
  8. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A. Sci Adv 3 eaao0027 (2017)
  9. Mechanistic Insights into the cis- and trans-Acting DNase Activities of Cas12a. Swarts DC, Jinek M. Mol Cell 73 589-600.e4 (2019)
  10. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease. Yang H, Gao P, Rajashankar KR, Patel DJ. Cell 167 1814-1828.e12 (2016)
  11. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ. Cell Res 26 901-913 (2016)
  12. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Stella S, Alcón P, Montoya G. Nature 546 559-563 (2017)
  13. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T. J Cell Biol 214 529-537 (2016)
  14. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ, Guegler CK, Doudna JA, Greenleaf WJ. Proc Natl Acad Sci U S A 114 5461-5466 (2017)
  15. Human proteins that interact with RNA/DNA hybrids. Wang IX, Grunseich C, Fox J, Burdick J, Zhu Z, Ravazian N, Hafner M, Cheung VG. Genome Res 28 1405-1414 (2018)
  16. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9. Anders C, Bargsten K, Jinek M. Mol Cell 61 895-902 (2016)
  17. AID Recognizes Structured DNA for Class Switch Recombination. Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. Mol Cell 67 361-373.e4 (2017)
  18. Kinetics of dCas9 target search in Escherichia coli. Jones DL, Leroy P, Unoson C, Fange D, Ćurić V, Lawson MJ, Elf J. Science 357 1420-1424 (2017)
  19. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. Yang H, Patel DJ. Mol Cell 67 117-127.e5 (2017)
  20. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Chen W, McKenna A, Schreiber J, Haeussler M, Yin Y, Agarwal V, Noble WS, Shendure J. Nucleic Acids Res 47 7989-8003 (2019)
  21. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Singh D, Mallon J, Poddar A, Wang Y, Tippana R, Yang O, Bailey S, Ha T. Proc Natl Acad Sci U S A 115 5444-5449 (2018)
  22. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Liu L, Chen P, Wang M, Li X, Wang J, Yin M, Wang Y. Mol Cell 65 310-322 (2017)
  23. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Jeon Y, Choi YH, Jang Y, Yu J, Goo J, Lee G, Jeong YK, Lee SH, Kim IS, Kim JS, Jeong C, Lee S, Bae S. Nat Commun 9 2777 (2018)
  24. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Shmakov SA, Makarova KS, Wolf YI, Severinov KV, Koonin EV. Proc Natl Acad Sci U S A 115 E5307-E5316 (2018)
  25. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Hirano S, Nishimasu H, Ishitani R, Nureki O. Mol Cell 61 886-894 (2016)
  26. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Kulcsár PI, Tálas A, Huszár K, Ligeti Z, Tóth E, Weinhardt N, Fodor E, Welker E. Genome Biol 18 190 (2017)
  27. DNA capture by a CRISPR-Cas9-guided adenine base editor. Lapinaite A, Knott GJ, Palumbo CM, Lin-Shiao E, Richter MF, Zhao KT, Beal PA, Liu DR, Doudna JA. Science 369 566-571 (2020)
  28. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9. Palermo G, Ricci CG, Fernando A, Basak R, Jinek M, Rivalta I, Batista VS, McCammon JA. J Am Chem Soc 139 16028-16031 (2017)
  29. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Tong Y, Whitford CM, Robertsen HL, Blin K, Jørgensen TS, Klitgaard AK, Gren T, Jiang X, Weber T, Lee SY. Proc Natl Acad Sci U S A 116 20366-20375 (2019)
  30. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Singh D, Wang Y, Mallon J, Yang O, Fei J, Poddar A, Ceylan D, Bailey S, Ha T. Nat Struct Mol Biol 25 347-354 (2018)
  31. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Amrani N, Gao XD, Liu P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki KE, Wu T, Donohoue PD, Settle AH, Lied AM, McGovern K, Fuller CK, Cameron P, Fazzio TG, Zhu LJ, Wolfe SA, Sontheimer EJ. Genome Biol 19 214 (2018)
  32. Decoding non-random mutational signatures at Cas9 targeted sites. Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, Lundin A, Cavallo AL, Madeyski-Bengtson K, Karlsson F, Clausen M, Hicks R, Mayr LM, Bohlooly-Y M, Maresca M. Nucleic Acids Res 46 8417-8434 (2018)
  33. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. Murugan K, Seetharam AS, Severin AJ, Sashital DG. J Biol Chem 295 5538-5553 (2020)
  34. Letter Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Reis AC, Halper SM, Vezeau GE, Cetnar DP, Hossain A, Clauer PR, Salis HM. Nat Biotechnol 37 1294-1301 (2019)
  35. Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics. East KW, Newton JC, Morzan UN, Narkhede YB, Acharya A, Skeens E, Jogl G, Batista VS, Palermo G, Lisi GP. J Am Chem Soc 142 1348-1358 (2020)
  36. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Lim Y, Bak SY, Sung K, Jeong E, Lee SH, Kim JS, Bae S, Kim SK. Nat Commun 7 13350 (2016)
  37. Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics. Ricci CG, Chen JS, Miao Y, Jinek M, Doudna JA, McCammon JA, Palermo G. ACS Cent Sci 5 651-662 (2019)
  38. Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9-mediated genome editing events. Skryabin BV, Kummerfeld DM, Gubar L, Seeger B, Kaiser H, Stegemann A, Roth J, Meuth SG, Pavenstädt H, Sherwood J, Pap T, Wedlich-Söldner R, Sunderkötter C, Schwartz YB, Brosius J, Rozhdestvensky TS. Sci Adv 6 eaax2941 (2020)
  39. Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Mir A, Alterman JF, Hassler MR, Debacker AJ, Hudgens E, Echeverria D, Brodsky MH, Khvorova A, Watts JK, Sontheimer EJ. Nat Commun 9 2641 (2018)
  40. RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a. Sundaresan R, Parameshwaran HP, Yogesha SD, Keilbarth MW, Rajan R. Cell Rep 21 3728-3739 (2017)
  41. Single-strand DNA breaks cause replisome disassembly. Vrtis KB, Dewar JM, Chistol G, Wu RA, Graham TGW, Walter JC. Mol Cell 81 1309-1318.e6 (2021)
  42. Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Chen B, Zou W, Xu H, Liang Y, Huang B. Nat Commun 9 5065 (2018)
  43. Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Zheng K, Wang Y, Li N, Jiang FF, Wu CX, Liu F, Chen HC, Liu ZF. Commun Biol 1 32 (2018)
  44. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S. Sci Rep 8 6502 (2018)
  45. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. Cofsky JC, Karandur D, Huang CJ, Witte IP, Kuriyan J, Doudna JA. Elife 9 e55143 (2020)
  46. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Ivanov IE, Wright AV, Cofsky JC, Aris KDP, Doudna JA, Bryant Z. Proc Natl Acad Sci U S A 117 5853-5860 (2020)
  47. DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. Hochstrasser ML, Taylor DW, Kornfeld JE, Nogales E, Doudna JA. Mol Cell 63 840-851 (2016)
  48. Temperature-Responsive Competitive Inhibition of CRISPR-Cas9. Jiang F, Liu JJ, Osuna BA, Xu M, Berry JD, Rauch BJ, Nogales E, Bondy-Denomy J, Doudna JA. Mol Cell 73 601-610.e5 (2019)
  49. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs. Kurata JS, Lin RJ. RNA 24 966-981 (2018)
  50. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA. Mol Cell 65 168-175 (2017)
  51. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease. Xiao R, Li Z, Wang S, Han R, Chang L. Nucleic Acids Res 49 4120-4128 (2021)
  52. SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell-mediated immunity. Yue T, Zhan X, Zhang D, Jain R, Wang KW, Choi JH, Misawa T, Su L, Quan J, Hildebrand S, Xu D, Li X, Turer E, Sun L, Moresco EMY, Beutler B. Science 372 eaba4220 (2021)
  53. Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation. Mekler V, Minakhin L, Severinov K. Proc Natl Acad Sci U S A 114 5443-5448 (2017)
  54. Structural basis for Cas9 off-target activity. Pacesa M, Lin CH, Cléry A, Saha A, Arantes PR, Bargsten K, Irby MJ, Allain FH, Palermo G, Cameron P, Donohoue PD, Jinek M. Cell 185 4067-4081.e21 (2022)
  55. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Thavalingam A, Cheng Z, Garcia B, Huang X, Shah M, Sun W, Wang M, Harrington L, Hwang S, Hidalgo-Reyes Y, Sontheimer EJ, Doudna J, Davidson AR, Moraes TF, Wang Y, Maxwell KL. Nat Commun 10 2806 (2019)
  56. Cas9 Cleavage of Viral Genomes Primes the Acquisition of New Immunological Memories. Nussenzweig PM, McGinn J, Marraffini LA. Cell Host Microbe 26 515-526.e6 (2019)
  57. Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae. Roggenkamp E, Giersch RM, Schrock MN, Turnquist E, Halloran M, Finnigan GC. G3 (Bethesda) 8 999-1018 (2018)
  58. Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. Bratovič M, Fonfara I, Chylinski K, Gálvez EJC, Sullivan TJ, Boerno S, Timmermann B, Boettcher M, Charpentier E. Nat Chem Biol 16 587-595 (2020)
  59. R-loop formation and conformational activation mechanisms of Cas9. Pacesa M, Loeff L, Querques I, Muckenfuss LM, Sawicka M, Jinek M. Nature 609 191-196 (2022)
  60. Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Li X, Wang C, Peng T, Chai Z, Ni D, Liu Y, Zhang J, Chen T, Lu S. Comput Struct Biotechnol J 19 6108-6124 (2021)
  61. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Schuler G, Hu C, Ke A. Science 376 1476-1481 (2022)
  62. Single molecule analysis of effects of non-canonical guide RNAs and specificity-enhancing mutations on Cas9-induced DNA unwinding. Okafor IC, Singh D, Wang Y, Jung M, Wang H, Mallon J, Bailey S, Lee JK, Ha T. Nucleic Acids Res 47 11880-11888 (2019)
  63. Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. O'Reilly D, Kartje ZJ, Ageely EA, Malek-Adamian E, Habibian M, Schofield A, Barkau CL, Rohilla KJ, DeRossett LB, Weigle AT, Damha MJ, Gagnon KT. Nucleic Acids Res 47 546-558 (2019)
  64. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Lei Z, Meng H, Lv Z, Liu M, Zhao H, Wu H, Zhang X, Liu L, Zhuang Y, Yin K, Yan Y, Yi C. Nat Methods 18 643-651 (2021)
  65. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Sci Rep 6 30909 (2016)
  66. Real-time observation of flexible domain movements in CRISPR-Cas9. Osuka S, Isomura K, Kajimoto S, Komori T, Nishimasu H, Shima T, Nureki O, Uemura S. EMBO J 37 e96941 (2018)
  67. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation. Zhang Q, Wen F, Zhang S, Jin J, Bi L, Lu Y, Li M, Xi XG, Huang X, Shen B, Sun B. Sci Adv 5 eaaw9807 (2019)
  68. Structural basis of R-loop recognition by the S9.6 monoclonal antibody. Bou-Nader C, Bothra A, Garboczi DN, Leppla SH, Zhang J. Nat Commun 13 1641 (2022)
  69. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. Jiang X, Ho DBT, Mahe K, Mia J, Sepulveda G, Antkowiak M, Jiang L, Yamada S, Jao LE. J Cell Sci 134 jcs258897 (2021)
  70. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Hirano S, Abudayyeh OO, Gootenberg JS, Horii T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O. Nat Commun 10 1968 (2019)
  71. Spontaneous Embedding of DNA Mismatches Within the RNA:DNA Hybrid of CRISPR-Cas9. Mitchell BP, Hsu RV, Medrano MA, Zewde NT, Narkhede YB, Palermo G. Front Mol Biosci 7 39 (2020)
  72. R-loop formation by dCas9 is mutagenic in Saccharomyces cerevisiae. Laughery MF, Mayes HC, Pedroza IK, Wyrick JJ. Nucleic Acids Res 47 2389-2401 (2019)
  73. 5' modifications to CRISPR-Cas9 gRNA can change the dynamics and size of R-loops and inhibit DNA cleavage. Mullally G, van Aelst K, Naqvi MM, Diffin FM, Karvelis T, Gasiunas G, Siksnys V, Szczelkun MD. Nucleic Acids Res 48 6811-6823 (2020)
  74. Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules. Shams A, Higgins SA, Fellmann C, Laughlin TG, Oakes BL, Lew R, Kim S, Lukarska M, Arnold M, Staahl BT, Doudna JA, Savage DF. Nat Commun 12 5664 (2021)
  75. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. Booth DS, King N. Elife 9 e56193 (2020)
  76. LncRNAs: Bridging environmental sensing and gene expression. Beck ZT, Xing Z, Tran EJ. RNA Biol 13 1189-1196 (2016)
  77. Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge. Hinz JM, Laughery MF, Wyrick JJ. J Biol Chem 291 24851-24856 (2016)
  78. Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Carabias A, Fuglsang A, Temperini P, Pape T, Sofos N, Stella S, Erlendsson S, Montoya G. Nat Commun 12 4476 (2021)
  79. Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Fu R, He W, Dou J, Villarreal OD, Bedford E, Wang H, Hou C, Zhang L, Wang Y, Ma D, Chen Y, Gao X, Depken M, Xu H. Nat Commun 13 474 (2022)
  80. Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex. Majumdar S, Ligon M, Skinner WC, Terns RM, Terns MP. Extremophiles 21 95-107 (2017)
  81. CRISPR-Cas9 Mediated DNA Unwinding Detected Using Site-Directed Spin Labeling. Tangprasertchai NS, Di Felice R, Zhang X, Slaymaker IM, Vazquez Reyes C, Jiang W, Rohs R, Qin PZ. ACS Chem Biol 12 1489-1493 (2017)
  82. Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors. Rallapalli KL, Komor AC, Paesani F. Sci Adv 6 eaaz2309 (2020)
  83. Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement. Boyle EA, Becker WR, Bai HB, Chen JS, Doudna JA, Greenleaf WJ. Sci Adv 7 eabe5496 (2021)
  84. Real-time observation of Cas9 postcatalytic domain motions. Wang Y, Mallon J, Wang H, Singh D, Hyun Jo M, Hua B, Bailey S, Ha T. Proc Natl Acad Sci U S A 118 e2010650118 (2021)
  85. Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response. Heler R, Wright AV, Vucelja M, Doudna JA, Marraffini LA. Cell Host Microbe 25 242-249.e3 (2019)
  86. Structure of a type IV CRISPR-Cas ribonucleoprotein complex. Zhou Y, Bravo JPK, Taylor HN, Steens JA, Jackson RN, Staals RHJ, Taylor DW. iScience 24 102201 (2021)
  87. A CRISPR-Cas9 repressor for epigenetic silencing of KRAS. Liu J, Sun M, Cho KB, Gao X, Guo B. Pharmacol Res 164 105304 (2021)
  88. R-Loop Analysis by Dot-Blot. Ramirez P, Crouch RJ, Cheung VG, Grunseich C. J Vis Exp (2021)
  89. A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration. Jakhanwal S, Cress BF, Maguin P, Lobba MJ, Marraffini LA, Doudna JA. Nucleic Acids Res 49 3546-3556 (2021)
  90. Guide RNA selection for CRISPR-Cas9 transfections in Plasmodium falciparum. Ribeiro JM, Garriga M, Potchen N, Crater AK, Gupta A, Ito D, Desai SA. Int J Parasitol 48 825-832 (2018)
  91. CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Majumdar S, Terns MP. Extremophiles 23 19-33 (2019)
  92. Genome oligopaint via local denaturation fluorescence in situ hybridization. Wang Y, Cottle WT, Wang H, Feng XA, Mallon J, Gavrilov M, Bailey S, Ha T. Mol Cell 81 1566-1577.e8 (2021)
  93. Mechanistic insights into the R-loop formation and cleavage in CRISPR-Cas12i1. Zhang B, Luo D, Li Y, Perčulija V, Chen J, Lin J, Ye Y, Ouyang S. Nat Commun 12 3476 (2021)
  94. Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Foss DV, Muldoon JJ, Nguyen DN, Carr D, Sahu SU, Hunsinger JM, Wyman SK, Krishnappa N, Mendonsa R, Schanzer EV, Shy BR, Vykunta VS, Allain V, Li Z, Marson A, Eyquem J, Wilson RC. Nat Biomed Eng 7 647-660 (2023)
  95. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling. Zheng W. Proteins 85 342-353 (2017)
  96. A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity. Eslami-Mossallam B, Klein M, Smagt CVD, Sanden KVD, Jones SK, Hawkins JA, Finkelstein IJ, Depken M. Nat Commun 13 1367 (2022)
  97. Decoupling the bridge helix of Cas12a results in a reduced trimming activity, increased mismatch sensitivity and impaired conformational transitions. Wörle E, Jakob L, Schmidbauer A, Zinner G, Grohmann D. Nucleic Acids Res 49 5278-5293 (2021)
  98. Exploring the Catalytic Mechanism of Cas9 Using Information Inferred from Endonuclease VII. Yoon H, Zhao LN, Warshel A. ACS Catal 9 1329-1336 (2019)
  99. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. Mekler V, Kuznedelov K, Severinov K. J Biol Chem 295 6509-6517 (2020)
  100. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA17 and AcrIIA18. Wang X, Li X, Ma Y, He J, Liu X, Yu G, Yin H, Zhang H. Nucleic Acids Res 50 512-521 (2022)
  101. Probing the stability of the SpCas9-DNA complex after cleavage. Aldag P, Welzel F, Jakob L, Schmidbauer A, Rutkauskas M, Fettes F, Grohmann D, Seidel R. Nucleic Acids Res 49 12411-12421 (2021)
  102. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Zhu Y, Huang Z. Natl Sci Rev 6 438-451 (2019)
  103. Dynamics changes of CRISPR-Cas9 systems induced by high fidelity mutations. Zheng L, Shi J, Mu Y. Phys Chem Chem Phys 20 27439-27448 (2018)
  104. Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer. Zhang Q, Chen Z, Wang F, Zhang S, Chen H, Gu X, Wen F, Jin J, Zhang X, Huang X, Shen B, Sun B. Nucleic Acids Res 49 12433-12444 (2021)
  105. Genome-Wide fitness analysis of group B Streptococcus in human amniotic fluid reveals a transcription factor that controls multiple virulence traits. Dammann AN, Chamby AB, Catomeris AJ, Davidson KM, Tettelin H, van Pijkeren JP, Gopalakrishna KP, Keith MF, Elder JL, Ratner AJ, Hooven TA. PLoS Pathog 17 e1009116 (2021)
  106. Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Fox K, Rallapalli KL, Komor AC. Genes (Basel) 11 E88 (2020)
  107. Targeting G-quadruplex Forming Sequences with Cas9. Balci H, Globyte V, Joo C. ACS Chem Biol 16 596-603 (2021)
  108. Catalytically Enhanced Cas9 through Directed Protein Evolution. Hand TH, Roth MO, Smith CL, Shiel E, Klein KN, Gilbert DM, Li H. CRISPR J 4 223-232 (2021)
  109. Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Ranzau BL, Komor AC. Biochemistry 58 330-335 (2019)
  110. Multiplexed Single-Molecule Experiments Reveal Nucleosome Invasion Dynamics of the Cas9 Genome Editor. Makasheva K, Bryan LC, Anders C, Panikulam S, Jinek M, Fierz B. J Am Chem Soc 143 16313-16319 (2021)
  111. Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search. Yang M, Sun R, Deng P, Yang Y, Wang W, Liu JG, Chen C. Chem Sci 12 12776-12784 (2021)
  112. iKA-CRISPR hESCs for inducible and multiplex orthogonal gene knockout and activation. Ma S, Lv J, Sun J, Tang P, Li H, Zhou H, Zhang Z, Lin Y, Rong Z. FEBS Lett 592 2238-2247 (2018)
  113. Anti-CRISPR AcrIIC5 is a dsDNA mimic that inhibits type II-C Cas9 effectors by blocking PAM recognition. Sun W, Zhao X, Wang J, Yang X, Cheng Z, Liu S, Wang J, Sheng G, Wang Y. Nucleic Acids Res 51 1984-1995 (2023)
  114. Directed evolution studies of a thermophilic Type II-C Cas9. Hand TH, Das A, Li H. Methods Enzymol 616 265-288 (2019)
  115. Internally inlaid SaCas9 base editors enable window specific base editing. Jiang L, Long J, Yang Y, Zhou L, Su J, Qin F, Tang W, Tao R, Chen Q, Yao S. Theranostics 12 4767-4778 (2022)
  116. Kinetic characterization of Cas9 enzymes. Liu MS, Gong S, Yu HH, Taylor DW, Johnson KA. Methods Enzymol 616 289-311 (2019)
  117. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology. Huck S, Bock J, Girardello J, Gauert M, Pul Ü. RNA Biol 16 397-403 (2019)
  118. A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex. Rutkauskas M, Songailiene I, Irmisch P, Kemmerich FE, Sinkunas T, Siksnys V, Seidel R. Nat Commun 13 7460 (2022)
  119. Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases. Chirco KR, Martinez C, Lamba DA. Vision Res 209 108257 (2023)
  120. CRISPR-Cas molecular beacons as tool for studies of assembly of CRISPR-Cas effector complexes and their interactions with DNA. Mekler V, Kuznedelov K, Minakhin L, Murugan K, Sashital DG, Severinov K. Methods Enzymol 616 337-363 (2019)
  121. Highly specific chimeric DNA-RNA-guided genome editing with enhanced CRISPR-Cas12a system. Kim H, Lee WJ, Kim CH, Oh Y, Gwon LW, Lee H, Song W, Hur JK, Lim KS, Jeong KJ, Nam KH, Won YS, Lee KR, Lee Y, Kim YH, Huh JW, Jun BH, Lee DS, Lee SH. Mol Ther Nucleic Acids 28 353-362 (2022)
  122. Versatile 3' Functionalization of CRISPR Single Guide RNA. Palumbo CM, Gutierrez-Bujari JM, O'Geen H, Segal DJ, Beal PA. Chembiochem 21 1633-1640 (2020)
  123. AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation. Sun W, Cheng Z, Wang J, Yang J, Li X, Wang J, Chen M, Yang X, Sheng G, Lou J, Wang Y. Proc Natl Acad Sci U S A 120 e2303675120 (2023)
  124. Allosteric activation of CRISPR-Cas12a requires the concerted movement of the bridge helix and helix 1 of the RuvC II domain. Wörle E, Newman A, D'Silva J, Burgio G, Grohmann D. Nucleic Acids Res 50 10153-10168 (2022)
  125. Base Editing in Human Cells to Produce Single-Nucleotide-Variant Clonal Cell Lines. Vasquez CA, Cowan QT, Komor AC. Curr Protoc Mol Biol 133 e129 (2020)
  126. Decoding CRISPR-Cas PAM recognition with UniDesign. Huang X, Zhou J, Yang D, Zhang J, Xia X, Chen YE, Xu J. Brief Bioinform 24 bbad133 (2023)
  127. Let the structural symphony begin. Ornes S. Nature 536 361-363 (2016)
  128. Rational Engineering of CRISPR-Cas9 Nuclease to Attenuate Position-Dependent Off-Target Effects. Zuo Z, Babu K, Ganguly C, Zolekar A, Newsom S, Rajan R, Wang YC, Liu J. CRISPR J 5 329-340 (2022)
  129. Single- and duplex TaqMan-quantitative PCR for determining the copy numbers of integrated selection markers during site-specific mutagenesis in Toxoplasma gondii by CRISPR-Cas9. Hänggeli KPA, Hemphill A, Müller N, Schimanski B, Olias P, Müller J, Boubaker G. PLoS One 17 e0271011 (2022)
  130. Site-Specific Labeling Reveals Cas9 Induces Partial Unwinding Without RNA/DNA Pairing in Sequences Distal to the PAM. Li Y, Liu Y, Singh J, Tangprasertchai NS, Trivedi R, Fang Y, Qin PZ. CRISPR J 5 341-352 (2022)
  131. Sniper2L is a high-fidelity Cas9 variant with high activity. Kim YH, Kim N, Okafor I, Choi S, Min S, Lee J, Bae SM, Choi K, Choi J, Harihar V, Kim Y, Kim JS, Kleinstiver BP, Lee JK, Ha T, Kim HH. Nat Chem Biol 19 972-980 (2023)
  132. The Wild-Type tRNA Adenosine Deaminase Enzyme TadA Is Capable of Sequence-Specific DNA Base Editing. Ranzau BL, Rallapalli KL, Evanoff M, Paesani F, Komor AC. Chembiochem 24 e202200788 (2023)
  133. A Machine Learning Approach to Identify the Importance of Novel Features for CRISPR/Cas9 Activity Prediction. Vora DS, Verma Y, Sundar D. Biomolecules 12 1123 (2022)
  134. A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets. Ham DT, Browne TS, Banglorewala PN, Wilson TL, Michael RK, Gloor GB, Edgell DR. Nat Commun 14 5514 (2023)
  135. Binding to the conserved and stably folded guide RNA pseudoknot induces Cas12a conformational changes during ribonucleoprotein assembly. Sudhakar S, Barkau CL, Chilamkurthy R, Barber HM, Pater AA, Moran SD, Damha MJ, Pradeepkumar PI, Gagnon KT. J Biol Chem 299 104700 (2023)
  136. Chimeric crRNAs with 19 DNA residues in the guide region show the retained DNA cleavage activity of Cas9 with potential to improve the specificity. Kim HY, Kang SJ, Jeon Y, An J, Park J, Lee HJ, Jang JE, Ahn J, Bang D, Chung HS, Jeong C, Ahn DR. Chem Commun (Camb) 55 3552-3555 (2019)
  137. DNB-based on-chip motif finding: A high-throughput method to profile different types of protein-DNA interactions. Li Z, Wang X, Xu D, Zhang D, Wang D, Dai X, Wang Q, Li Z, Gu Y, Ouyang W, Zhao S, Huang B, Gong J, Zhao J, Chen A, Shen Y, Dong Y, Zhang W, Xu X, Xu C, Jiang Y. Sci Adv 6 eabb3350 (2020)
  138. Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions. Chenouard V, Leray I, Tesson L, Remy S, Allan A, Archer D, Caulder A, Fortun A, Bernardeau K, Cherifi Y, Teboul L, David L, Anegon I. iScience 26 106399 (2023)
  139. Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints. Chen Q, Chuai G, Zhang H, Tang J, Duan L, Guan H, Li W, Li W, Wen J, Zuo E, Zhang Q, Liu Q. Nat Commun 14 7521 (2023)
  140. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2'-fluoro and Locked Nucleic Acid Nucleotides. Sakovina L, Vokhtantsev I, Vorobyeva M, Vorobyev P, Novopashina D. Int J Mol Sci 23 13460 (2022)
  141. Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain. Davletshin AI, Matveeva AA, Bachurin SS, Karpov DS, Garbuz DG. Int J Mol Sci 25 444 (2023)
  142. Split complementation of base editors to minimize off-target edits. Xiong X, Liu K, Li Z, Xia FN, Ruan XM, He X, Li JF. Nat Plants 9 1832-1847 (2023)
  143. Structural biology. Cas9, poised for DNA cleavage. Chen H, Bailey S. Science 351 811-812 (2016)
  144. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Bhattacharjee R, Das Roy L, Choudhury A. Discov Oncol 13 45 (2022)
  145. News Applications of CRISPR technologies to the development of gene and cell therapy. Park CS, Habib O, Lee Y, Hur JK. BMB Rep 57 2-11 (2024)
  146. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation. Wen S, Zhao Y, Qi X, Cai M, Huang K, Liu H, Kong DX. Comput Struct Biotechnol J 23 537-548 (2024)
  147. research-article Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency. Park SJ, Yoon S, Choi EH, Hyeon H, Lee K, Kim KP. BMB Rep 56 102-107 (2023)
  148. Genome Editing and Diabetic Cardiomyopathy. Kambis TN, Mishra PK. Adv Exp Med Biol 1396 103-114 (2023)
  149. Group B Streptococcus Cas9 variants provide insight into programmable gene repression and CRISPR-Cas transcriptional effects. Gopalakrishna KP, Hillebrand GH, Bhavana VH, Elder JL, D'Mello A, Tettelin H, Hooven TA. Commun Biol 6 620 (2023)
  150. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. Zhang L, He W, Fu R, Wang S, Chen Y, Xu H. Nucleic Acids Res 51 9880-9893 (2023)
  151. Heterodimeric DNA motif synthesis and validations. Wong KC, Lin J, Li X, Lin Q, Liang C, Song YQ. Nucleic Acids Res 47 1628-1636 (2019)
  152. Nonspecific interactions between Cas12a and dsDNA located downstream of the PAM mediate target search and assist AsCas12a for DNA cleavage. Sun R, Zhao Y, Wang W, Liu JG, Chen C. Chem Sci 14 3839-3851 (2023)
  153. Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs. Huszár K, Welker Z, Györgypál Z, Tóth E, Ligeti Z, Kulcsár PI, Dancsó J, Tálas A, Krausz SL, Varga É, Welker E. Nucleic Acids Res 51 5847-5863 (2023)
  154. Shifted PAMs generate DNA overhangs and enhance SpCas9 post-catalytic complex dissociation. Wang J, Le Gall J, Frock RL, Strick TR. Nat Struct Mol Biol 30 1707-1718 (2023)
  155. Substrate-independent activation pathways of the CRISPR-Cas9 HNH nuclease. Wang J, Maschietto F, Qiu T, Arantes PR, Skeens E, Palermo G, Lisi GP, Batista VS. Biophys J 122 4635-4644 (2023)