5eqh Citations

Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides.

Proc Natl Acad Sci U S A 113 4711-6 (2016)
Related entries: 5eqg, 5eqi

Cited: 102 times
EuropePMC logo PMID: 27078104

Abstract

Cancerous cells have an acutely increased demand for energy, leading to increased levels of human glucose transporter 1 (hGLUT1). This up-regulation suggests hGLUT1 as a target for therapeutic inhibitors addressing a multitude of cancer types. Here, we present three inhibitor-bound, inward-open structures of WT-hGLUT1 crystallized with three different inhibitors: cytochalasin B, a nine-membered bicyclic ring fused to a 14-membered macrocycle, which has been described extensively in the literature of hGLUTs, and two previously undescribed Phe amide-derived inhibitors. Despite very different chemical backbones, all three compounds bind in the central cavity of the inward-open state of hGLUT1, and all binding sites overlap the glucose-binding site. The inhibitory action of the compounds was determined for hGLUT family members, hGLUT1-4, using cell-based assays, and compared with homology models for these hGLUT members. This comparison uncovered a probable basis for the observed differences in inhibition between family members. We pinpoint regions of the hGLUT proteins that can be targeted to achieve isoform selectivity, and show that these same regions are used for inhibitors with very distinct structural backbones. The inhibitor cocomplex structures of hGLUT1 provide an important structural insight for the design of more selective inhibitors for hGLUTs and hGLUT1 in particular.

Articles - 5eqh mentioned but not cited (8)

  1. Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Kapoor K, Finer-Moore JS, Pedersen BP, Caboni L, Waight A, Hillig RC, Bringmann P, Heisler I, Müller T, Siebeneicher H, Stroud RM. Proc Natl Acad Sci U S A 113 4711-4716 (2016)
  2. New insights into GluT1 mechanics during glucose transfer. Galochkina T, Ng Fuk Chong M, Challali L, Abbar S, Etchebest C. Sci Rep 9 998 (2019)
  3. Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family. Custódio TF, Paulsen PA, Frain KM, Pedersen BP. Life Sci Alliance 4 e202000858 (2021)
  4. GLUT1 and TUBB4 in Glioblastoma Could be Efficacious Targets. Guda MR, Labak CM, Omar SI, Asuthkar S, Airala S, Tuszynski J, Tsung AJ, Velpula KK. Cancers (Basel) 11 E1308 (2019)
  5. Conformational Studies of Glucose Transporter 1 (GLUT1) as an Anticancer Drug Target. Almahmoud S, Wang X, Vennerstrom JL, Zhong HA. Molecules 24 E2159 (2019)
  6. Genetic Analysis of Signal Generation by the Rgt2 Glucose Sensor of Saccharomyces cerevisiae. Scharff-Poulsen P, Moriya H, Johnston M. G3 (Bethesda) 8 2685-2696 (2018)
  7. Insights into Substrate and Inhibitor Selectivity among Human GLUT Transporters through Comparative Modeling and Molecular Docking. Ferreira RS, Pons JL, Labesse G. ACS Omega 4 4748-4760 (2019)
  8. Chemical reactivity, molecular electrostatic potential and in-silico analysis on benzimidazole fungicide benomyl. Mol GPS, Aruldhas D, Joe IH. Heliyon 8 e11417 (2022)


Reviews citing this publication (33)

  1. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. Ancey PB, Contat C, Meylan E. FEBS J 285 2926-2943 (2018)
  2. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Dienel GA. J Neurosci Res 95 2103-2125 (2017)
  3. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Zambrano A, Molt M, Uribe E, Salas M. Int J Mol Sci 20 E3374 (2019)
  4. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Holman GD. Pflugers Arch 472 1155-1175 (2020)
  5. Small-Molecule Inhibition of Glucose Transporters GLUT-1-4. Reckzeh ES, Waldmann H. Chembiochem 21 45-52 (2020)
  6. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters. Yan N. J Mol Biol 429 2710-2725 (2017)
  7. Glucose metabolic crosstalk and regulation in brain function and diseases. Zhang S, Lachance BB, Mattson MP, Jia X. Prog Neurobiol 204 102089 (2021)
  8. Chemical biology probes of mammalian GLUT structure and function. Holman GD. Biochem J 475 3511-3534 (2018)
  9. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Tilekar K, Upadhyay N, Iancu CV, Pokrovsky V, Choe JY, Ramaa CS. Biochim Biophys Acta Rev Cancer 1874 188457 (2020)
  10. Development of Glucose Transporter (GLUT) Inhibitors. Reckzeh ES, Waldmann H. European J Org Chem 2020 2321-2329 (2020)
  11. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. J Biol Chem 296 100557 (2021)
  12. Glucose transportation in the brain and its impairment in Huntington disease: one more shade of the energetic metabolism failure? Morea V, Bidollari E, Colotti G, Fiorillo A, Rosati J, De Filippis L, Squitieri F, Ilari A. Amino Acids 49 1147-1157 (2017)
  13. Molecular Tools for Facilitative Carbohydrate Transporters (Gluts). Tanasova M, Fedie JR. Chembiochem 18 1774-1788 (2017)
  14. The wHole Story About Fenestrations in LSEC. Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. Front Physiol 12 735573 (2021)
  15. Erythroid glucose transport in health and disease. Guizouarn H, Allegrini B. Pflugers Arch 472 1371-1383 (2020)
  16. The role of SLC transporters for brain health and disease. Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. Cell Mol Life Sci 79 20 (2021)
  17. Ligand Screening Systems for Human Glucose Transporters as Tools in Drug Discovery. Schmidl S, Iancu CV, Choe JY, Oreb M. Front Chem 6 183 (2018)
  18. Mechanistic Insights into Protein Stability and Self-aggregation in GLUT1 Genetic Variants Causing GLUT1-Deficiency Syndrome. Raja M, Kinne RKH. J Membr Biol 253 87-99 (2020)
  19. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Biomolecules 11 1692 (2021)
  20. Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate. Yadav S, Pandey SK, Goel Y, Temre MK, Singh SM. Front Pharmacol 10 728 (2019)
  21. Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Zhang Y, Li Q, Huang Z, Li B, Nice EC, Huang C, Wei L, Zou B. Cancers (Basel) 14 4568 (2022)
  22. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Pal S, Sharma A, Mathew SP, Jaganathan BG. Front Immunol 13 955476 (2022)
  23. Metabolic reprogramming in cancer: Mechanisms and therapeutics. Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. MedComm (2020) 4 e218 (2023)
  24. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Temre MK, Kumar A, Singh SM. Front Pharmacol 13 1035510 (2022)
  25. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. J Clin Endocrinol Metab 107 909-928 (2022)
  26. Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. Galluccio M, Console L, Pochini L, Scalise M, Giangregorio N, Indiveri C. Int J Mol Sci 23 3823 (2022)
  27. Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. Pochini L, Galluccio M. Life (Basel) 12 1206 (2022)
  28. Advances in Fungal Phenaloenones-Natural Metabolites with Great Promise: Biosynthesis, Bioactivities, and an In Silico Evaluation of Their Potential as Human Glucose Transporter 1 Inhibitors. Ibrahim SRM, Omar AM, Muhammad YA, Alqarni AA, Alshehri AM, Mohamed SGA, Abdallah HM, Elfaky MA, Mohamed GA, Xiao J. Molecules 27 6797 (2022)
  29. Cytochalasans and Their Impact on Actin Filament Remodeling. Lambert C, Schmidt K, Karger M, Stadler M, Stradal TEB, Rottner K. Biomolecules 13 1247 (2023)
  30. Functional importance of glucose transporters and chromatin epigenetic factors in Glioblastoma Multiforme (GBM): possible therapeutics. Chamarthy S, Mekala JR. Metab Brain Dis 38 1441-1469 (2023)
  31. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Front Oncol 12 933827 (2022)
  32. Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters. Sauve S, Williamson J, Polasa A, Moradi M. Membranes (Basel) 13 462 (2023)
  33. Targeting SLC transporters: small molecules as modulators and therapeutic opportunities. Schlessinger A, Zatorski N, Hutchinson K, Colas C. Trends Biochem Sci 48 801-814 (2023)

Articles citing this publication (61)

  1. Identification and Optimization of the First Highly Selective GLUT1 Inhibitor BAY-876. Siebeneicher H, Cleve A, Rehwinkel H, Neuhaus R, Heisler I, Müller T, Bauser M, Buchmann B. ChemMedChem 11 2261-2271 (2016)
  2. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Drew D, North RA, Nagarathinam K, Tanabe M. Chem Rev 121 5289-5335 (2021)
  3. Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. McMillan EA, Ryu MJ, Diep CH, Mendiratta S, Clemenceau JR, Vaden RM, Kim JH, Motoyaji T, Covington KR, Peyton M, Huffman K, Wu X, Girard L, Sung Y, Chen PH, Mallipeddi PL, Lee JY, Hanson J, Voruganti S, Yu Y, Park S, Sudderth J, DeSevo C, Muzny DM, Doddapaneni H, Gazdar A, Gibbs RA, Hwang TH, Heymach JV, Wistuba I, Coombes KR, Williams NS, Wheeler DA, MacMillan JB, Deberardinis RJ, Roth MG, Posner BA, Minna JD, Kim HS, White MA. Cell 173 864-878.e29 (2018)
  4. Ovarian Cancer Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor Activity of BAY-876. Ma Y, Wang W, Idowu MO, Oh U, Wang XY, Temkin SM, Fang X. Cancers (Basel) 11 E33 (2018)
  5. Anticancer agents interacting with membrane glucose transporters. Granchi C, Fortunato S, Minutolo F. Medchemcomm 7 1716-1729 (2016)
  6. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y, Bershadsky AD, Viasnoff V, Sellers JR. J Cell Sci 134 jcs253708 (2021)
  7. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. Cisternas P, Zolezzi JM, Martinez M, Torres VI, Wong GW, Inestrosa NC. J Neurochem 149 54-72 (2019)
  8. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer-effects of hypoxia. Hamann I, Krys D, Glubrecht D, Bouvet V, Marshall A, Vos L, Mackey JR, Wuest M, Wuest F. FASEB J 32 5104-5118 (2018)
  9. Isolation of state-dependent monoclonal antibodies against the 12-transmembrane domain glucose transporter 4 using virus-like particles. Tucker DF, Sullivan JT, Mattia KA, Fisher CR, Barnes T, Mabila MN, Wilf R, Sulli C, Pitts M, Payne RJ, Hall M, Huston-Paterson D, Deng X, Davidson E, Willis SH, Doranz BJ, Chambers R, Rucker JB. Proc Natl Acad Sci U S A 115 E4990-E4999 (2018)
  10. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Wang J, Yu J, Zhang Y, Kahkoska AR, Wang Z, Fang J, Whitelegge JP, Li S, Buse JB, Gu Z. Proc Natl Acad Sci U S A 116 10744-10748 (2019)
  11. CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1. Chen J, Zhang C, Mi Y, Chen F, Du D. Mol Cell Biochem 436 79-86 (2017)
  12. Engineered XylE as a tool for mechanistic investigation and ligand discovery of the glucose transporters GLUTs. Jiang X, Wu J, Ke M, Zhang S, Yuan Y, Lin JY, Yan N. Cell Discov 5 14 (2019)
  13. Chemical Modulation of the Human Oligopeptide Transporter 1, hPepT1. Colas C, Masuda M, Sugio K, Miyauchi S, Hu Y, Smith DE, Schlessinger A. Mol Pharm 14 4685-4693 (2017)
  14. First Total Synthesis, Structure Revision, and Natural History of the Smallest Cytochalasin: (+)-Periconiasin G. Zaghouani M, Kunz C, Guédon L, Blanchard F, Nay B. Chemistry 22 15257-15260 (2016)
  15. Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein engineering. Heitmeier MR, Hresko RC, Edwards RL, Prinsen MJ, Ilagan MXG, Odom John AR, Hruz PW. PLoS One 14 e0216457 (2019)
  16. Cryo-EM structure of human glucose transporter GLUT4. Yuan Y, Kong F, Xu H, Zhu A, Yan N, Yan C. Nat Commun 13 2671 (2022)
  17. Permuted 2,4-thiazolidinedione (TZD) analogs as GLUT inhibitors and their in-vitro evaluation in leukemic cells. Tilekar K, Upadhyay N, Schweipert M, Hess JD, Macias LH, Mrowka P, Meyer-Almes FJ, Aguilera RJ, Iancu CV, Choe JY, Ramaa CS. Eur J Pharm Sci 154 105512 (2020)
  18. HEMGN and SLC2A1 might be potential diagnostic biomarkers of steroid-induced osteonecrosis of femoral head: study based on WGCNA and DEGs screening. Wu Z, Wen Y, Fan G, He H, Zhou S, Chen L. BMC Musculoskelet Disord 22 85 (2021)
  19. Novel N,N-dialkyl cyanocinnamic acids as monocarboxylate transporter 1 and 4 inhibitors. Jonnalagadda S, Jonnalagadda SK, Ronayne CT, Nelson GL, Solano LN, Rumbley J, Holy J, Mereddy VR, Drewes LR. Oncotarget 10 2355-2368 (2019)
  20. Letter Targeting GLUT1 in acute myeloid leukemia to overcome cytarabine resistance. Åbacka H, Hansen JS, Huang P, Venskutonytė R, Hyrenius-Wittsten A, Poli G, Tuccinardi T, Granchi C, Minutolo F, Hagström-Andersson AK, Lindkvist-Petersson K. Haematologica 106 1163-1166 (2021)
  21. Structure guided design and synthesis of furyl thiazolidinedione derivatives as inhibitors of GLUT 1 and GLUT 4, and evaluation of their anti-leukemic potential. Tilekar K, Upadhyay N, Hess JD, Macias LH, Mrowka P, Aguilera RJ, Meyer-Almes FJ, Iancu CV, Choe JY, Ramaa CS. Eur J Med Chem 202 112603 (2020)
  22. A Distal to Proximal Gradient of Human Choroid Plexus Development, with Antagonistic Expression of Glut1 and AQP1 in Mature Cells vs. Calbindin and PCNA in Proliferative Cells. Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Carmona-Calero EM, Meyer G, Castañeyra-Perdomo A. Front Neuroanat 10 87 (2016)
  23. Extracellular gating of glucose transport through GLUT 1. Chen LY, Phelix CF. Biochem Biophys Res Commun 511 573-578 (2019)
  24. Gibbs Free-Energy Gradient along the Path of Glucose Transport through Human Glucose Transporter 3. Liang H, Bourdon AK, Chen LY, Phelix CF, Perry G. ACS Chem Neurosci 9 2815-2823 (2018)
  25. Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Ameliorated Insulin Resistance in Type 2 Diabetes Mellitus Rats. Yap SK, Tan KL, Abd Rahaman NY, Saulol Hamid NF, Ooi J, Tor YS, Daniel Looi QH, Stella Tan LK, How CW, Foo JB. Pharmaceutics 14 649 (2022)
  26. Molecular basis for inhibiting human glucose transporters by exofacial inhibitors. Wang N, Zhang S, Yuan Y, Xu H, Defossa E, Matter H, Besenius M, Derdau V, Dreyer M, Halland N, He KH, Petry S, Podeschwa M, Tennagels N, Jiang X, Yan N. Nat Commun 13 2632 (2022)
  27. A One-Step Extraction and Luminescence Assay for Quantifying Glucose and ATP Levels in Cultured HepG2 Cells. Csepregi R, Temesfői V, Sali N, Poór M, W Needs P, A Kroon P, Kőszegi T. Int J Mol Sci 19 E2670 (2018)
  28. Development of Novel Silyl Cyanocinnamic Acid Derivatives as Metabolic Plasticity Inhibitors for Cancer Treatment. Nelson GL, Ronayne CT, Solano LN, Jonnalagadda SK, Jonnalagadda S, Rumbley J, Holy J, Rose-Hellekant T, Drewes LR, Mereddy VR. Sci Rep 9 18266 (2019)
  29. Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Brito A, Pereira PMR, Soares da Costa D, Reis RL, Ulijn RV, Lewis JS, Pires RA, Pashkuleva I. Chem Sci 11 3737-3744 (2020)
  30. Methylation and Acetylation Enhanced the Antidiabetic Activity of Some Selected Flavonoids: In Vitro, Molecular Modelling and Structure Activity Relationship-Based Study. Ahmed QU, Sarian MN, Mat So'ad SZ, Latip J, Arief Ichwan SJ, Hussein NN, Taher M, Alhassan AM, Hamidon H, Fakurazi S. Biomolecules 8 E149 (2018)
  31. Monoethanolamine-induced glucose deprivation promotes apoptosis through metabolic rewiring in prostate cancer. Garlapati C, Joshi S, Turaga RC, Mishra M, Reid MD, Kapoor S, Artinian L, Rehder V, Aneja R. Theranostics 11 9089-9106 (2021)
  32. Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Sun J, Liu XR, Li S, He P, Li W, Gross ML. Nat Commun 12 7270 (2021)
  33. A Novel Multiple-Read Screen for Metabolically Active Compounds Based on a Genetically Encoded FRET Sensor for ATP. Zhao Z, Rajagopalan R, Zweifach A. SLAS Discov 23 907-918 (2018)
  34. A Twist-Assisted Biphenyl Photosensitizer Passable Through Glucose Channel. Tsuga Y, Katou M, Kuwabara S, Kanamori T, Ogura SI, Okazaki S, Ohtani H, Yuasa H. Chem Asian J 14 2067-2071 (2019)
  35. Diversely Functionalised Cytochalasins through Mutasynthesis and Semi-Synthesis. Wang C, Lambert C, Hauser M, Deuschmann A, Zeilinger C, Rottner K, Stradal TEB, Stradal TEB, Stadler M, Skellam EJ, Cox RJ. Chemistry 26 13578-13583 (2020)
  36. Interpreting the molecular mechanisms of disease variants in human transmembrane proteins. Tiemann JKS, Zschach H, Lindorff-Larsen K, Stein A. Biophys J 122 2176-2191 (2023)
  37. Methylation Drives SLC2A1 Transcription and Ferroptosis Process Decreasing Autophagy Pressure in Colon Cancer. Zou J, Li Z, Xie J, Wu Z, Huang Y, Xie H, Xu H, Huang Y, Zhou H. J Oncol 2022 9077424 (2022)
  38. Progress in the Chemistry of Cytochalasans. Zhu H, Chen C, Tong Q, Zhou Y, Ye Y, Gu L, Zhang Y. Prog Chem Org Nat Prod 114 1-134 (2021)
  39. iMusta4SLC: Database for the structural property and variations of solute carrier transporters. Higuchi A, Nonaka N, Yura K. Biophys Physicobiol 15 94-103 (2018)
  40. Glutor, a Glucose Transporter Inhibitor, Exerts Antineoplastic Action on Tumor Cells of Thymic Origin: Implication of Modulated Metabolism, Survival, Oxidative Stress, Mitochondrial Membrane Potential, pH Homeostasis, and Chemosensitivity. Temre MK, Yadav S, Goel Y, Pandey SK, Kumar A, Singh SM. Front Oncol 12 925666 (2022)
  41. Kinetic Basis of Cis- and Trans-Allostery in GLUT1-Mediated Sugar Transport. Lloyd KP, Ojelabi OA, Simon AH, De Zutter JK, Carruthers A. J Membr Biol 251 131-152 (2018)
  42. The Recognition of Unrelated Ligands by Identical Proteins. Pottel J, Levit A, Korczynska M, Fischer M, Shoichet BK. ACS Chem Biol 13 2522-2533 (2018)
  43. An Integrated Proteomic and Glycoproteomic Investigation Reveals Alterations in the N-Glycoproteomic Network Induced by 2-Deoxy-D-Glucose in Colorectal Cancer Cells. Ma C, Tsai HY, Zhang Q, Senavirathna L, Li L, Chin LS, Chen R, Pan S. Int J Mol Sci 23 8251 (2022)
  44. Discovery of New Glucose Uptake Inhibitors as Potential Anticancer Agents by Non-Radioactive Cell-Based Assays. Hung HC, Li LC, Guh JH, Kung FL, Hsu LC. Molecules 27 8106 (2022)
  45. Discrimination of GLUTs by Fructose Isomers Enables Simultaneous Screening of GLUT5 and GLUT2 Activity in Live Cells. Gora N, Weselinski LJ, Begoyan VV, Cooper A, Choe JY, Tanasova M. ACS Chem Biol 18 1089-1100 (2023)
  46. Exploring the metabolic landscape of pancreatic ductal adenocarcinoma cells using genome-scale metabolic modeling. Islam MM, Goertzen A, Singh PK, Saha R. iScience 25 104483 (2022)
  47. GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems. Iancu CV, Bocci G, Ishtikhar M, Khamrai M, Oreb M, Oprea TI, Choe JY. Sci Rep 12 1429 (2022)
  48. Tyrosine Kinase Inhibitors Reduce Glucose Uptake by Binding to an Exofacial Site on hGLUT-1: Influence on 18 F-FDG PET Uptake. Damaraju VL, Aminpour M, Kuzma M, Winter P, Preto J, Tuszynski J, McEwan ABJ, Sawyer MB. Clin Transl Sci 14 847-858 (2021)
  49. Visualizing inflammation with an M1 macrophage selective probe via GLUT1 as the gating target. Cho H, Kwon HY, Sharma A, Lee SH, Liu X, Miyamoto N, Kim JJ, Im SH, Kang NY, Chang YT. Nat Commun 13 5974 (2022)
  50. A Fluorescence-Based Assay to Probe Inhibitory Effect of Fructose Mimics on GLUT5 Transport in Breast Cancer Cells. Rana N, Aziz MA, Serya RAT, Lasheen DS, Samir N, Wuest F, Abouzid KAM, West FG. ACS Bio Med Chem Au 3 51-61 (2023)
  51. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Suades A, Qureshi A, McComas SE, Coinçon M, Rudling A, Chatzikyriakidou Y, Landreh M, Carlsson J, Drew D. Nat Commun 14 4070 (2023)
  52. Exploring shared therapeutic targets in diabetic cardiomyopathy and diabetic foot ulcers through bioinformatics analysis. Wu H, Yang Z, Wang J, Bu Y, Wang Y, Xu K, Li J, Yan C, Liu D, Han Y. Sci Rep 14 230 (2024)
  53. Identification and Validation of Potential Ferroptosis-Related Genes in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Chen N, Meng Y, Zhan H, Li G. Medicina (Kaunas) 59 297 (2023)
  54. Interaction of amisulpride with GLUT1 at the blood-brain barrier. Relevance to Alzheimer's disease. Boyanova ST, Lloyd-Morris E, Corpe C, Rahman KM, Farag DB, Page LK, Wang H, Fleckney AL, Gatt A, Troakes C, Vizcay-Barrena G, Fleck R, Reeves SJ, Thomas SA. PLoS One 18 e0286278 (2023)
  55. Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe. Oronova A, Tanasova M. Int J Mol Sci 24 173 (2022)
  56. Molecular Genetics of GLUT1DS Italian Pediatric Cohort: 10 Novel Disease-Related Variants and Structural Analysis. Mauri A, Duse A, Palm G, Previtali R, Bova SM, Olivotto S, Benedetti S, Coscia F, Veggiotti P, Cereda C. Int J Mol Sci 23 13560 (2022)
  57. Multifaceted Study on a Cytochalasin Scaffold: Lessons on Reactivity, Multidentate Catalysis, and Anticancer Properties. Zaghouani M, Gayraud O, Jactel V, Prévost S, Dezaire A, Sabbah M, Escargueil A, Lai TL, Le Clainche C, Rocques N, Romero S, Gautreau A, Blanchard F, Frison G, Nay B. Chemistry 24 16686-16691 (2018)
  58. The Neurotoxic Effect of Environmental Temperature Variation in Adult Zebrafish (Danio rerio). Maffioli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Toni M. Int J Mol Sci 24 15735 (2023)
  59. Transporter proteins knowledge graph construction and its application in drug development. Chen XH, Ruan Y, Liu YG, Duan XY, Jiang F, Tang H, Zhang HY, Zhang QY. Comput Struct Biotechnol J 21 2973-2984 (2023)
  60. Turn-on Rhodamine Glycoconjugates Enable Real-Time GLUT Activity Monitoring in Live Cells and In Vivo. Nyansa MMS, Oronova A, Gora N, Geborkoff MR, Ostlund NR, Fritz DR, Werner T, Tanasova M. Chem Biomed Imaging 1 637-647 (2023)
  61. Yeast as a tool for membrane protein production and structure determination. Carlesso A, Delgado R, Ruiz Isant O, Uwangue O, Valli D, Bill RM, Hedfalk K. FEMS Yeast Res 22 foac047 (2022)