4r8p Citations

Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome.

Nature 514 591-6 (2014)
Cited: 200 times
EuropePMC logo PMID: 25355358

Abstract

The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in many eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys 119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the human Ring1B-Bmi1-UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with several nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome.

Reviews - 4r8p mentioned but not cited (9)

  1. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat Rev Mol Cell Biol 17 626-642 (2016)
  2. Nucleosome structure and function. McGinty RK, Tan S. Chem Rev 115 2255-2273 (2015)
  3. Molecular architecture of polycomb repressive complexes. Chittock EC, Latwiel S, Miller TC, Müller CW. Biochem Soc Trans 45 193-205 (2017)
  4. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases. Vittal V, Stewart MD, Brzovic PS, Klevit RE. J Biol Chem 290 21244-21251 (2015)
  5. Fighting Cancer with Transition Metal Complexes: From Naked DNA to Protein and Chromatin Targeting Strategies. Palermo G, Magistrato A, Riedel T, von Erlach T, Davey CA, Dyson PJ, Rothlisberger U. ChemMedChem 11 1199-1210 (2016)
  6. Principles of nucleosome recognition by chromatin factors and enzymes. McGinty RK, Tan S. Curr Opin Struct Biol 71 16-26 (2021)
  7. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Barbour H, Daou S, Hendzel M, Affar EB. Nat Commun 11 5947 (2020)
  8. Touch, act and go: landing and operating on nucleosomes. Speranzini V, Pilotto S, Sixma TK, Mattevi A. EMBO J 35 376-388 (2016)
  9. BRCA1/BARD1 is a nucleosome reader and writer. Witus SR, Zhao W, Brzovic PS, Klevit RE. Trends Biochem Sci 47 582-595 (2022)

Articles - 4r8p mentioned but not cited (26)

  1. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. McGinty RK, Henrici RC, Tan S. Nature 514 591-596 (2014)
  2. Mechanism of Cross-talk between H2B Ubiquitination and H3 Methylation by Dot1L. Worden EJ, Hoffmann NA, Hicks CW, Wolberger C. Cell 176 1490-1501.e12 (2019)
  3. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Eustermann S, Schall K, Kostrewa D, Lakomek K, Strauss M, Moldt M, Hopfner KP. Nature 556 386-390 (2018)
  4. Structural basis of nucleosome-dependent cGAS inhibition. Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, Zhang Q. Science 370 450-454 (2020)
  5. Structural basis for spumavirus GAG tethering to chromatin. Lesbats P, Serrao E, Maskell DP, Pye VE, O'Reilly N, Lindemann D, Engelman AN, Cherepanov P. Proc Natl Acad Sci U S A 114 5509-5514 (2017)
  6. Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6-Bre1. Gallego LD, Ghodgaonkar Steger M, Polyansky AA, Schubert T, Zagrovic B, Zheng N, Clausen T, Herzog F, Köhler A. Proc Natl Acad Sci U S A 113 10553-10558 (2016)
  7. BRCA1/BARD1 site-specific ubiquitylation of nucleosomal H2A is directed by BARD1. Witus SR, Burrell AL, Farrell DP, Kang J, Wang M, Hansen JM, Pravat A, Tuttle LM, Stewart MD, Brzovic PS, Chatterjee C, Zhao W, DiMaio F, Kollman JM, Klevit RE. Nat Struct Mol Biol 28 268-277 (2021)
  8. Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome. Fang Q, Chen P, Wang M, Fang J, Yang N, Li G, Xu RM. Elife 5 e11911 (2016)
  9. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs. Quignot C, Rey J, Yu J, Tufféry P, Guerois R, Andreani J. Nucleic Acids Res 46 W408-W416 (2018)
  10. Structural basis of specific H2A K13/K15 ubiquitination by RNF168. Horn V, Uckelmann M, Zhang H, Eerland J, Aarsman I, le Paige UB, Davidovich C, Sixma TK, van Ingen H. Nat Commun 10 1751 (2019)
  11. De novo mutation in RING1 with epigenetic effects on neurodevelopment. Pierce SB, Stewart MD, Gulsuner S, Walsh T, Dhall A, McClellan JM, Klevit RE, King MC. Proc Natl Acad Sci U S A 115 1558-1563 (2018)
  12. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Shukla S, Ying W, Gray F, Yao Y, Simes ML, Zhao Q, Miao H, Cho HJ, González-Alonso P, Winkler A, Lund G, Purohit T, Kim E, Zhang X, Ray JM, He S, Nikolaidis C, Ndoj J, Wang J, Jaremko Ł, Jaremko M, Ryan RJH, Guzman ML, Grembecka J, Cierpicki T. Nat Chem Biol 17 784-793 (2021)
  13. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma. McBride MJ, Mashtalir N, Winter EB, Dao HT, Filipovski M, D'Avino AR, Seo HS, Umbreit NT, St Pierre R, Valencia AM, Qian K, Zullow HJ, Jaffe JD, Dhe-Paganon S, Muir TW, Kadoch C. Nat Struct Mol Biol 27 836-845 (2020)
  14. Modeling oblong proteins and water-mediated interfaces with RosettaDock in CAPRI rounds 28-35. Marze NA, Jeliazkov JR, Roy Burman SS, Boyken SE, DiMaio F, Gray JJ. Proteins 85 479-486 (2017)
  15. Structural insights into assembly and function of the RSC chromatin remodeling complex. Baker RW, Reimer JM, Carman PJ, Turegun B, Arakawa T, Dominguez R, Leschziner AE. Nat Struct Mol Biol 28 71-80 (2021)
  16. MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing. Honorato RV, Roel-Touris J, Bonvin AMJJ. Front Mol Biosci 6 102 (2019)
  17. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions. Xu X, Qiu L, Yan C, Ma Z, Grinter SZ, Zou X. Proteins 85 424-434 (2017)
  18. Missense Mutations of the Pro65 Residue of PCGF2 Cause a Recognizable Syndrome Associated with Craniofacial, Neurological, Cardiovascular, and Skeletal Features. Turnpenny PD, Wright MJ, Sloman M, Caswell R, van Essen AJ, Gerkes E, Pfundt R, White SM, Shaul-Lotan N, Carpenter L, Schaefer GB, Fryer A, Innes AM, Forbes KP, Chung WK, McLaughlin H, Henderson LB, Roberts AE, Heath KE, Paumard-Hernández B, Gener B, DDD study, Fawcett KA, Gjergja-Juraški R, Pilz DT, Fry AE. Am J Hum Genet 103 786-793 (2018)
  19. Protein Interaction Z Score Assessment (PIZSA): an empirical scoring scheme for evaluation of protein-protein interactions. Roy AA, Dhawanjewar AS, Sharma P, Singh G, Madhusudhan MS. Nucleic Acids Res 47 W331-W337 (2019)
  20. Rare deleterious de novo missense variants in Rnf2/Ring2 are associated with a neurodevelopmental disorder with unique clinical features. Luo X, Schoch K, Jangam SV, Bhavana VH, Graves HK, Kansagra S, Jasien JM, Stong N, Keren B, Mignot C, Ravelli C, Undiagnosed Diseases Network, Bellen HJ, Wangler MF, Shashi V, Yamamoto S. Hum Mol Genet 30 1283-1292 (2021)
  21. SARS-unique fold in the Rousettus bat coronavirus HKU9. Hammond RG, Tan X, Johnson MA. Protein Sci 26 1726-1737 (2017)
  22. Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods. Gildenberg MS, Washington MT. PLoS One 14 e0223875 (2019)
  23. DNA Binding Reorganizes the Intrinsically Disordered C-Terminal Region of PSC in Drosophila PRC1. Kang JJ, Faubert D, Boulais J, Francis NJ. J Mol Biol 432 4856-4871 (2020)
  24. Performance of ZDOCK and IRAD in CAPRI rounds 28-34. Vreven T, Pierce BG, Borrman TM, Weng Z. Proteins 85 408-416 (2017)
  25. Elucidation of protein function using computational docking and hotspot analysis by ClusPro and FTMap. Jones G, Jindal A, Ghani U, Kotelnikov S, Egbert M, Hashemi N, Vajda S, Padhorny D, Kozakov D. Acta Crystallogr D Struct Biol 78 690-697 (2022)
  26. research-article Mechanism of histone H2B monoubiquitination by Bre1. Zhao F, Hicks CW, Wolberger C. bioRxiv 2023.03.27.534461 (2023)


Reviews citing this publication (60)

  1. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu Rev Biochem 86 129-157 (2017)
  2. E2 enzymes: more than just middle men. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. Cell Res 26 423-440 (2016)
  3. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem Rev 118 889-918 (2018)
  4. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Blackledge NP, Rose NR, Klose RJ. Nat Rev Mol Cell Biol 16 643-649 (2015)
  5. Mechanisms and functions of ribosome-associated protein quality control. Joazeiro CAP. Nat Rev Mol Cell Biol 20 368-383 (2019)
  6. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. Dantuma NP, van Attikum H. EMBO J 35 6-23 (2016)
  7. Principles of Ubiquitin-Dependent Signaling. Oh E, Akopian D, Rape M. Annu Rev Cell Dev Biol 34 137-162 (2018)
  8. Nucleosome structure and dynamics are coming of age. Zhou K, Gaullier G, Luger K. Nat Struct Mol Biol 26 3-13 (2019)
  9. Histone ubiquitination in the DNA damage response. Uckelmann M, Sixma TK. DNA Repair (Amst) 56 92-101 (2017)
  10. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Valencia AM, Kadoch C. Nat Cell Biol 21 152-161 (2019)
  11. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Bracken AP, Brien GL, Verrijzer CP. Genes Dev 33 936-959 (2019)
  12. The molecular principles of gene regulation by Polycomb repressive complexes. Blackledge NP, Klose RJ. Nat Rev Mol Cell Biol 22 815-833 (2021)
  13. Recognition of the nucleosome by chromatin factors and enzymes. McGinty RK, Tan S. Curr Opin Struct Biol 37 54-61 (2016)
  14. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. Gursoy-Yuzugullu O, House N, Price BD. J Mol Biol 428 1846-1860 (2016)
  15. Deciphering the BRCA1 Tumor Suppressor Network. Jiang Q, Greenberg RA. J Biol Chem 290 17724-17732 (2015)
  16. Live and let die: insights into pseudoenzyme mechanisms from structure. Murphy JM, Mace PD, Eyers PA. Curr Opin Struct Biol 47 95-104 (2017)
  17. Polycomb complexes PRC1 and their function in hematopoiesis. Vidal M, Starowicz K. Exp Hematol 48 12-31 (2017)
  18. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Dhar S, Gursoy-Yuzugullu O, Parasuram R, Price BD. Philos Trans R Soc Lond B Biol Sci 372 20160284 (2017)
  19. Dynamic Competition of Polycomb and Trithorax in Transcriptional Programming. Kuroda MI, Kang H, De S, Kassis JA. Annu Rev Biochem 89 235-253 (2020)
  20. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. García-Rodríguez N, Wong RP, Ulrich HD. Front Genet 7 87 (2016)
  21. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Baek K, Scott DC, Schulman BA. Curr Opin Struct Biol 67 101-109 (2021)
  22. PRC1 is taking the lead in PcG repression. Merini W, Calonje M. Plant J 83 110-120 (2015)
  23. Structural diversity of the nucleosome. Koyama M, Kurumizaka H. J Biochem 163 85-95 (2018)
  24. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem Soc Trans 44 212-227 (2016)
  25. Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Alpi AF, Chaugule V, Walden H. Biochem J 473 3401-3419 (2016)
  26. A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response. Lin X, Ojo D, Wei F, Wong N, Gu Y, Tang D. Biomolecules 5 3396-3415 (2015)
  27. Reading chromatin signatures after DNA double-strand breaks. Wilson MD, Durocher D. Philos Trans R Soc Lond B Biol Sci 372 20160280 (2017)
  28. Structural insights of nucleosome and the 30-nm chromatin fiber. Zhu P, Li G. Curr Opin Struct Biol 36 106-115 (2016)
  29. Structure and organization of chromatin fiber in the nucleus. Li G, Zhu P. FEBS Lett 589 2893-2904 (2015)
  30. Moving Mountains-The BRCA1 Promotion of DNA Resection. Densham RM, Morris JR. Front Mol Biosci 6 79 (2019)
  31. The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Humphreys LM, Smith P, Chen Z, Fouad S, D'Angiolella V. Cell Death Differ 28 522-537 (2021)
  32. The nucleosome: orchestrating DNA damage signaling and repair within chromatin. Agarwal P, Miller KM. Biochem Cell Biol 94 381-395 (2016)
  33. Structure of the PRC2 complex and application to drug discovery. Shi Y, Wang XX, Zhuang YW, Jiang Y, Melcher K, Xu HE. Acta Pharmacol Sin 38 963-976 (2017)
  34. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Clapier CR. Int J Mol Sci 22 5578 (2021)
  35. Towards quantitative analysis of gene regulation by enhancers. Nizovtseva EV, Todolli S, Olson WK, Studitsky VM. Epigenomics 9 1219-1231 (2017)
  36. Polyproteins in structural biology. Crépin T, Swale C, Monod A, Garzoni F, Chaillet M, Berger I. Curr Opin Struct Biol 32 139-146 (2015)
  37. The BRCA1/BARD1 ubiquitin ligase and its substrates. Witus SR, Stewart MD, Klevit RE. Biochem J 478 3467-3483 (2021)
  38. The Role of Polycomb Group Protein BMI1 in DNA Repair and Genomic Stability. Fitieh A, Locke AJ, Motamedi M, Ismail IH. Int J Mol Sci 22 2976 (2021)
  39. Featuring the nucleosome surface as a therapeutic target. da Silva IT, de Oliveira PS, Santos GM. Trends Pharmacol Sci 36 263-269 (2015)
  40. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Sanchez A, Lee D, Kim DI, Miller KM. Front Genet 12 747734 (2021)
  41. Advances on Plant Ubiquitylome-From Mechanism to Application. He D, Damaris RN, Li M, Khan I, Yang P. Int J Mol Sci 21 E7909 (2020)
  42. Recognition of ubiquitinated nucleosomes. Morgan MT, Wolberger C. Curr Opin Struct Biol 42 75-82 (2017)
  43. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Linhares BM, Grembecka J, Cierpicki T. Future Med Chem 12 1305-1326 (2020)
  44. Functions of Polycomb Proteins on Active Targets. Giner-Laguarda N, Vidal M. Epigenomes 4 17 (2020)
  45. Higher-order structure of the 30-nm chromatin fiber revealed by cryo-EM. Zhu P, Li G. IUBMB Life 68 873-878 (2016)
  46. Molecular basis for chromatin assembly and modification by multiprotein complexes. Ricketts MD, Han J, Szurgot MR, Marmorstein R. Protein Sci 28 329-343 (2019)
  47. Relating SMCHD1 structure to its function in epigenetic silencing. Gurzau AD, Blewitt ME, Czabotar PE, Murphy JM, Birkinshaw RW. Biochem Soc Trans 48 1751-1763 (2020)
  48. The Molecular Basis of Ubiquitin-Conjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Du X, Song H, Shen N, Hua R, Yang G. Int J Mol Sci 22 3440 (2021)
  49. Ubiquitylation-Mediated Fine-Tuning of DNA Double-Strand Break Repair. Borsos BN, Majoros H, Pankotai T. Cancers (Basel) 12 E1617 (2020)
  50. Structural Paradigms in the Recognition of the Nucleosome Core Particle by Histone Lysine Methyltransferases. Janna A, Davarinejad H, Joshi M, Couture JF. Front Cell Dev Biol 8 600 (2020)
  51. Chromatin regulation and dynamics in stem cells. Klein DC, Hainer SJ. Curr Top Dev Biol 138 1-71 (2020)
  52. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks. Dantuma NP, Pfeiffer A. Front Genet 7 58 (2016)
  53. The Bre1/Rad6 machinery: writing the central histone ubiquitin mark on H2B and beyond. Deng ZH, Ai HS, Lu CP, Li JB. Chromosome Res 28 247-258 (2020)
  54. De Novo Polycomb Recruitment and Repressive Domain Formation. Hernández-Romero IA, Valdes VJ. Epigenomes 6 25 (2022)
  55. Contributions of Ubiquitin and Ubiquitination to Flaviviral Antagonism of Type I IFN. Hay-McCullough E, Morrison J. Viruses 13 763 (2021)
  56. RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. Doyle LA, Unlu Bektas F, Chatzantonaki E, Repton C, Derrien A, Illingworth RS. Epigenomes 6 42 (2022)
  57. H2A monoubiquitination: insights from human genetics and animal models. Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. Hum Genet (2023)
  58. Polycomb Assemblies Multitask to Regulate Transcription. Vidal M. Epigenomes 3 12 (2019)
  59. The UBE2D ubiquitin conjugating enzymes: Potential regulatory hubs in development, disease and evolution. Roman-Trufero M, Dillon N. Front Cell Dev Biol 10 1058751 (2022)
  60. Tools for Decoding Ubiquitin Signaling in DNA Repair. Foster B, Attwood M, Gibbs-Seymour I. Front Cell Dev Biol 9 760226 (2021)

Articles citing this publication (105)

  1. New additions to the ClusPro server motivated by CAPRI. Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. Proteins 85 435-444 (2017)
  2. The structural basis of modified nucleosome recognition by 53BP1. Wilson MD, Benlekbir S, Fradet-Turcotte A, Sherker A, Julien JP, McEwan A, Noordermeer SM, Sicheri F, Rubinstein JL, Durocher D. Nature 536 100-103 (2016)
  3. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. Science 351 725-728 (2016)
  4. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Pengelly AR, Kalb R, Finkl K, Müller J. Genes Dev 29 1487-1492 (2015)
  5. BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Sahtoe DD, van Dijk WJ, Ekkebus R, Ovaa H, Sixma TK. Nat Commun 7 10292 (2016)
  6. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Dann GP, Liszczak GP, Bagert JD, Müller MM, Nguyen UTT, Wojcik F, Brown ZZ, Bos J, Panchenko T, Pihl R, Pollock SB, Diehl KL, Allis CD, Muir TW. Nature 548 607-611 (2017)
  7. Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Lensink MF, Velankar S, Wodak SJ. Proteins 85 359-377 (2017)
  8. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu KP, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CRR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters JM, Stark H, Schulman BA. Cell 165 1440-1453 (2016)
  9. Mechanism of parkin activation by phosphorylation. Sauvé V, Sung G, Soya N, Kozlov G, Blaimschein N, Miotto LS, Trempe JF, Lukacs GL, Gehring K. Nat Struct Mol Biol 25 623-630 (2018)
  10. Structural Basis of Dot1L Stimulation by Histone H2B Lysine 120 Ubiquitination. Valencia-Sánchez MI, De Ioannes P, Wang M, Vasilyev N, Chen R, Nudler E, Armache JP, Armache KJ. Mol Cell 74 1010-1019.e6 (2019)
  11. BMI1-RING1B is an autoinhibited RING E3 ubiquitin ligase. Taherbhoy AM, Huang OW, Cochran AG. Nat Commun 6 7621 (2015)
  12. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Kilic S, Felekyan S, Doroshenko O, Boichenko I, Dimura M, Vardanyan H, Bryan LC, Arya G, Seidel CAM, Fierz B. Nat Commun 9 235 (2018)
  13. Structural Basis for Recognition of Ubiquitylated Nucleosome by Dot1L Methyltransferase. Anderson CJ, Baird MR, Hsu A, Barbour EH, Koyama Y, Borgnia MJ, McGinty RK. Cell Rep 26 1681-1690.e5 (2019)
  14. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. Zhen CY, Tatavosian R, Huynh TN, Duc HN, Das R, Kokotovic M, Grimm JB, Lavis LD, Lee J, Mejia FJ, Li Y, Yao T, Ren X. Elife 5 e17667 (2016)
  15. RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Brown NG, VanderLinden R, Watson ER, Qiao R, Grace CR, Yamaguchi M, Weissmann F, Frye JJ, Dube P, Ei Cho S, Actis ML, Rodrigues P, Fujii N, Peters JM, Stark H, Schulman BA. Proc Natl Acad Sci U S A 112 5272-5279 (2015)
  16. Multivalent Histone and DNA Engagement by a PHD/BRD/PWWP Triple Reader Cassette Recruits ZMYND8 to K14ac-Rich Chromatin. Savitsky P, Krojer T, Fujisawa T, Lambert JP, Picaud S, Wang CY, Shanle EK, Krajewski K, Friedrichsen H, Kanapin A, Goding C, Schapira M, Samsonova A, Strahl BD, Gingras AC, Filippakopoulos P. Cell Rep 17 2724-2737 (2016)
  17. Capturing a substrate in an activated RING E3/E2-SUMO complex. Streich FC, Lima CD. Nature 536 304-308 (2016)
  18. A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs in Human ESCs. Wang Z, Gearhart MD, Lee YW, Kumar I, Ramazanov B, Zhang Y, Hernandez C, Lu AY, Neuenkirchen N, Deng J, Jin J, Kluger Y, Neubert TA, Bardwell VJ, Ivanova NB. Cell Stem Cell 22 235-251.e9 (2018)
  19. Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. Guo LY, Allu PK, Zandarashvili L, McKinley KL, Sekulic N, Dawicki-McKenna JM, Fachinetti D, Logsdon GA, Jamiolkowski RM, Cleveland DW, Cheeseman IM, Black BE. Nat Commun 8 15775 (2017)
  20. Histone Interaction Landscapes Visualized by Crosslinking Mass Spectrometry in Intact Cell Nuclei. Fasci D, van Ingen H, Scheltema RA, Heck AJR. Mol Cell Proteomics 17 2018-2033 (2018)
  21. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18. Hu Q, Botuyan MV, Cui G, Zhao D, Mer G. Mol Cell 66 473-487.e9 (2017)
  22. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners. O'Connor HF, Lyon N, Leung JW, Agarwal P, Swaim CD, Miller KM, Huibregtse JM. EMBO Rep 16 1699-1712 (2015)
  23. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking. Yan Y, Wen Z, Wang X, Huang SY. Proteins 85 497-512 (2017)
  24. Structural Basis of H2B Ubiquitination-Dependent H3K4 Methylation by COMPASS. Hsu PL, Shi H, Leonen C, Kang J, Chatterjee C, Zheng N. Mol Cell 76 712-723.e4 (2019)
  25. The Chd1 chromatin remodeler shifts hexasomes unidirectionally. Levendosky RF, Sabantsev A, Deindl S, Bowman GD. Elife 5 e21356 (2016)
  26. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation. Wakamori M, Fujii Y, Suka N, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Sci Rep 5 17204 (2015)
  27. Atomic resolution cryo-EM structure of a native-like CENP-A nucleosome aided by an antibody fragment. Zhou BR, Yadav KNS, Borgnia M, Hong J, Cao B, Olins AL, Olins DE, Bai Y, Zhang P. Nat Commun 10 2301 (2019)
  28. Structural basis for nucleosome-mediated inhibition of cGAS activity. Cao D, Han X, Fan X, Xu RM, Zhang X. Cell Res 30 1088-1097 (2020)
  29. Crystal Structure of the LSD1/CoREST Histone Demethylase Bound to Its Nucleosome Substrate. Kim SA, Zhu J, Yennawar N, Eek P, Tan S. Mol Cell 78 903-914.e4 (2020)
  30. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. Finogenova K, Bonnet J, Poepsel S, Schäfer IB, Finkl K, Schmid K, Litz C, Strauss M, Benda C, Müller J. Elife 9 e61964 (2020)
  31. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1. Liang X, Shan S, Pan L, Zhao J, Ranjan A, Wang F, Zhang Z, Huang Y, Feng H, Wei D, Huang L, Liu X, Zhong Q, Lou J, Li G, Wu C, Zhou Z. Nat Struct Mol Biol 23 317-323 (2016)
  32. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T. Elife 7 e35720 (2018)
  33. Molecular basis and specificity of H2A.Z-H2B recognition and deposition by the histone chaperone YL1. Latrick CM, Marek M, Ouararhni K, Papin C, Stoll I, Ignatyeva M, Obri A, Ennifar E, Dimitrov S, Romier C, Hamiche A. Nat Struct Mol Biol 23 309-316 (2016)
  34. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Dao HT, Dul BE, Dann GP, Liszczak GP, Muir TW. Nat Chem Biol 16 134-142 (2020)
  35. Critical Role of the UBL Domain in Stimulating the E3 Ubiquitin Ligase Activity of UHRF1 toward Chromatin. Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S, Bartke T. Mol Cell 72 739-752.e9 (2018)
  36. Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Skrajna A, Goldfarb D, Kedziora KM, Cousins EM, Grant GD, Spangler CJ, Barbour EH, Yan X, Hathaway NA, Brown NG, Cook JG, Major MB, McGinty RK. Nucleic Acids Res 48 9415-9432 (2020)
  37. Monoubiquitination of histone H2B is intrinsic to the Bre1 RING domain-Rad6 interaction and augmented by a second Rad6-binding site on Bre1. Turco E, Gallego LD, Schneider M, Köhler A. J Biol Chem 290 5298-5310 (2015)
  38. The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. Kitevski-LeBlanc J, Fradet-Turcotte A, Kukic P, Wilson MD, Portella G, Yuwen T, Panier S, Duan S, Canny MD, van Ingen H, Arrowsmith CH, Rubinstein JL, Vendruscolo M, Durocher D, Kay LE. Elife 6 e23872 (2017)
  39. BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes. Stewart MD, Zelin E, Dhall A, Walsh T, Upadhyay E, Corn JE, Chatterjee C, King MC, Klevit RE. Proc Natl Acad Sci U S A 115 1316-1321 (2018)
  40. CBX4 promotes the proliferation and metastasis via regulating BMI-1 in lung cancer. Hu C, Zhang Q, Tang Q, Zhou H, Liu W, Huang J, Liu Y, Wang Q, Zhang J, Zhou M, Sheng F, Lai W, Tian J, Li G, Zhang R. J Cell Mol Med 24 618-631 (2020)
  41. Extranucleosomal DNA enhances the activity of the LSD1/CoREST histone demethylase complex. Kim SA, Chatterjee N, Jennings MJ, Bartholomew B, Tan S. Nucleic Acids Res 43 4868-4880 (2015)
  42. Polycomb group RING finger proteins 3/5 activate transcription via an interaction with the pluripotency factor Tex10 in embryonic stem cells. Zhao W, Huang Y, Zhang J, Liu M, Ji H, Wang C, Cao N, Li C, Xia Y, Jiang Q, Qin J. J Biol Chem 292 21527-21537 (2017)
  43. Mechanisms of BRCA1-BARD1 nucleosome recognition and ubiquitylation. Hu Q, Botuyan MV, Zhao D, Cui G, Mer E, Mer G. Nature 596 438-443 (2021)
  44. Allosteric cross-talk in chromatin can mediate drug-drug synergy. Adhireksan Z, Palermo G, Riedel T, Ma Z, Muhammad R, Rothlisberger U, Dyson PJ, Davey CA. Nat Commun 8 14860 (2017)
  45. Cryo-EM of nucleosome core particle interactions in trans. Bilokapic S, Strauss M, Halic M. Sci Rep 8 7046 (2018)
  46. Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7. Lamb KN, Bsteh D, Dishman SN, Moussa HF, Fan H, Stuckey JI, Norris JL, Cholensky SH, Li D, Wang J, Sagum C, Stanton BZ, Bedford MT, Pearce KH, Kenakin TP, Kireev DB, Wang GG, James LI, Bell O, Frye SV. Cell Chem Biol 26 1365-1379.e22 (2019)
  47. A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate. Polge C, Cabantous S, Deval C, Claustre A, Hauvette A, Bouchenot C, Aniort J, Béchet D, Combaret L, Attaix D, Taillandier D. J Cachexia Sarcopenia Muscle 9 129-145 (2018)
  48. The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells. Abdouh M, Hanna R, El Hajjar J, Flamier A, Bernier G. J Biol Chem 291 182-197 (2016)
  49. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Huseyin MK, Klose RJ. Nat Commun 12 887 (2021)
  50. USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein. Ma Y, Fu HL, Wang Z, Huang H, Ni J, Song J, Xia Y, Jin WL, Cui DX. Oncotarget 8 33329-33342 (2017)
  51. A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure. Korolev N, Lyubartsev AP, Nordenskiöld L. Sci Rep 8 1543 (2018)
  52. Estrogen induces dynamic ERα and RING1B recruitment to control gene and enhancer activities in luminal breast cancer. Zhang Y, Chan HL, Garcia-Martinez L, Karl DL, Weich N, Slingerland JM, Verdun RE, Morey L. Sci Adv 6 eaaz7249 (2020)
  53. The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae. Cucinotta CE, Young AN, Klucevsek KM, Arndt KM. PLoS Genet 11 e1005420 (2015)
  54. OTUB1 non-catalytically stabilizes the E2 ubiquitin-conjugating enzyme UBE2E1 by preventing its autoubiquitination. Pasupala N, Morrow ME, Que LT, Malynn BA, Ma A, Wolberger C. J Biol Chem 293 18285-18295 (2018)
  55. Retroviral integration into nucleosomes through DNA looping and sliding along the histone octamer. Wilson MD, Renault L, Maskell DP, Ghoneim M, Pye VE, Nans A, Rueda DS, Cherepanov P, Costa A. Nat Commun 10 4189 (2019)
  56. X-ray structure of the MMTV-A nucleosome core. Frouws TD, Duda SC, Richmond TJ. Proc Natl Acad Sci U S A 113 1214-1219 (2016)
  57. Multivalent Interactions by the Set8 Histone Methyltransferase With Its Nucleosome Substrate. Girish TS, McGinty RK, Tan S. J Mol Biol 428 1531-1543 (2016)
  58. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms. Stewart MD, Duncan ED, Coronado E, DaRosa PA, Pruneda JN, Brzovic PS, Klevit RE. Protein Sci 26 475-483 (2017)
  59. UbE2E1/UBCH6 Is a Critical in Vivo E2 for the PRC1-catalyzed Ubiquitination of H2A at Lys-119. Wheaton K, Sarkari F, Stanly Johns B, Davarinejad H, Egorova O, Kaustov L, Raught B, Saridakis V, Sheng Y. J Biol Chem 292 2893-2902 (2017)
  60. Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry. Stützer A, Welp LM, Raabe M, Sachsenberg T, Kappert C, Wulf A, Lau AM, David SS, Chernev A, Kramer K, Politis A, Kohlbacher O, Fischle W, Urlaub H. Nat Commun 11 5250 (2020)
  61. The nucleosome acidic patch directly interacts with subunits of the Paf1 and FACT complexes and controls chromatin architecture in vivo. Cucinotta CE, Hildreth AE, McShane BM, Shirra MK, Arndt KM. Nucleic Acids Res 47 8410-8423 (2019)
  62. Allosteric mechanism for site-specific ubiquitination of FANCD2. Chaugule VK, Arkinson C, Rennie ML, Kämäräinen O, Toth R, Walden H. Nat Chem Biol 16 291-301 (2020)
  63. Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in Saccharomyces cerevisiae. Hodges AJ, Gloss LM, Wyrick JJ. Genetics 206 1339-1348 (2017)
  64. Structure and Function of the RING Domains of RNF20 and RNF40, Dimeric E3 Ligases that Monoubiquitylate Histone H2B. Foglizzo M, Middleton AJ, Day CL. J Mol Biol 428 4073-4086 (2016)
  65. Bmi1 drives hepatocarcinogenesis by repressing the TGFβ2/SMAD signalling axis. Li B, Chen Y, Wang F, Guo J, Fu W, Li M, Zheng Q, Liu Y, Fan L, Li L, Xu C. Oncogene 39 1063-1079 (2020)
  66. Single-molecule pull-down for investigating protein-nucleic acid interactions. Fareh M, Loeff L, Szczepaniak M, Haagsma AC, Yeom KH, Joo C. Methods 105 99-108 (2016)
  67. Small-Molecule Inhibition of UBE2T/FANCL-Mediated Ubiquitylation in the Fanconi Anemia Pathway. Cornwell MJ, Thomson GJ, Coates J, Belotserkovskaya R, Waddell ID, Jackson SP, Galanty Y. ACS Chem Biol 14 2148-2154 (2019)
  68. Structural insights into the mechanism and inhibition of transglutaminase-induced ubiquitination by the Legionella effector MavC. Mu Y, Wang Y, Huang Y, Li D, Han Y, Chang M, Fu J, Xie Y, Ren J, Wang H, Zhang Y, Luo ZQ, Feng Y. Nat Commun 11 1774 (2020)
  69. The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Brühl J, Trautwein J, Schäfer A, Linne U, Bouazoune K. Epigenetics Chromatin 12 52 (2019)
  70. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging. Tatavosian R, Zhen CY, Duc HN, Balas MM, Johnson AM, Ren X. J Biol Chem 290 28038-28054 (2015)
  71. Homodimeric PHD Domain-containing Rco1 Subunit Constitutes a Critical Interaction Hub within the Rpd3S Histone Deacetylase Complex. Ruan C, Cui H, Lee CH, Li S, Li B. J Biol Chem 291 5428-5438 (2016)
  72. Reprogramming CBX8-PRC1 function with a positive allosteric modulator. Suh JL, Bsteh D, Hart B, Si Y, Weaver TM, Pribitzer C, Lau R, Soni S, Ogana H, Rectenwald JM, Norris JL, Cholensky SH, Sagum C, Umana JD, Li D, Hardy B, Bedford MT, Mumenthaler SM, Lenz HJ, Kim YM, Wang GG, Pearce KH, James LI, Kireev DB, Musselman CA, Frye SV, Bell O. Cell Chem Biol 29 555-571.e11 (2022)
  73. Structural and biochemical analyses of the nuclear pore complex component ELYS identify residues responsible for nucleosome binding. Kobayashi W, Takizawa Y, Aihara M, Negishi L, Ishii H, Kurumizaka H. Commun Biol 2 163 (2019)
  74. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails. Chakraborty K, Loverde SM. J Chem Phys 147 065101 (2017)
  75. DOT1L activity in leukemia cells requires interaction with ubiquitylated H2B that promotes productive nucleosome binding. Spangler CJ, Yadav SP, Li D, Geil CN, Smith CB, Wang GG, Lee TH, McGinty RK. Cell Rep 38 110369 (2022)
  76. pyDock scoring for the new modeling challenges in docking: Protein-peptide, homo-multimers, and domain-domain interactions. Pallara C, Jiménez-García B, Romero M, Moal IH, Fernández-Recio J. Proteins 85 487-496 (2017)
  77. C10ORF12 modulates PRC2 histone methyltransferase activity and H3K27me3 levels. Shi Y, Ma HL, Zhuang YW, Wang XX, Jiang Y, Xu HE. Acta Pharmacol Sin 40 1457-1465 (2019)
  78. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. NAR Cancer 3 zcab039 (2021)
  79. Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI. Schindler CE, Chauvot de Beauchêne I, de Vries SJ, Zacharias M. Proteins 85 391-398 (2017)
  80. Role of E2-RING Interactions in Governing RNF4-Mediated Substrate Ubiquitination. DiBello A, Datta AB, Zhang X, Wolberger C. J Mol Biol 428 4639-4650 (2016)
  81. SUMOylation of Wor1 by a novel SUMO E3 ligase controls cell fate in Candida albicans. Yan M, Nie X, Wang H, Gao N, Liu H, Chen J. Mol Microbiol 98 69-89 (2015)
  82. Time Resolved-Fluorescence Resonance Energy Transfer platform for quantitative nucleosome binding and footprinting. Wesley NA, Skrajna A, Simmons HC, Budziszewski GR, Azzam DN, Cesmat AP, McGinty RK. Protein Sci 31 e4339 (2022)
  83. Two redundant ubiquitin-dependent pathways of BRCA1 localization to DNA damage sites. Sherker A, Chaudhary N, Adam S, Heijink AM, Noordermeer SM, Fradet-Turcotte A, Durocher D. EMBO Rep 22 e53679 (2021)
  84. UbcH5 Interacts with Substrates to Participate in Lysine Selection with the E3 Ubiquitin Ligase CHIP. Kanack A, Vittal V, Haver H, Keppel T, Gundry RL, Klevit RE, Scaglione KM. Biochemistry 59 2078-2088 (2020)
  85. Functional conservation and divergence of the helix-turn-helix motif of E2 ubiquitin-conjugating enzymes. Welsh KA, Bolhuis DL, Nederstigt AE, Boyer J, Temple BRS, Bonacci T, Gu L, Ordureau A, Harper JW, Steimel JP, Zhang Q, Emanuele MJ, Harrison JS, Brown NG. EMBO J 41 e108823 (2022)
  86. Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Budziszewski GR, Zhao Y, Spangler CJ, Kedziora KM, Williams MR, Azzam DN, Skrajna A, Koyama Y, Cesmat AP, Simmons HC, Arteaga EC, Strauss JD, Kireev D, McGinty RK. Nucleic Acids Res 50 4355-4371 (2022)
  87. Single-Turnover RING/U-Box E3-Mediated Lysine Discharge Assays. Buetow L, Gabrielsen M, Huang DT. Methods Mol Biol 1844 19-31 (2018)
  88. Structure and functional determinants of Rad6-Bre1 subunits in the histone H2B ubiquitin-conjugating complex. Shukla PK, Bissell JE, Kumar S, Pokhrel S, Palani S, Radmall KS, Obidi O, Parnell TJ, Brasch J, Shrieve DC, Chandrasekharan MB. Nucleic Acids Res 51 2117-2136 (2023)
  89. Conservation of transcriptional regulation by BRCA1 and BARD1 in Caenorhabditis elegans. Thapa I, Vahrenkamp R, Witus SR, Lightle C, Falkenberg O, Sellin Jeffries MK, Klevit RE, Stewart MD. Nucleic Acids Res 51 2108-2116 (2023)
  90. Structural biology: Enzyme-chromatin complex visualized. Müller J, Müller CW. Nature 514 572-573 (2014)
  91. Artificial RING finger reveals unique auto-ubiquitination with E2 specificity. Miyamoto K, Matsumoto A. Protein Sci 32 e4766 (2023)
  92. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. Witus SR, Tuttle LM, Li W, Zelter A, Wang M, Kermoade KE, Wilburn DB, Davis TN, Brzovic PS, Zhao W, Klevit RE. EMBO J 42 e113565 (2023)
  93. Topology and enzymatic properties of a canonical Polycomb repressive complex 1 isoform. Colombo M, Pessey O, Marcia M. FEBS Lett 593 1837-1848 (2019)
  94. A chemical strategy to study transient states in substrate ubiquitylation by cryo-EM. Hu Q, Botuyan MV, Mer G. Chem 9 1069-1071 (2023)
  95. Analysis of histone modifications in mouse neocortical neural progenitor-stem cells at various developmental stages. Tsuboi M, Gotoh Y. STAR Protoc 2 100763 (2021)
  96. Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Wang M, Li W, Tomimatsu N, Yu CH, Ji JH, Alejo S, Witus SR, Alimbetov D, Fitzgerald O, Wu B, Wang Q, Huang Y, Gan Y, Dong F, Kwon Y, Sareddy GR, Curiel TJ, Habib AA, Hromas R, Dos Santos Passos C, Yao T, Ivanov DN, Brzovic PS, Burma S, Klevit RE, Zhao W. Mol Cell 83 3679-3691.e8 (2023)
  97. Deletion of Plasmodium falciparum ubc13 increases parasite sensitivity to the mutagen, methyl methanesulfonate and dihydroartemisinin. Maneekesorn S, Knuepfer E, Green JL, Prommana P, Uthaipibull C, Srichairatanakool S, Holder AA. Sci Rep 11 21791 (2021)
  98. Interactions of Nucleosomes with Acidic Patch-Binding Peptides: A Combined Structural Bioinformatics, Molecular Modeling, Fluorescence Polarization, and Single-Molecule FRET Study. Oleinikov PD, Fedulova AS, Armeev GA, Motorin NA, Singh-Palchevskaia L, Sivkina AL, Feskin PG, Glukhov GS, Afonin DA, Komarova GA, Kirpichnikov MP, Studitsky VM, Feofanov AV, Shaytan AK. Int J Mol Sci 24 15194 (2023)
  99. Mechanism of histone H2B monoubiquitination by Bre1. Zhao F, Hicks CW, Wolberger C. Nat Struct Mol Biol 30 1623-1627 (2023)
  100. Molecular basis for PHF7-mediated ubiquitination of histone H3. Lee HS, Bang I, You J, Jeong TK, Kim CR, Hwang M, Kim JS, Baek SH, Song JJ, Choi HJ. Genes Dev 37 984-997 (2023)
  101. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. Brown HE, Weasner BP, Weasner BM, Kumar JP. Development 150 dev201872 (2023)
  102. Structural Basis of Sirtuin 6-Catalyzed Nucleosome Deacetylation. Wang ZA, Markert JW, Whedon SD, Yapa Abeywardana M, Lee K, Jiang H, Suarez C, Lin H, Farnung L, Cole PA. J Am Chem Soc 145 6811-6822 (2023)
  103. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor HF, Sun ZW, Ezell RJ, Vaidya A, Meiners MJ, Cheek MA, Rice WJ, Svetlov V, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Sci Adv 9 eadg9832 (2023)
  104. Synovial sarcoma X breakpoint 1 protein uses a cryptic groove to selectively recognize H2AK119Ub nucleosomes. Tong Z, Ai H, Xu Z, He K, Chu GC, Shi Q, Deng Z, Xue Q, Sun M, Du Y, Liang L, Li JB, Pan M, Liu L. Nat Struct Mol Biol (2024)
  105. Uncoupled evolution of the Polycomb system and deep origin of non-canonical PRC1. de Potter B, Raas MWD, Seidl MF, Verrijzer CP, Snel B. Commun Biol 6 1144 (2023)