4n3w Citations

Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP.

Structure 22 353-60 (2014)
Cited: 28 times
EuropePMC logo PMID: 24361270

Abstract

Bromodomain functions as the acetyl-lysine binding domains to regulate gene transcription in chromatin. Bromodomains are rapidly emerging as new epigenetic drug targets for human diseases. However, owing to their transient nature and modest affinity, histone-binding selectivity of bromodomains has remained mostly elusive. Here, we report high-resolution crystal structures of the bromodomain-PHD tandem module of human transcriptional coactivator CBP bound to lysine-acetylated histone H4 peptides. The structures reveal that the PHD finger serves a structural role in the tandem module and that the bromodomain prefers lysine-acetylated motifs comprising a hydrophobic or aromatic residue at -2 and a lysine or arginine at -3 or -4 position from the acetylated lysine. Our study further provides structural insights into distinct modes of singly and diacetylated histone H4 recognition by the bromodomains of CBP and BRD4 that function differently as a transcriptional coactivator and chromatin organizer, respectively, explaining their distinct roles in control of gene expression in chromatin.

Reviews - 4n3w mentioned but not cited (1)

  1. The bromodomain: from epigenome reader to druggable target. Sanchez R, Meslamani J, Zhou MM. Biochim. Biophys. Acta 1839 676-685 (2014)

Articles - 4n3w mentioned but not cited (1)

  1. Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Plotnikov AN, Yang S, Zhou TJ, Rusinova E, Frasca A, Zhou MM. Structure 22 353-360 (2014)


Reviews citing this publication (7)

Articles citing this publication (19)

  1. Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC. Tallant C, Valentini E, Fedorov O, Overvoorde L, Ferguson FM, Filippakopoulos P, Svergun DI, Knapp S, Ciulli A. Structure 23 80-92 (2015)
  2. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis. Zhang J, Luo H, Liu H, Ye W, Luo R, Chen HF. Sci Rep 6 24587 (2016)
  3. Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains. Bortoluzzi A, Amato A, Lucas X, Blank M, Ciulli A. Biochem. J. 474 1633-1651 (2017)
  4. Combinatorial regulation of a signal-dependent activator by phosphorylation and acetylation. Paz JC, Park S, Phillips N, Matsumura S, Tsai WW, Kasper L, Brindle PK, Zhang G, Zhou MM, Wright PE, Montminy M. Proc. Natl. Acad. Sci. U.S.A. 111 17116-17121 (2014)
  5. Just a Flexible Linker? The Structural and Dynamic Properties of CBP-ID4 Revealed by NMR Spectroscopy. Piai A, Calçada EO, Tarenzi T, Grande AD, Varadi M, Tompa P, Felli IC, Pierattelli R. Biophys. J. 110 372-381 (2016)
  6. Molecular and functional characterization of an evolutionarily conserved CREB-binding protein in the Lymnaea CNS. Hatakeyama D, Sunada H, Totani Y, Watanabe T, Felletár I, Fitchett A, Eravci M, Anagnostopoulou A, Miki R, Okada A, Abe N, Kuzuhara T, Kemenes I, Ito E, Kemenes G. FASEB J 36 e22593 (2022)
  7. Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T, Gao D. Clin Epigenetics 12 47 (2020)
  8. Discovery of novel CBP bromodomain inhibitors through TR-FRET-based high-throughput screening. Zhang FC, Sun ZY, Liao LP, Zuo Y, Zhang D, Wang J, Chen YT, Xiao SH, Jiang H, Lu T, Xu P, Yue LY, Du DH, Zhang H, Liu CP, Luo C. Acta Pharmacol Sin 41 286-292 (2020)
  9. Epigenetic modifications promote the expression of the orphan nuclear receptor NR0B1 in human lung adenocarcinoma cells. Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, Tao D, Lu Y, Ma Y, Yang Y, Zhang S. Oncotarget 7 43162-43176 (2016)
  10. Identification of Chemoresistance-Associated Key Genes and Pathways in High-Grade Serous Ovarian Cancer by Bioinformatics Analyses. Wu Y, Xia L, Guo Q, Zhu J, Deng Y, Wu X. Cancer Manag Res 12 5213-5223 (2020)
  11. Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Park S, Stanfield RL, Martinez-Yamout MA, Dyson HJ, Wilson IA, Wright PE. Proc. Natl. Acad. Sci. U.S.A. 114 E5335-E5342 (2017)
  12. The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Zhang Y, Xue Y, Shi J, Ahn J, Mi W, Ali M, Wang X, Klein BJ, Wen H, Li W, Shi X, Kutateladze TG. Nat. Struct. Mol. Biol. 25 841-849 (2018)
  13. A new structural arrangement in proteins involving lysine NH3+ group and carbonyl. Rogacheva ON, Izmailov SA, Slipchenko LV, Skrynnikov NR. Sci Rep 7 16402 (2017)
  14. Development of Dimethylisoxazole-Attached Imidazo[1,2-a]pyridines as Potent and Selective CBP/P300 Inhibitors. Muthengi A, Wimalasena VK, Yosief HO, Bikowitz MJ, Sigua LH, Wang T, Li D, Gaieb Z, Dhawan G, Liu S, Erickson J, Amaro RE, Schönbrunn E, Qi J, Zhang W. J Med Chem 64 5787-5801 (2021)
  15. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Nat Commun 14 4103 (2023)
  16. Functional domains of SP110 that modulate its transcriptional regulatory function and cellular translocation. Leu JS, Chang SY, Mu CY, Chen ML, Yan BS. J. Biomed. Sci. 25 34 (2018)
  17. Identification of dual histone modification-binding protein interaction by combining mass spectrometry and isothermal titration calorimetric analysis. Chen P, Guo Z, Chen C, Tian S, Bai X, Zhai G, Ma Z, Wu H, Zhang K. J Adv Res 22 35-46 (2020)
  18. Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong CCL, Ruan K. FEBS J. 284 3422-3436 (2017)
  19. TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Chen J, Wang Z, Guo X, Li F, Wei Q, Chen X, Gong D, Xu Y, Chen W, Liu Y, Kang J, Shi Y. Nat Commun 10 4273 (2019)