4kfm Citations

X-ray structure of the mammalian GIRK2-βγ G-protein complex.

Nature 498 190-7 (2013)
Cited: 194 times
EuropePMC logo PMID: 23739333

Abstract

G-protein-gated inward rectifier K(+) (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5 Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K(+) channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G-protein subunits at the interfaces between four K(+) channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation that is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with 'membrane delimited' activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) and intracellular Na(+) ions participate in multi-ligand regulation of GIRK channels.

Reviews - 4kfm mentioned but not cited (7)

  1. Structure of potassium channels. Kuang Q, Purhonen P, Hebert H. Cell. Mol. Life Sci. 72 3677-3693 (2015)
  2. Alcohol modulation of G-protein-gated inwardly rectifying potassium channels: from binding to therapeutics. Bodhinathan K, Slesinger PA. Front Physiol 5 76 (2014)
  3. Kir3 channel signaling complexes: focus on opioid receptor signaling. Nagi K, Pineyro G. Front Cell Neurosci 8 186 (2014)
  4. Structure of thermally activated TRP channels. Cohen MR, Moiseenkova-Bell VY. Curr Top Membr 74 181-211 (2014)
  5. Advances in Targeting GIRK Channels in Disease. Zhao Y, Gameiro-Ros I, Glaaser IW, Slesinger PA. Trends Pharmacol Sci 42 203-215 (2021)
  6. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Smrcka AV, Fisher I. Cell. Mol. Life Sci. 76 4447-4459 (2019)
  7. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. Tikhonov DB, Zhorov BS. Membranes (Basel) 12 229 (2022)

Articles - 4kfm mentioned but not cited (25)

  1. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Whorton MR, MacKinnon R. Nature 498 190-197 (2013)
  2. Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels. Lee SJ, Wang S, Borschel W, Heyman S, Gyore J, Nichols CG. Nat Commun 4 2786 (2013)
  3. Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system. Wang W, Whorton MR, MacKinnon R. Elife 3 e03671 (2014)
  4. Novel cell-free high-throughput screening method for pharmacological tools targeting K+ channels. Su Z, Brown EC, Wang W, MacKinnon R. Proc. Natl. Acad. Sci. U.S.A. 113 5748-5753 (2016)
  5. Cooperative regulation by G proteins and Na(+) of neuronal GIRK2 K(+) channels. Wang W, Touhara KK, Weir K, Bean BP, MacKinnon R. Elife 5 (2016)
  6. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem. Rev. 119 5607-5774 (2019)
  7. Non-sedating antihistamines block G-protein-gated inwardly rectifying K+ channels. Chen IS, Liu C, Tateyama M, Karbat I, Uesugi M, Reuveny E, Kubo Y. Br J Pharmacol 176 3161-3179 (2019)
  8. Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels. Patel D, Kuyucak S, Doupnik CA. Biochemistry 59 836-850 (2020)
  9. Dynamic role of the tether helix in PIP2-dependent gating of a G protein-gated potassium channel. Lacin E, Aryal P, Glaaser IW, Bodhinathan K, Tsai E, Marsh N, Tucker SJ, Sansom MSP, Slesinger PA. J. Gen. Physiol. (2017)
  10. Permeation mechanisms through the selectivity filter and the open helix bundle crossing gate of GIRK2. Li DL, Hu L, Wang L, Chen CL. Comput Struct Biotechnol J 18 3950-3958 (2020)
  11. Conduction through a narrow inward-rectifier K+ channel pore. Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. J. Gen. Physiol. 151 1231-1246 (2019)
  12. Oxidation Driven Reversal of PIP2-dependent Gating in GIRK2 Channels. Lee SJ, Maeda S, Gao J, Nichols CG. Function (Oxf) 4 zqad016 (2023)
  13. A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. Front Pharmacol 11 1216 (2020)
  14. Encephalopathy-causing mutations in Gβ1 (GNB1) alter regulation of neuronal GIRK channels. Reddy HP, Yakubovich D, Keren-Raifman T, Tabak G, Tsemakhovich VA, Pedersen MH, Shalomov B, Colombo S, Goldstein DB, Javitch JA, Bera AK, Dascal N. iScience 24 103018 (2021)
  15. Functional mapping of the N-terminal arginine cluster and C-terminal acidic residues of Kir6.2 channel fused to a G protein-coupled receptor. Principalli MA, Lemel L, Rongier A, Godet AC, Langer K, Revilloud J, Darré L, Domene C, Vivaudou M, Moreau CJ. Biochim Biophys Acta Biomembr 1859 2144-2153 (2017)
  16. High-Resolution Structures of K+ Channels. Jiang QX. Handb Exp Pharmacol 267 51-81 (2021)
  17. Identification of Aethina tumida Kir Channels as Putative Targets of the Bee Venom Peptide Tertiapin Using Structure-Based Virtual Screening Methods. Doupnik CA. Toxins (Basel) 11 (2019)
  18. Identification of a G-Protein-Independent Activator of GIRK Channels. Zhao Y, Ung PM, Zahoránszky-Kőhalmi G, Zakharov AV, Martinez NJ, Simeonov A, Glaaser IW, Rai G, Schlessinger A, Marugan JJ, Slesinger PA. Cell Rep 31 107770 (2020)
  19. L-DOPA-quinone Mediated Recovery from GIRK Channel Firing Inhibition in Dopaminergic Neurons. Bizzarri BM, Botta L, Aversa D, Mercuri NB, Poli G, Barbieri A, Berretta N, Saladino R. ACS Med Chem Lett 10 431-436 (2019)
  20. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. Li D, Jin T, Gazgalis D, Cui M, Logothetis DE. J. Biol. Chem. 294 18934-18948 (2019)
  21. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Coyote-Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, Carnevale V, Myers CL, Schmidt D. Nat Commun 12 7114 (2021)
  22. Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels. Baculis BC, Weiss AC, Pang W, Jeong HG, Lee JH, Liu DC, Tsai NP, Chung HJ. Sci Rep 7 12313 (2017)
  23. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Kano H, Toyama Y, Imai S, Iwahashi Y, Mase Y, Yokogawa M, Osawa M, Shimada I. Nat Commun 10 2008 (2019)
  24. Structural organization of a major neuronal G protein regulator, the RGS7-Gβ5-R7BP complex. Patil DN, Rangarajan ES, Novick SJ, Pascal BD, Kojetin DJ, Griffin PR, Izard T, Martemyanov KA. Elife 7 (2018)
  25. Use of a Molecular Switch Probe to Activate or Inhibit GIRK1 Heteromers In Silico Reveals a Novel Gating Mechanism. Gazgalis D, Cantwell L, Xu Y, Thakur GA, Cui M, Guarnieri F, Logothetis DE. Int J Mol Sci 23 10820 (2022)


Reviews citing this publication (41)

  1. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Ford CP. Neuroscience 282 13-22 (2014)
  2. Targeting G protein-coupled receptor signalling by blocking G proteins. Campbell AP, Smrcka AV. Nat Rev Drug Discov 17 789-803 (2018)
  3. Heterotrimeric G protein-coupled signaling in plants. Urano D, Jones AM. Annu Rev Plant Biol 65 365-384 (2014)
  4. New insights into the therapeutic potential of Girk channels. Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K. Trends Neurosci. 37 20-29 (2014)
  5. Single particle electron cryo-microscopy of a mammalian ion channel. Liao M, Cao E, Julius D, Cheng Y. Curr. Opin. Struct. Biol. 27 1-7 (2014)
  6. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Physiol. Rev. 95 179-217 (2015)
  7. Pichia pastoris as an expression host for membrane protein structural biology. Byrne B. Curr. Opin. Struct. Biol. 32 9-17 (2015)
  8. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Annu. Rev. Physiol. 77 81-104 (2015)
  9. Emerging structural insights into the function of ionotropic glutamate receptors. Karakas E, Regan MC, Furukawa H. Trends Biochem. Sci. 40 328-337 (2015)
  10. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. Hansen SB. Biochim. Biophys. Acta 1851 620-628 (2015)
  11. Lipid modulation of ion channels through specific binding sites. Poveda JA, Giudici AM, Renart ML, Molina ML, Montoya E, Fernández-Carvajal A, Fernández-Ballester G, Encinar JA, González-Ros JM. Biochim. Biophys. Acta 1838 1560-1567 (2014)
  12. Inward rectifiers and their regulation by endogenous polyamines. Baronas VA, Kurata HT. Front Physiol 5 325 (2014)
  13. Molecular Pharmacology of δ-Opioid Receptors. Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Pharmacol. Rev. 68 631-700 (2016)
  14. Phosphoinositide regulation of inward rectifier potassium (Kir) channels. Fürst O, Mondou B, D'Avanzo N. Front Physiol 4 404 (2014)
  15. Potassium channels: structures, diseases, and modulators. Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Chem Biol Drug Des 83 1-26 (2014)
  16. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Ferré S, Ciruela F, Dessauer CW, González-Maeso J, Hébert TE, Jockers R, Logothetis DE, Pardo L. Pharmacol Ther 231 107977 (2022)
  17. Membrane channels as integrators of G-protein-mediated signaling. Inanobe A, Kurachi Y. Biochim. Biophys. Acta 1838 521-531 (2014)
  18. Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Taylor KC, Sanders CR. Biochim Biophys Acta Biomembr 1859 586-597 (2017)
  19. G protein-coupled receptor signaling to Kir channels in Xenopus oocytes. Hatcher-Solis C, Fribourg M, Spyridaki K, Younkin J, Ellaithy A, Xiang G, Liapakis G, Gonzalez-Maeso J, Zhang H, Cui M, Logothetis DE. Curr Pharm Biotechnol 15 987-995 (2014)
  20. Overexpression of membrane proteins from higher eukaryotes in yeasts. Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Appl. Microbiol. Biotechnol. 98 7671-7698 (2014)
  21. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Mol. Pharmacol. 90 573-586 (2016)
  22. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. J Neurophysiol 125 1899-1919 (2021)
  23. Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Eddy K, Eddin MN, Fateeva A, Pompili SVB, Shah R, Doshi S, Chen S. Cells 11 2857 (2022)
  24. Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. Chen IS, Kubo Y. J. Physiol. (Lond.) 596 1833-1845 (2018)
  25. Inhibitory Gi/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics. Yudin Y, Rohacs T. Mol Pain 14 1744806918763646 (2018)
  26. Venom-derived peptides inhibiting Kir channels: Past, present, and future. Doupnik CA. Neuropharmacology 127 161-172 (2017)
  27. Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Cui M, Cantwell L, Zorn A, Logothetis DE. Handb Exp Pharmacol 267 277-356 (2021)
  28. Mechanisms and Regulation of Neuronal GABAB Receptor-Dependent Signaling. Rose TR, Wickman K. Curr Top Behav Neurosci 52 39-79 (2022)
  29. Cholesterol-Dependent Gating Effects on Ion Channels. Jiang QX. Adv. Exp. Med. Biol. 1115 167-190 (2019)
  30. From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P2 on Inwardly Rectifying Potassium Channels. Bukiya AN, Rosenhouse-Dantsker A. Adv Exp Med Biol 1422 169-191 (2023)
  31. GIRK Channels as Candidate Targets for the Treatment of Substance Use Disorders. Kotajima-Murakami H, Ide S, Ikeda K. Biomedicines 10 2552 (2022)
  32. GPCR regulation of secretion. Yim YY, Zurawski Z, Hamm H. Pharmacol. Ther. 192 124-140 (2018)
  33. Gi/o-Protein Coupled Receptors in the Aging Brain. de Oliveira PG, Ramos MLS, Amaro AJ, Dias RA, Vieira SI. Front Aging Neurosci 11 89 (2019)
  34. Global versus local mechanisms of temperature sensing in ion channels. Arrigoni C, Minor DL. Pflugers Arch. 470 733-744 (2018)
  35. Ion channels as lipid sensors: from structures to mechanisms. Thompson MJ, Baenziger JE. Nat Chem Biol 16 1331-1342 (2020)
  36. Neuronal G protein-gated K+ channels. Luo H, Marron Fernandez de Velasco E, Wickman K. Am J Physiol Cell Physiol 323 C439-C460 (2022)
  37. Physical and Chemical Interplay Between the Membrane and a Prototypical Potassium Channel Reconstituted on a Lipid Bilayer Platform. Iwamoto M, Oiki S. Front Mol Neurosci 14 634121 (2021)
  38. Structure-Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels. Kim J, Ko J, Hong C, So I. Cells 9 (2019)
  39. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Malerba N, De Nittis P, Merla G. Cells 8 (2019)
  40. The Relevance of GIRK Channels in Heart Function. Campos-Ríos A, Rueda-Ruzafa L, Lamas JA. Membranes (Basel) 12 1119 (2022)
  41. The role of GABAB receptors in the subcortical pathways of the mammalian auditory system. Tureček R, Melichar A, Králíková M, Hrušková B. Front Endocrinol (Lausanne) 14 1195038 (2023)

Articles citing this publication (121)

  1. TRPV1 structures in distinct conformations reveal activation mechanisms. Cao E, Liao M, Cheng Y, Julius D. Nature 504 113-118 (2013)
  2. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Dürr KL, Chen L, Stein RA, De Zorzi R, Folea IM, Walz T, Mchaourab HS, Gouaux E. Cell 158 778-792 (2014)
  3. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes. Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MS. Structure 23 1350-1361 (2015)
  4. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Chuhma N, Mingote S, Moore H, Rayport S. Neuron 81 901-912 (2014)
  5. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Cell 168 101-110.e10 (2017)
  6. K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. Front Cell Neurosci 7 134 (2013)
  7. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ, Shyng SL. Elife 6 (2017)
  8. Auxiliary GABAB receptor subunits uncouple G protein βγ subunits from effector channels to induce desensitization. Turecek R, Schwenk J, Fritzius T, Ivankova K, Zolles G, Adelfinger L, Jacquier V, Besseyrias V, Gassmann M, Schulte U, Fakler B, Bettler B. Neuron 82 1032-1044 (2014)
  9. Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating. Zhang Q, Zhou P, Chen Z, Li M, Jiang H, Gao Z, Yang H. Proc. Natl. Acad. Sci. U.S.A. 110 20093-20098 (2013)
  10. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Masotti A, Uva P, Davis-Keppen L, Basel-Vanagaite L, Cohen L, Pisaneschi E, Celluzzi A, Bencivenga P, Fang M, Tian M, Xu X, Cappa M, Dallapiccola B. Am. J. Hum. Genet. 96 295-300 (2015)
  11. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM. Pfreundschuh M, Martinez-Martin D, Mulvihill E, Wegmann S, Muller DJ. Nat Protoc 9 1113-1130 (2014)
  12. Structural Basis of Human KCNQ1 Modulation and Gating. Sun J, MacKinnon R. Cell 180 340-347.e9 (2020)
  13. Structural Titration of Slo2.2, a Na+-Dependent K+ Channel. Hite RK, MacKinnon R. Cell 168 390-399.e11 (2017)
  14. Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels. Bodhinathan K, Slesinger PA. Proc. Natl. Acad. Sci. U.S.A. 110 18309-18314 (2013)
  15. Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Wydeven N, Marron Fernandez de Velasco E, Du Y, Benneyworth MA, Hearing MC, Fischer RA, Thomas MJ, Weaver CD, Wickman K. Proc. Natl. Acad. Sci. U.S.A. 111 10755-10760 (2014)
  16. GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol. Herman MA, Sidhu H, Stouffer DG, Kreifeldt M, Le D, Cates-Gatto C, Munoz MB, Roberts AJ, Parsons LH, Roberto M, Wickman K, Slesinger PA, Contet C. Proc. Natl. Acad. Sci. U.S.A. 112 7091-7096 (2015)
  17. Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft. Kashlan OB, Blobner BM, Zuzek Z, Tolino M, Kleyman TR. J. Biol. Chem. 290 568-576 (2015)
  18. Pore architecture of TRIC channels and insights into their gating mechanism. Yang H, Hu M, Guo J, Ou X, Cai T, Liu Z. Nature 538 537-541 (2016)
  19. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids. Lee SJ, Ren F, Zangerl-Plessl EM, Heyman S, Stary-Weinzinger A, Yuan P, Nichols CG. J. Gen. Physiol. 148 227-237 (2016)
  20. Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex. Nguyen AH, Thomsen ARB, Cahill TJ, Huang R, Huang LY, Marcink T, Clarke OB, Heissel S, Masoudi A, Ben-Hail D, Samaan F, Dandey VP, Tan YZ, Hong C, Mahoney JP, Triest S, Little J, Chen X, Sunahara R, Steyaert J, Molina H, Yu Z, des Georges A, Lefkowitz RJ. Nat Struct Mol Biol 26 1123-1131 (2019)
  21. Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Barber DM, Schönberger M, Burgstaller J, Levitz J, Weaver CD, Isacoff EY, Baier H, Trauner D. Chem Sci 7 2347-2352 (2016)
  22. Voltage Sensor Movements during Hyperpolarization in the HCN Channel. Lee CH, MacKinnon R. Cell 179 1582-1589.e7 (2019)
  23. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. Sci Signal 6 ra69 (2013)
  24. Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains. Zubcevic L, Bavro VN, Muniz JR, Schmidt MR, Wang S, De Zorzi R, Venien-Bryan C, Sansom MS, Nichols CG, Tucker SJ. J. Biol. Chem. 289 143-151 (2014)
  25. Computational and functional analyses of a small-molecule binding site in ROMK. Swale DR, Sheehan JH, Banerjee S, Husni AS, Nguyen TT, Meiler J, Denton JS. Biophys. J. 108 1094-1103 (2015)
  26. Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Glaaser IW, Slesinger PA. Sci Rep 7 4592 (2017)
  27. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels. Fürst O, Nichols CG, Lamoureux G, D'Avanzo N. Biophys. J. 107 2786-2796 (2014)
  28. Does PKC activation increase the homologous desensitization of μ opioid receptors? Arttamangkul S, Birdsong W, Williams JT. Br. J. Pharmacol. 172 583-592 (2015)
  29. Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1. Kahanovitch U, Tsemakhovich V, Berlin S, Rubinstein M, Styr B, Castel R, Peleg S, Tabak G, Dessauer CW, Ivanina T, Dascal N. J. Physiol. (Lond.) 592 5373-5390 (2014)
  30. A Mutation in the G-Protein Gene GNB2 Causes Familial Sinus Node and Atrioventricular Conduction Dysfunction. Stallmeyer B, Kuß J, Kotthoff S, Zumhagen S, Vowinkel K, Rinné S, Matschke LA, Friedrich C, Schulze-Bahr E, Rust S, Seebohm G, Decher N, Schulze-Bahr E. Circ. Res. 120 e33-e44 (2017)
  31. A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ. Yakubovich D, Berlin S, Kahanovitch U, Rubinstein M, Farhy-Tselnicker I, Styr B, Keren-Raifman T, Dessauer CW, Dascal N. PLoS Comput. Biol. 11 e1004598 (2015)
  32. Solution-Based Single-Molecule FRET Studies of K(+) Channel Gating in a Lipid Bilayer. Sadler EE, Kapanidis AN, Tucker SJ. Biophys. J. 110 2663-2670 (2016)
  33. A Critical Gating Switch at a Modulatory Site in Neuronal Kir3 Channels. Adney SK, Ha J, Meng XY, Kawano T, Logothetis DE. J. Neurosci. 35 14397-14405 (2015)
  34. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Tsuchiya M, Hara Y, Okuda M, Itoh K, Nishioka R, Shiomi A, Nagao K, Mori M, Mori Y, Ikenouchi J, Suzuki R, Tanaka M, Ohwada T, Aoki J, Kanagawa M, Toda T, Nagata Y, Matsuda R, Takayama Y, Tominaga M, Umeda M. Nat Commun 9 2049 (2018)
  35. Identification of a membrane-targeting domain of the transient receptor potential canonical (TRPC)4 channel unrelated to its formation of a tetrameric structure. Myeong J, Kwak M, Hong C, Jeon JH, So I. J. Biol. Chem. 289 34990-35002 (2014)
  36. Identification of the Conformational transition pathway in PIP2 Opening Kir Channels. Li J, Lü S, Liu Y, Pang C, Chen Y, Zhang S, Yu H, Long M, Zhang H, Logothetis DE, Zhan Y, An H. Sci Rep 5 11289 (2015)
  37. Mechanisms of differential desensitization of metabotropic glutamate receptors. Abreu N, Acosta-Ruiz A, Xiang G, Levitz J. Cell Rep 35 109050 (2021)
  38. Mutant KCNJ3 and KCNJ5 Potassium Channels as Novel Molecular Targets in Bradyarrhythmias and Atrial Fibrillation. Yamada N, Asano Y, Fujita M, Yamazaki S, Inanobe A, Matsuura N, Kobayashi H, Ohno S, Ebana Y, Tsukamoto O, Ishino S, Takuwa A, Kioka H, Yamashita T, Hashimoto N, Zankov DP, Shimizu A, Asakura M, Asanuma H, Kato H, Nishida Y, Miyashita Y, Shinomiya H, Naiki N, Hayashi K, Makiyama T, Ogita H, Miura K, Ueshima H, Komuro I, Yamagishi M, Horie M, Kawakami K, Furukawa T, Koizumi A, Kurachi Y, Sakata Y, Minamino T, Kitakaze M, Takashima S. Circulation 139 2157-2169 (2019)
  39. State-dependent network connectivity determines gating in a K+ channel. Bollepalli MK, Fowler PW, Rapedius M, Shang L, Sansom MS, Tucker SJ, Baukrowitz T. Structure 22 1037-1046 (2014)
  40. Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity. Povstyan OV, Barrese V, Stott JB, Greenwood IA. Pflugers Arch. 469 213-223 (2017)
  41. In vitro determination of the efficacy of illicit synthetic cannabinoids at CB1 receptors. Sachdev S, Vemuri K, Banister SD, Longworth M, Kassiou M, Santiago M, Makriyannis A, Connor M. Br J Pharmacol 176 4653-4665 (2019)
  42. KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. Fritzius T, Turecek R, Seddik R, Kobayashi H, Tiao J, Rem PD, Metz M, Kralikova M, Bouvier M, Gassmann M, Bettler B. J. Neurosci. 37 1162-1175 (2017)
  43. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Wu JX, Ding D, Wang M, Kang Y, Zeng X, Chen L. Protein Cell 9 553-567 (2018)
  44. Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels. Linder T, Wang S, Zangerl-Plessl EM, Nichols CG, Stary-Weinzinger A. J Chem Inf Model 55 814-822 (2015)
  45. Structural insights into GIRK2 channel modulation by cholesterol and PIP2. Mathiharan YK, Glaaser IW, Zhao Y, Robertson MJ, Skiniotis G, Slesinger PA. Cell Rep 36 109619 (2021)
  46. Tethered protein display identifies a novel Kir3.2 (GIRK2) regulator from protein scaffold libraries. Bagriantsev SN, Chatelain FC, Clark KA, Alagem N, Reuveny E, Minor DL. ACS Chem Neurosci 5 812-822 (2014)
  47. Conformational changes underlying pore dilation in the cytoplasmic domain of mammalian inward rectifier K+ channels. Inanobe A, Nakagawa A, Kurachi Y. PLoS ONE 8 e79844 (2013)
  48. Cryo-electron microscopy unveils unique structural features of the human Kir2.1 channel. Fernandes CAH, Zuniga D, Fagnen C, Kugler V, Scala R, Péhau-Arnaudet G, Wagner R, Perahia D, Bendahhou S, Vénien-Bryan C. Sci Adv 8 eabq8489 (2022)
  49. Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins. Milde M, Werthmann RC, von Hayn K, Bünemann M. Biochem. Soc. Trans. 42 239-243 (2014)
  50. Open conformation of hERG channel turrets revealed by a specific scorpion toxin BmKKx2. Hu YT, Hu J, Li T, Wei JJ, Feng J, Du YM, Cao ZJ, Li WX, Wu YL. Cell Biosci 4 18 (2014)
  51. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels. Zangerl-Plessl EM, Lee SJ, Maksaev G, Bernsteiner H, Ren F, Yuan P, Stary-Weinzinger A, Nichols CG. J Gen Physiol 152 (2020)
  52. Comparison of K+ Channel Families. Taura J, Kircher DM, Gameiro-Ros I, Slesinger PA. Handb Exp Pharmacol 267 1-49 (2021)
  53. Human adrenal glomerulosa cells express K2P and GIRK potassium channels that are inhibited by ANG II and ACTH. Enyeart JJ, Enyeart JA. Am J Physiol Cell Physiol 321 C158-C175 (2021)
  54. PIP2 regulation of TRPC5 channel activation and desensitization. Ningoo M, Plant LD, Greka A, Logothetis DE. J Biol Chem 296 100726 (2021)
  55. Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K2P background K+ channel TASK-2. Niemeyer MI, Cid LP, Paulais M, Teulon J, Sepúlveda FV. Sci Rep 7 45407 (2017)
  56. Structural Basis for Differences in Dynamics Induced by Leu Versus Ile Residues in the CD Loop of Kir Channels. Lü S, An H, Zhang H, Long M. Mol. Neurobiol. 53 5948-5961 (2016)
  57. Structural basis for KCTD-mediated rapid desensitization of GABAB signalling. Zheng S, Abreu N, Levitz J, Kruse AC. Nature 567 127-131 (2019)
  58. The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers. Touhara KK, Wang W, MacKinnon R. Elife 5 (2016)
  59. Three pairs of weak interactions precisely regulate the G-loop gate of Kir2.1 channel. Li J, Xiao S, Xie X, Zhou H, Pang C, Li S, Zhang H, Logothetis DE, Zhan Y, An H. Proteins 84 1929-1937 (2016)
  60. A Database of Predicted Binding Sites for Cholesterol on Membrane Proteins, Deep in the Membrane. Lee AG. Biophys. J. 115 522-532 (2018)
  61. A constricted opening in Kir channels does not impede potassium conduction. Black KA, He S, Jin R, Miller DM, Bolla JR, Clarke OB, Johnson P, Windley M, Burns CJ, Hill AP, Laver D, Robinson CV, Smith BJ, Gulbis JM. Nat Commun 11 3024 (2020)
  62. A molecular dynamics investigation of the influence of water structure on ion conduction through a carbon nanotube. Liu L, Patey GN. J Chem Phys 146 074502 (2017)
  63. A novel small-molecule selective activator of homomeric GIRK4 channels. Cui M, Xu K, Gada KD, Shalomov B, Ban M, Eptaminitaki GC, Kawano T, Plant LD, Dascal N, Logothetis DE. J Biol Chem 298 102009 (2022)
  64. A selectivity filter mutation provides insights into gating regulation of a K+ channel. Friesacher T, Reddy HP, Bernsteiner H, Carlo Combista J, Shalomov B, Bera AK, Zangerl-Plessl EM, Dascal N, Stary-Weinzinger A. Commun Biol 5 345 (2022)
  65. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating. Wang S, Borschel WF, Heyman S, Hsu P, Nichols CG. J. Biol. Chem. 292 10087-10096 (2017)
  66. Gi/o-coupled muscarinic receptors co-localize with GIRK channel for efficient channel activation. Tateyama M, Kubo Y. PLoS ONE 13 e0204447 (2018)
  67. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. Huffer KE, Aleksandrova AA, Jara-Oseguera A, Forrest LR, Swartz KJ. Elife 9 (2020)
  68. q and the Phospholipase Cβ3 X-Y Linker Regulate Adsorption and Activity on Compressed Lipid Monolayers. Hudson BN, Jessup RE, Prahalad KK, Lyon AM. Biochemistry 58 3454-3467 (2019)
  69. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). Ha J, Xu Y, Kawano T, Hendon T, Baki L, Garai S, Papapetropoulos A, Thakur GA, Plant LD, Logothetis DE. J. Biol. Chem. 293 3546-3561 (2018)
  70. Identification and Localization of Gold Nanoparticles in Potassium Ion Pores: Implications for Kir Blockade. Chin C, Park YS. Cardiol Ther 5 101-108 (2016)
  71. article-commentary Ion channels find a pathway for therapeutic success. Garcia ML, Kaczorowski GJ. Proc. Natl. Acad. Sci. U.S.A. 113 5472-5474 (2016)
  72. K+ -independent Kir blockade by external Cs+ and Ba2. Gilles O. Physiol Rep 10 e15200 (2022)
  73. Kir4.1/Kir5.1 channels possess strong intrinsic inward rectification determined by a voltage-dependent K+-flux gating mechanism. Marmolejo-Murillo LG, Aréchiga-Figueroa IA, Moreno-Galindo EG, Ferrer T, Zamora-Cárdenas R, Navarro-Polanco RA, Sánchez-Chapula JA, Rodríguez-Menchaca AA. J Gen Physiol 153 e201912540 (2021)
  74. LRET Determination of Molecular Distances during pH Gating of the Mammalian Inward Rectifier Kir1.1b. Nanazashvili M, Sánchez-Rodríguez JE, Fosque B, Bezanilla F, Sackin H. Biophys. J. 114 88-97 (2018)
  75. Methods to study phosphoinositide regulation of ion channels. Yudin Y, Liu L, Nagwekar J, Rohacs T. Methods Enzymol 652 49-79 (2021)
  76. Molecular structure of an open human KATP channel. Zhao C, MacKinnon R. Proc Natl Acad Sci U S A 118 e2112267118 (2021)
  77. Mutual action by Gγ and Gβ for optimal activation of GIRK channels in a channel subunit-specific manner. Tabak G, Keren-Raifman T, Kahanovitch U, Dascal N. Sci Rep 9 508 (2019)
  78. Seven perspectives on GPCR H/D-exchange proteomics methods. Zhang X. F1000Res 6 89 (2017)
  79. Simulating PIP2-Induced Gating Transitions in Kir6.2 Channels. Bründl M, Pellikan S, Stary-Weinzinger A. Front Mol Biosci 8 711975 (2021)
  80. Comment Structural biology: Ion channel twists to open. Reuveny E. Nature 498 182-183 (2013)
  81. Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Lu N, Chen B, Qing J, Lei J, Wang T, Shi H, Wang J. Animals (Basel) 12 2410 (2022)
  82. A computational passage-of-time model of the cerebellar Purkinje cell in eyeblink conditioning. Ricci M, Kim J, Johansson F. Front Comput Neurosci 17 1108346 (2023)
  83. Allosteric modulation of alternatively spliced Ca2+-activated Cl- channels TMEM16A by PI(4,5)P2 and CaMKII. Ko W, Jung SR, Kim KW, Yeon JH, Park CG, Nam JH, Hille B, Suh BC. Proc Natl Acad Sci U S A 117 30787-30798 (2020)
  84. Andersen-Tawil Syndrome Is Associated With Impaired PIP2 Regulation of the Potassium Channel Kir2.1. Handklo-Jamal R, Meisel E, Yakubovich D, Vysochek L, Beinart R, Glikson M, McMullen JR, Dascal N, Nof E, Oz S. Front Pharmacol 11 672 (2020)
  85. Blockade of Melatonin Receptors Abolishes Its Antiarrhythmic Effect and Slows Ventricular Conduction in Rat Hearts. Durkina AV, Szeiffova Bacova B, Bernikova OG, Gonotkov MA, Sedova KA, Cuprova J, Vaykshnorayte MA, Diez ER, Prado NJ, Azarov JE. Int J Mol Sci 24 11931 (2023)
  86. Codon Harmonization of a Kir3.1-KirBac1.3 Chimera for Structural Study Optimization. van Aalst E, Yekefallah M, Mehta AK, Eason I, Wylie B. Biomolecules 10 (2020)
  87. Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters. Matamoros M, Ng XW, Brettmann JB, Piston DW, Nichols CG. Nat Commun 14 89 (2023)
  88. Cryo-EM analysis of PIP2 regulation in mammalian GIRK channels. Niu Y, Tao X, Touhara KK, MacKinnon R. Elife 9 (2020)
  89. Cryo-electron microscopy structure and analysis of the P-Rex1-Gβγ signaling scaffold. Cash JN, Urata S, Li S, Ravala SK, Avramova LV, Shost MD, Gutkind JS, Tesmer JJG, Cianfrocco MA. Sci Adv 5 eaax8855 (2019)
  90. Domain insertion permissibility-guided engineering of allostery in ion channels. Coyote-Maestas W, He Y, Myers CL, Schmidt D. Nat Commun 10 290 (2019)
  91. Emerging Diversity in Lipid-Protein Interactions. Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Chem. Rev. 119 5775-5848 (2019)
  92. Emerging complexities of lipid regulation of potassium channels. Kurata HT. J. Gen. Physiol. 148 201-205 (2016)
  93. Entropy in the Molecular Recognition of Membrane Protein-Lipid Interactions. Qiao P, Schrecke S, Walker T, McCabe JW, Lyu J, Zhu Y, Zhang T, Kumar S, Clemmer D, Russell DH, Laganowsky A. J Phys Chem Lett 12 12218-12224 (2021)
  94. Gain-of-function KCNJ6 Mutation in a Severe Hyperkinetic Movement Disorder Phenotype. Horvath GA, Zhao Y, Tarailo-Graovac M, Boelman C, Gill H, Shyr C, Lee J, Blydt-Hansen I, Drögemöller BI, Moreland J, Ross CJ, Wasserman WW, Masotti A, Slesinger PA, van Karnebeek CDM. Neuroscience 384 152-164 (2018)
  95. Insight into the Phospholipid-Binding Preferences of Kir3.4. Qiao P, Schrecke S, Lyu J, Zhu Y, Zhang T, Benavides A, Laganowsky A. Biochemistry 60 3813-3821 (2021)
  96. Involvement of the Spinal Serotonergic System in the Analgesic Effect of [6]-Shogaol in Oxaliplatin-Induced Neuropathic Pain in Mice. Gang J, Park KT, Kim S, Kim W. Pharmaceuticals (Basel) 16 1465 (2023)
  97. Melatonin promotes sleep by activating the BK channel in C. elegans. Niu L, Li Y, Zong P, Liu P, Shui Y, Chen B, Wang ZW. Proc Natl Acad Sci U S A 117 25128-25137 (2020)
  98. Modeling GIRK channel conductance. Short B. J. Gen. Physiol. 151 1159 (2019)
  99. Molecular architecture of the Gαi-bound TRPC5 ion channel. Won J, Kim J, Jeong H, Kim J, Feng S, Jeong B, Kwak M, Ko J, Im W, So I, Lee HH. Nat Commun 14 2550 (2023)
  100. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations. Wu X, Han M, Ming D. J Chem Phys 143 134113 (2015)
  101. New Structural insights into Kir channel gating from molecular simulations, HDX-MS and functional studies. Fagnen C, Bannwarth L, Oubella I, Forest E, De Zorzi R, de Araujo A, Mhoumadi Y, Bendahhou S, Perahia D, Vénien-Bryan C. Sci Rep 10 8392 (2020)
  102. Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels. Constantin S, Wray S. eNeuro 5 (2018)
  103. news Of GIRK channels, vitamin E transfer, and a vertebrate fluorescent protein. Adler EM. J. Gen. Physiol. 142 93-95 (2013)
  104. Opioid suppression of an excitatory pontomedullary respiratory circuit by convergent mechanisms. Bateman JT, Levitt ES. Elife 12 e81119 (2023)
  105. PI(4,5)P2 and Cholesterol: Synthesis, Regulation, and Functions. Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. Adv Exp Med Biol 1422 3-59 (2023)
  106. Presynaptic Mechanisms and KCNQ Potassium Channels Modulate Opioid Depression of Respiratory Drive. Wei AD, Ramirez JM. Front Physiol 10 1407 (2019)
  107. Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Hoare SRJ, Tewson PH, Sachdev S, Connor M, Hughes TE, Quinn AM. Front Cell Neurosci 15 814547 (2021)
  108. Reductionism redux. Miller C. Elife 5 (2016)
  109. Selective binding of a toxin and phosphatidylinositides to a mammalian potassium channel. Liu Y, LoCaste CE, Liu W, Poltash ML, Russell DH, Laganowsky A. Nat Commun 10 1352 (2019)
  110. Structural Determinants of Insulin Release: Disordered N-Terminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. Walczewska-Szewc K, Nowak W. J Phys Chem B 124 6198-6211 (2020)
  111. Structural basis for mammalian nucleotide sugar transport. Ahuja S, Whorton MR. Elife 8 (2019)
  112. Structural basis for the ethanol action on G-protein-activated inwardly rectifying potassium channel 1 revealed by NMR spectroscopy. Toyama Y, Kano H, Mase Y, Yokogawa M, Osawa M, Shimada I. Proc. Natl. Acad. Sci. U.S.A. 115 3858-3863 (2018)
  113. Structural basis for the ubiquitination of G protein βγ subunits by KCTD5/Cullin3 E3 ligase. Jiang W, Wang W, Kong Y, Zheng S. Sci Adv 9 eadg8369 (2023)
  114. Subunit gating resulting from individual protonation events in Kir2 channels. Maksaev G, Bründl-Jirout M, Stary-Weinzinger A, Zangerl-Plessl EM, Lee SJ, Nichols CG. Nat Commun 14 4538 (2023)
  115. The influence of membrane bilayer thickness on KcsA channel activity. Callahan KM, Mondou B, Sasseville L, Schwartz JL, D'Avanzo N. Channels (Austin) 13 424-439 (2019)
  116. The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. Xu Y, Cantwell L, Molosh AI, Plant LD, Gazgalis D, Fitz SD, Dustrude ET, Yang Y, Kawano T, Garai S, Noujaim SF, Shekhar A, Logothetis DE, Thakur GA. J Biol Chem 295 3614-3634 (2020)
  117. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Behrendt M, Gruss F, Enzeroth R, Dembla S, Zhao S, Crassous PA, Mohr F, Nys M, Louros N, Gallardo R, Zorzini V, Wagner D, Economou A, Rousseau F, Schymkowitz J, Philipp SE, Rohacs T, Ulens C, Oberwinkler J. Proc Natl Acad Sci U S A 117 29090-29100 (2020)
  118. Therapeutic Antibodies Targeting Potassium Ion Channels. Bednenko J, Colussi P, Hussain S, Zhang Y, Clark T. Handb Exp Pharmacol 267 507-545 (2021)
  119. Toward a Model for Activation of Orai Channel. Dong H, Zhang Y, Song R, Xu J, Yuan Y, Liu J, Li J, Zheng S, Liu T, Lu B, Wang Y, Klein ML. iScience 16 356-367 (2019)
  120. Upregulated 5-HT1A receptor-mediated currents in the prefrontal cortex layer 5 neurons in the 15q11-13 duplication mouse model of autism. Saitow F, Takumi T, Suzuki H. Mol Brain 13 115 (2020)
  121. Yeast as a tool for membrane protein production and structure determination. Carlesso A, Delgado R, Ruiz Isant O, Uwangue O, Valli D, Bill RM, Hedfalk K. FEMS Yeast Res 22 foac047 (2022)