4kbp Citations

Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures.

J. Mol. Biol. 259 737-48 (1996)
Related entries: 3kbp, 1kbp

Cited: 116 times
EuropePMC logo PMID: 8683579

Abstract

Purple acid phosphatase is a widely distributed non-specific phosphomonoesterase. X-ray structures of the dimeric 111-kDa Fe(III)-Zn(II) kidney bean purple acid phosphatase (kbPAP) complexed with phosphate, the product of the reaction, and with tungstate, a strong inhibitor of the phosphatase activity, were determined at 2.7 and 3.0 angstroms resolution, respectively. Furthermore the resolution of the unligated enzyme, recently solved at 2.9 angstroms could be extended to 2.65 angstroms with completely new data. The binding of both oxoanions is not accompanied by larger conformational changes in the enzyme structure. Small movements with a maximal coordinate shift of 1 angstroms are only observed for the active site residues His295 and His296. In the inhibitor complex as well as in the product complex, the oxoanion binds in a bidentate bridging mode to the two metal ions, replacing two of the presumed solvent ligands present in the unligated enzyme form. As also proposed for the unligated structure a bridging hydroxide ion completes the coordination spheres of both metal ions to octahedral arrangements. All three structures reported herein support a mechanism of phosphate ester hydrolysis involving interaction of the substrate with Zn(II) followed by a nucleophilic attack on the phosphorus by an Fe(III)-coordinated hydroxide ion. The negative charge evolving at the pentacoordinated transition state is probably stabilized by interactions with the divalent zinc and the imidazole groups of His202, His295, and His296, the latter protonating the leaving alcohol group.

Reviews citing this publication (28)

  1. Cellular function and molecular structure of ecto-nucleotidases. Zimmermann H, Zebisch M, Sträter N. Purinergic Signal. 8 437-502 (2012)
  2. The 5'-nucleotidases as regulators of nucleotide and drug metabolism. Hunsucker SA, Mitchell BS, Spychala J. Pharmacol. Ther. 107 1-30 (2005)
  3. Structure, function, and regulation of tartrate-resistant acid phosphatase. Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA. Bone 27 575-584 (2000)
  4. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Bohn L, Meyer AS, Rasmussen SK. J Zhejiang Univ Sci B 9 165-191 (2008)
  5. The term phytase comprises several different classes of enzymes. Mullaney EJ, Ullah AH. Biochem. Biophys. Res. Commun. 312 179-184 (2003)
  6. Mechanistic alternatives in phosphate monoester hydrolysis: what conclusions can be drawn from available experimental data? Aqvist J, Kolmodin K, Florian J, Warshel A. Chem. Biol. 6 R71-80 (1999)
  7. Structures of calcineurin and its complexes with immunophilins-immunosuppressants. Ke H, Huai Q. Biochem. Biophys. Res. Commun. 311 1095-1102 (2003)
  8. Dimetallic hydrolases and their models. Kimura E. Curr Opin Chem Biol 4 207-213 (2000)
  9. Zinc and antibiotic resistance: metallo-beta-lactamases and their synthetic analogues. Tamilselvi A, Mugesh G. J. Biol. Inorg. Chem. 13 1039-1053 (2008)
  10. Metallophosphoesterases: structural fidelity with functional promiscuity. Matange N, Podobnik M, Visweswariah SS. Biochem. J. 467 201-216 (2015)
  11. The applications of binuclear metallohydrolases in medicine: recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. McGeary RP, Schenk G, Guddat LW. Eur J Med Chem 76 132-144 (2014)
  12. A molecular description of acid phosphatase. Anand A, Srivastava PK. Appl. Biochem. Biotechnol. 167 2174-2197 (2012)
  13. X-ray absorption spectroscopy of dinuclear metallohydrolases. Tierney DL, Schenk G. Biophys. J. 107 1263-1272 (2014)
  14. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer. Pabis A, Duarte F, Kamerlin SC. Biochemistry 55 3061-3081 (2016)
  15. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer. Pabis A, Duarte F, Kamerlin SC. Biochemistry 55 3061-3081 (2016)
  16. Metallophosphoesterases: structural fidelity with functional promiscuity. Matange N, Podobnik M, Visweswariah SS. Biochem. J. 467 201-216 (2015)
  17. The applications of binuclear metallohydrolases in medicine: recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. McGeary RP, Schenk G, Guddat LW. Eur J Med Chem 76 132-144 (2014)
  18. X-ray absorption spectroscopy of dinuclear metallohydrolases. Tierney DL, Schenk G. Biophys. J. 107 1263-1272 (2014)
  19. Cellular function and molecular structure of ecto-nucleotidases. Zimmermann H, Zebisch M, Sträter N. Purinergic Signal. 8 437-502 (2012)
  20. A molecular description of acid phosphatase. Anand A, Srivastava PK. Appl. Biochem. Biotechnol. 167 2174-2197 (2012)
  21. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Bohn L, Meyer AS, Rasmussen SK. J Zhejiang Univ Sci B 9 165-191 (2008)
  22. Zinc and antibiotic resistance: metallo-beta-lactamases and their synthetic analogues. Tamilselvi A, Mugesh G. J. Biol. Inorg. Chem. 13 1039-1053 (2008)
  23. The 5'-nucleotidases as regulators of nucleotide and drug metabolism. Hunsucker SA, Mitchell BS, Spychala J. Pharmacol. Ther. 107 1-30 (2005)
  24. Structures of calcineurin and its complexes with immunophilins-immunosuppressants. Ke H, Huai Q. Biochem. Biophys. Res. Commun. 311 1095-1102 (2003)
  25. The term phytase comprises several different classes of enzymes. Mullaney EJ, Ullah AH. Biochem. Biophys. Res. Commun. 312 179-184 (2003)
  26. Dimetallic hydrolases and their models. Kimura E. Curr Opin Chem Biol 4 207-213 (2000)
  27. Structure, function, and regulation of tartrate-resistant acid phosphatase. Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA. Bone 27 575-584 (2000)
  28. Mechanistic alternatives in phosphate monoester hydrolysis: what conclusions can be drawn from available experimental data? Aqvist J, Kolmodin K, Florian J, Warshel A. Chem. Biol. 6 R71-80 (1999)

Articles citing this publication (88)

  1. Metal ions in biological catalysis: from enzyme databases to general principles. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. J. Biol. Inorg. Chem. 13 1205-1218 (2008)
  2. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. del Pozo JC, Allona I, Rubio V, Leyva A, de la Peña A, Aragoncillo C, Paz-Ares J. Plant J. 19 579-589 (1999)
  3. A revised model of the active site of alternative oxidase. Andersson ME, Nordlund P. FEBS Lett. 449 17-22 (1999)
  4. Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Sommer D, Coleman S, Swanson SA, Stemmer PM. Arch. Biochem. Biophys. 404 271-278 (2002)
  5. Interdomain zinc site on human albumin. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ. Proc. Natl. Acad. Sci. U.S.A. 100 3701-3706 (2003)
  6. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J. Arch. Biochem. Biophys. 370 183-189 (1999)
  7. Identification of mammalian-like purple acid phosphatases in a wide range of plants. Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, de Jersey J. Gene 250 117-125 (2000)
  8. Convergent evolution of enzyme active sites is not a rare phenomenon. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ. J. Mol. Biol. 372 817-845 (2007)
  9. Crystal structure of mammalian purple acid phosphatase. Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL. Structure 7 757-767 (1999)
  10. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures. Knöfel T, Sträter N. J. Mol. Biol. 309 239-254 (2001)
  11. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Hagelueken G, Adams TM, Wiehlmann L, Widow U, Kolmar H, Tümmler B, Heinz DW, Schubert WD. Proc. Natl. Acad. Sci. U.S.A. 103 7631-7636 (2006)
  12. Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a mu-(hydr)oxo bridged di-iron center. Lindqvist Y, Johansson E, Kaija H, Vihko P, Schneider G. J. Mol. Biol. 291 135-147 (1999)
  13. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Schenk G, Gahan LR, Carrington LE, Mitic N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW. Proc. Natl. Acad. Sci. U.S.A. 102 273-278 (2005)
  14. An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro. Hecker A, Leulliot N, Gadelle D, Graille M, Justome A, Dorlet P, Brochier C, Quevillon-Cheruel S, Le Cam E, van Tilbeurgh H, Forterre P. Nucleic Acids Res. 35 6042-6051 (2007)
  15. Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M. J. Mol. Biol. 365 211-225 (2007)
  16. Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide. Evidence for a dithiol-disulfide equilibrium and implications for redox regulation. Bogumil R, Namgaladze D, Schaarschmidt D, Schmachtel T, Hellstern S, Mutzel R, Ullrich V. Eur. J. Biochem. 267 1407-1415 (2000)
  17. 3',5' Cyclic nucleotide phosphodiesterases class III: members, structure, and catalytic mechanism. Richter W. Proteins 46 278-286 (2002)
  18. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization. Durmus A, Eicken C, Sift BH, Kratel A, Kappl R, Hüttermann J, Krebs B. Eur. J. Biochem. 260 709-716 (1999)
  19. Crystal structure of a mammalian purple acid phosphatase. Uppenberg J, Lindqvist F, Svensson C, Ek-Rylander B, Andersson G. J. Mol. Biol. 290 201-211 (1999)
  20. The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes. Jackson CJ, Carr PD, Liu JW, Watt SJ, Beck JL, Ollis DL. J. Mol. Biol. 367 1047-1062 (2007)
  21. Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. Wang WC, Hsu WH, Chien FT, Chen CY. J. Mol. Biol. 306 251-261 (2001)
  22. X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate. Ishikawa K, Mihara Y, Gondoh K, Suzuki E, Asano Y. EMBO J. 19 2412-2423 (2000)
  23. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Liao H, Wong FL, Phang TH, Cheung MY, Li WY, Shao G, Yan X, Lam HM. Gene 318 103-111 (2003)
  24. Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. Kaija H, Alatalo SL, Halleen JM, Lindqvist Y, Schneider G, Väänänen HK, Vihko P. Biochem. Biophys. Res. Commun. 292 128-132 (2002)
  25. Crystal structure of a putative CN hydrolase from yeast. Kumaran D, Eswaramoorthy S, Gerchman SE, Kycia H, Studier FW, Swaminathan S. Proteins 52 283-291 (2003)
  26. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle. Schenk G, Elliott TW, Leung E, Carrington LE, Mitić N, Gahan LR, Guddat LW. BMC Struct. Biol. 8 6 (2008)
  27. Crystal structures of recombinant human purple Acid phosphatase with and without an inhibitory conformation of the repression loop. Sträter N, Jasper B, Scholte M, Krebs B, Duff AP, Langley DB, Han R, Averill BA, Freeman HC, Guss JM. J. Mol. Biol. 351 233-246 (2005)
  28. Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes. Hadler KS, Tanifum EA, Yip SH, Mitić N, Guddat LW, Jackson CJ, Gahan LR, Nguyen K, Carr PD, Ollis DL, Hengge AC, Larrabee JA, Schenk G. J. Am. Chem. Soc. 130 14129-14138 (2008)
  29. A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity. Keppetipola N, Shuman S. J. Biol. Chem. 283 30942-30949 (2008)
  30. Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases. Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke TR, Hamilton S. Arch. Biochem. Biophys. 424 154-162 (2004)
  31. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. Li WY, Shao G, Lam HM. New Phytol. 178 80-91 (2008)
  32. Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Jones I, He X, Katouzian F, Darroch PI, Schuchman EH. Mol. Genet. Metab. 95 152-162 (2008)
  33. Probing the role of the divalent metal ion in uteroferrin using metal ion replacement and a comparison to isostructural biomimetics. Schenk G, Peralta RA, Batista SC, Bortoluzzi AJ, Szpoganicz B, Dick AK, Herrald P, Hanson GR, Szilagyi RK, Riley MJ, Gahan LR, Neves A. J. Biol. Inorg. Chem. 13 139-155 (2008)
  34. The reaction mechanism of the Ga(III)Zn(II) derivative of uteroferrin and corresponding biomimetics. Smith SJ, Casellato A, Hadler KS, Mitić N, Riley MJ, Bortoluzzi AJ, Szpoganicz B, Schenk G, Neves A, Gahan LR. J. Biol. Inorg. Chem. 12 1207-1220 (2007)
  35. The divalent metal ion in the active site of uteroferrin modulates substrate binding and catalysis. Mitić N, Hadler KS, Gahan LR, Hengge AC, Schenk G. J. Am. Chem. Soc. 132 7049-7054 (2010)
  36. A new heterobinuclear FeIIICuII complex with a single terminal FeIII-O(phenolate) bond. Relevance to purple acid phosphatases and nucleases. Lanznaster M, Neves A, Bortoluzzi AJ, Aires VV, Szpoganicz B, Terenzi H, Severino PC, Fuller JM, Drew SC, Gahan LR, Hanson GR, Riley MJ, Schenk G. J. Biol. Inorg. Chem. 10 319-332 (2005)
  37. Heterologous expression and characterization of recombinant purple acid phosphatase from red kidney bean. Vogel A, Börchers T, Marcus K, Meyer HE, Krebs B, Spener F. Arch. Biochem. Biophys. 401 164-172 (2002)
  38. Contribution of the cyclic nucleotide phosphodiesterases PdeA and PdeB to adaptation of Myxococcus xanthus cells to osmotic or high-temperature stress. Kimura Y, Nakatuma H, Sato N, Ohtani M. J. Bacteriol. 188 823-828 (2006)
  39. A model of the acid sphingomyelinase phosphoesterase domain based on its remote structural homolog purple acid phosphatase. Seto M, Whitlow M, McCarrick MA, Srinivasan S, Zhu Y, Pagila R, Mintzer R, Light D, Johns A, Meurer-Ogden JA. Protein Sci. 13 3172-3186 (2004)
  40. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate. Zeng YF, Ko TP, Lai HL, Cheng YS, Wu TH, Ma Y, Chen CC, Yang CS, Cheng KJ, Huang CH, Guo RT, Liu JR. J. Mol. Biol. 409 214-224 (2011)
  41. Differential expression of three purple acid phosphatases from potato. Zimmermann P, Regierer B, Kossmann J, Frossard E, Amrhein N, Bucher M. Plant Biol (Stuttg) 6 519-528 (2004)
  42. Purple acid phosphatase in the walls of tobacco cells. Kaida R, Hayashi T, Kaneko TS. Phytochemistry 69 2546-2551 (2008)
  43. Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase. Flanagan JU, Cassady AI, Schenk G, Guddat LW, Hume DA. Gene 377 12-20 (2006)
  44. Diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus L.) belongs to a novel group of specific metallophosphatases. Olczak M, Olczak T. FEBS Lett. 519 159-163 (2002)
  45. Recombinant purple acid phosphatase isoform 3 from sweet potato is an enzyme with a diiron metal center. Waratrujiwong T, Krebs B, Spener F, Visoottiviseth P. FEBS J. 273 1649-1659 (2006)
  46. A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant. Ezawa T, Hayatsu M, Saito M. Mol. Plant Microbe Interact. 18 1046-1053 (2005)
  47. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants. Truong NT, Naseri JI, Vogel A, Rompel A, Krebs B. Arch. Biochem. Biophys. 440 38-45 (2005)
  48. The performance of density functional based methods in the description of selected biological systems and processes. Alberto ME, Marino T, Russo N, Sicilia E, Toscano M. Phys Chem Chem Phys 14 14943-14953 (2012)
  49. Structural and enzymatic characterization of DR1281: A calcineurin-like phosphoesterase from Deinococcus radiodurans. Shin DH, Proudfoot M, Lim HJ, Choi IK, Yokota H, Yakunin AF, Kim R, Kim SH. Proteins 70 1000-1009 (2008)
  50. Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis. Lagartera L, González A, Hermoso JA, Saíz JL, García P, García JL, Menéndez M. Protein Sci. 14 3013-3024 (2005)
  51. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) contains an iron-manganese center. Olczak M, Ciuraszkiewicz J, Wójtowicz H, Maszczak D, Olczak T. FEBS Lett. 583 3280-3284 (2009)
  52. Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme. Hayes RP, Green AR, Nissen MS, Lewis KM, Xun L, Kang C. Mol. Microbiol. 88 523-536 (2013)
  53. Synthesis, modelling and kinetic assays of potent inhibitors of purple acid phosphatase. Mohd-Pahmi SH, Hussein WM, Schenk G, McGeary RP. Bioorg. Med. Chem. Lett. 21 3092-3094 (2011)
  54. N-glycosylation sites of plant purple acid phosphatases important for protein expression and secretion in insect cells. Olczak M, Olczak T. Arch. Biochem. Biophys. 461 247-254 (2007)
  55. Selective activation of calcineurin by dipicolinic acid. Martin BL. Arch. Biochem. Biophys. 345 332-338 (1997)
  56. Identification of purple acid phosphatase inhibitors by fragment-based screening: promising new leads for osteoporosis therapeutics. Feder D, Hussein WM, Clayton DJ, Kan MW, Schenk G, McGeary RP, Guddat LW. Chem Biol Drug Des 80 665-674 (2012)
  57. A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (sox) operon. Bagchi A, Ghosh TC. Biochem. Biophys. Res. Commun. 335 609-615 (2005)
  58. Conservation of the active site motif in Aspergillus niger (ficuum) pH 6.0 optimum acid phosphatase and kidney bean purple acid phosphatase. Mullaney EJ, Ullah AH. Biochem. Biophys. Res. Commun. 243 471-473 (1998)
  59. Identification of a phytase gene in barley (Hordeum vulgare L.). Dai F, Qiu L, Ye L, Wu D, Zhou M, Zhang G. PLoS ONE 6 e18829 (2011)
  60. Inhibition of purple acid phosphatase with alpha-alkoxynaphthylmethylphosphonic acids. McGeary RP, Vella P, Mak JY, Guddat LW, Schenk G. Bioorg. Med. Chem. Lett. 19 163-166 (2009)
  61. Direct observation of multiple protonation states in recombinant human purple acid phosphatase. Funhoff EG, de Jongh TE, Averill BA. J. Biol. Inorg. Chem. 10 550-563 (2005)
  62. Purification and characterization of purple acid phosphatase PAP1 from dry powder of sweet potato. Kusudo T, Sakaki T, Inouye K. Biosci. Biotechnol. Biochem. 67 1609-1611 (2003)
  63. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies. Gagat P, Bodył A, Mackiewicz P. Biol. Direct 8 18 (2013)
  64. Theoretical studies on the reaction mechanism of PP1 and the effects of different oxidation states of the Mn-Mn center on the mechanism. Zhang H, Ma Y, Liu K, Yu JG. J. Biol. Inorg. Chem. 18 451-459 (2013)
  65. Characterization of Danio rerio Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase, the structural prototype of the ADPRibase-Mn-like protein family. Rodrigues JR, Fernández A, Canales J, Cabezas A, Ribeiro JM, Costas MJ, Cameselle JC. PLoS ONE 7 e42249 (2012)
  66. Structural and enzymatic characterization of the streptococcal ATP/diadenosine polyphosphate and phosphodiester hydrolase Spr1479/SapH. Jiang YL, Zhang JW, Yu WL, Cheng W, Zhang CC, Frolet C, Di Guilmi AM, Vernet T, Zhou CZ, Chen Y. J. Biol. Chem. 286 35906-35914 (2011)
  67. Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal-ion preference. Jackson CJ, Hadler KS, Carr PD, Oakley AJ, Yip S, Schenk G, Ollis DL. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 681-685 (2008)
  68. The role of group bulkiness in the catalytic activity of psychrophile cold-active protein tyrosine phosphatase. Tsuruta H, Mikami B, Yamamoto C, Yamagata H. FEBS J. 275 4317-4328 (2008)
  69. Expression and characterization of a recombinant unique acid phosphatase from kidney bean hypocotyl exhibiting chloroperoxidase activity in the yeast Pichia pastoris. Yoneyama T, Taira M, Suzuki T, Nakamura M, Niwa K, Watanabe T, Ohyama T. Protein Expr. Purif. 53 31-39 (2007)
  70. Crystal structure of phosphatidylglycerophosphatase (PGPase), a putative membrane-bound lipid phosphatase, reveals a novel binuclear metal binding site and two "proton wires". Kumaran D, Bonanno JB, Burley SK, Swaminathan S. Proteins 64 851-862 (2006)
  71. First principles computational study of the active site of arginase. Ivanov I, Klein ML. Proteins 54 1-7 (2004)
  72. The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes. Jackson CJ, Carr PD, Kim HK, Liu JW, Ollis DL. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 659-661 (2006)
  73. Molecular characterization of OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells Hur YJ, Jin BR, Nam J, Chung YS, Lee JH, Choi HK, Yun DJ, Yi G, Kim YH, Kim DH. Biotechnol. Lett. 32 163-170 (2010)
  74. Expression pattern and subcellular localization of Arabidopsis purple acid phosphatase AtPAP9. Zamani K, Lohrasebi T, Sabet MS, Malboobi MA, Mousavi A. Gene Expr. Patterns 14 9-18 (2014)
  75. Purification, primary structure, and properties of Euphorbia characias latex purple acid phosphatase. Pintus F, Spano D, Corongiu S, Floris G, Medda R. Biochemistry Mosc. 76 694-701 (2011)
  76. Molecular characterization of OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Hur YJ, Jin BR, Nam J, Chung YS, Lee JH, Choi HK, Yun DJ, Yi G, Kim YH, Kim DH. Biotechnol. Lett. 32 163-170 (2010)
  77. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme. Ferreira DE, De Almeida WB, Neves A, Rocha WR. Phys Chem Chem Phys 10 7039-7046 (2008)
  78. Molecular modeling of the calmodulin binding region of calcineurin. Hoekman JD, Tokheim AM, Spannaus-Martin DJ, Martin BL. Protein J. 25 175-182 (2006)
  79. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase. Purg M, Pabis A, Baier F, Tokuriki N, Jackson C, Kamerlin SC. Philos Trans A Math Phys Eng Sci 374 (2016)
  80. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, Cheung CY, Lim BL. Front Plant Sci 6 922 (2015)
  81. A synthetic pathway for an unsymmetrical N(5)O(2) heptadentate ligand and its heterodinuclear iron(III)zinc(II) complex: a biomimetic model for the purple acid phosphatases. Xavier FR, Bortoluzzi AJ, Neves A. Chem. Biodivers. 9 1794-1805 (2012)
  82. Synthesis and characterization of the tetranuclear iron(III) complex of a new asymmetric multidentate ligand. A structural model for purple acid phosphatases. Boudalis AK, Aston RE, Smith SJ, Mirams RE, Riley MJ, Schenk G, Blackman AG, Hanton LR, Gahan LR. Dalton Trans 5132-5139 (2007)
  83. Bioseparation of Four Proteins from Euphorbia characias Latex: Amine Oxidase, Peroxidase, Nucleotide Pyrophosphatase/Phosphodiesterase, and Purple Acid Phosphatase. Medda R, Pintus F, Spanò D, Floris G. Biochem Res Int 2011 369484 (2011)
  84. A 54-kilodalton protein encoded by pBtoxis is required for parasporal body structural integrity in Bacillus thuringiensis subsp. israelensis. Diaz-Mendoza M, Bideshi DK, Federici BA. J. Bacteriol. 194 1562-1571 (2012)
  85. Monoesterase activity of a purple acid phosphatase mimic with a cyclam platform. Comba P, Gahan LR, Hanson GR, Mereacre V, Noble CJ, Powell AK, Prisecaru I, Schenk G, Zajaczkowski-Fischer M. Chemistry 18 1700-1710 (2012)
  86. Theoretical studies on the mechanism of activation of phosphoprotein phosphatases and purple acid phosphatases suggest an evolutionary strategy to survive in acidic environments. Zhang H, Ma Y, Yu JG. J. Biol. Inorg. Chem. 18 1019-1026 (2013)
  87. Molecular bases of catalysis and ADP-ribose preference of human Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase and conversion by mutagenesis to a preferential cyclic ADP-ribose phosphohydrolase. Cabezas A, Ribeiro JM, Rodrigues JR, López-Villamizar I, Fernández A, Canales J, Pinto RM, Costas MJ, Cameselle JC. PLoS ONE 10 e0118680 (2015)
  88. Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin. Zhou YH, Chen LQ, Tao J, Shen JL, Gong DY, Yun RR, Cheng Y. J. Inorg. Biochem. 163 176-184 (2016)


Related citations provided by authors (1)

  1. Crystal Structure of a Purple Acid Phosphatase Containing a Dinuclear Fe(III)-Zn(II) Active Site. Strater N, Klabunde T, Tucker P, Witzel H, Krebs B Science 268 1489- (1995)