4jvf Citations

Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling.

Abstract

The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS-PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.

Reviews citing this publication (122)

  1. Dragging ras back in the ring. Stephen AG, Esposito D, Bagni RK, McCormick F. Cancer Cell 25 272-281 (2014)
  2. Drugging the undruggable RAS: Mission possible? Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Nat Rev Drug Discov 13 828-851 (2014)
  3. Targeting RAS-ERK signalling in cancer: promises and challenges. Samatar AA, Poulikakos PI. Nat Rev Drug Discov 13 928-942 (2014)
  4. KRAS: feeding pancreatic cancer proliferation. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. Trends Biochem. Sci. 39 91-100 (2014)
  5. Oncogenic KRAS signalling in pancreatic cancer. Eser S, Schnieke A, Schneider G, Saur D. Br. J. Cancer 111 817-822 (2014)
  6. Oncogenic protein interfaces: small molecules, big challenges. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Nat. Rev. Cancer 14 248-262 (2014)
  7. Small-molecule modulation of Ras signaling. Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H. Nat. Chem. Biol. 10 613-622 (2014)
  8. Kras as a key oncogene and therapeutic target in pancreatic cancer. Collins MA, Pasca di Magliano M. Front Physiol 4 407 (2013)
  9. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery? Cox AD, Der CJ, Philips MR. Clin. Cancer Res. 21 1819-1827 (2015)
  10. Molecular pathways and therapeutic targets in lung cancer. Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, Salgia R. Oncotarget 5 1392-1433 (2014)
  11. The dynamic control of signal transduction networks in cancer cells. Kolch W, Halasz M, Granovskaya M, Kholodenko BN. Nat. Rev. Cancer 15 515-527 (2015)
  12. The interdependence of membrane shape and cellular signal processing. Schmick M, Bastiaens PI. Cell 156 1132-1138 (2014)
  13. KRAS as a Therapeutic Target. McCormick F. Clin. Cancer Res. 21 1797-1801 (2015)
  14. Beyond BRAF: where next for melanoma therapy? Fedorenko IV, Gibney GT, Sondak VK, Smalley KS. Br. J. Cancer 112 217-226 (2015)
  15. Progress in the knowledge and treatment of advanced pancreatic cancer: from benchside to bedside. Oettle H. Cancer Treat. Rev. 40 1039-1047 (2014)
  16. Smarter drugs emerging in pancreatic cancer therapy. Kleger A, Perkhofer L, Seufferlein T. Ann. Oncol. 25 1260-1270 (2014)
  17. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer. Vasan N, Boyer JL, Herbst RS. Clin. Cancer Res. 20 3921-3930 (2014)
  18. Ras and autophagy in cancer development and therapy. Schmukler E, Kloog Y, Pinkas-Kramarski R. Oncotarget 5 577-586 (2014)
  19. Genetics and biology of pancreatic ductal adenocarcinoma. Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genes Dev. 30 355-385 (2016)
  20. Lessons from computer simulations of Ras proteins in solution and in membrane. Prakash P, Gorfe AA. Biochim. Biophys. Acta 1830 5211-5218 (2013)
  21. The clinical relevance of KRAS gene mutation in non-small-cell lung cancer. Tímár J. Curr Opin Oncol 26 138-144 (2014)
  22. State of the art and future directions of pancreatic ductal adenocarcinoma therapy. Neuzillet C, Tijeras-Raballand A, Bourget P, Cros J, Couvelard A, Sauvanet A, Vullierme MP, Tournigand C, Hammel P. Pharmacol. Ther. 155 80-104 (2015)
  23. Alternative modulation of protein-protein interactions by small molecules. Fischer G, Rossmann M, Hyvönen M. Curr. Opin. Biotechnol. 35 78-85 (2015)
  24. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Ostrem JM, Shokat KM. Nat Rev Drug Discov 15 771-785 (2016)
  25. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Sheng C, Dong G, Miao Z, Zhang W, Wang W. Chem Soc Rev 44 8238-8259 (2015)
  26. RAS isoforms and mutations in cancer at a glance. Hobbs GA, Der CJ, Rossman KL. J. Cell. Sci. 129 1287-1292 (2016)
  27. Direct Modulation of Small GTPase Activity and Function. Cromm PM, Spiegel J, Grossmann TN, Waldmann H. Angew. Chem. Int. Ed. Engl. 54 13516-13537 (2015)
  28. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Shackelford RE, Vora M, Mayhall K, Cotelingam J. Genes Cancer 5 1-14 (2014)
  29. Improving Prospects for Targeting RAS. Singh H, Longo DL, Chabner BA. J. Clin. Oncol. 33 3650-3659 (2015)
  30. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Mandal R, Becker S, Strebhardt K. Oncogene 35 2547-2561 (2016)
  31. Adaptive stress signaling in targeted cancer therapy resistance. Pazarentzos E, Bivona TG. Oncogene 34 5599-5606 (2015)
  32. Chemical biology approaches to target validation in cancer. Blagg J, Workman P. Curr Opin Pharmacol 17 87-100 (2014)
  33. Stabilization of protein-protein interactions by small molecules. Giordanetto F, Schäfer A, Ottmann C. Drug Discov. Today 19 1812-1821 (2014)
  34. Current status of the development of Ras inhibitors. Shima F, Matsumoto S, Yoshikawa Y, Kawamura T, Isa M, Kataoka T. J. Biochem. 158 91-99 (2015)
  35. Protein-protein interaction modulator drug discovery: past efforts and future opportunities using a rich source of low- and high-throughput screening assays. Gul S, Hadian K. Expert Opin Drug Discov 9 1393-1404 (2014)
  36. The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding. Banerjee A, Jang H, Nussinov R, Gaponenko V. Curr. Opin. Struct. Biol. 36 10-17 (2016)
  37. Not just gRASping at flaws: finding vulnerabilities to develop novel therapies for treating KRAS mutant cancers. Ebi H, Faber AC, Engelman JA, Yano S. Cancer Sci. 105 499-505 (2014)
  38. Change or die: targeting adaptive signaling to kinase inhibition in cancer cells. Rebecca VW, Smalley KS. Biochem. Pharmacol. 91 417-425 (2014)
  39. Inhibitors of Ras-SOS Interactions. Lu S, Jang H, Zhang J, Nussinov R. ChemMedChem 11 814-821 (2016)
  40. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. Polireddy K, Chen Q. J Cancer 7 1497-1514 (2016)
  41. Genomic alterations in pancreatic cancer and their relevance to therapy. Takai E, Yachida S. World J Gastrointest Oncol 7 250-258 (2015)
  42. Pharmacological Inhibition of Protein Lipidation. Ganesan L, Levental I. J. Membr. Biol. 248 929-941 (2015)
  43. Genetic, structural, and molecular insights into the function of ras of complex proteins domains. Civiero L, Dihanich S, Lewis PA, Greggio E. Chem. Biol. 21 809-818 (2014)
  44. K-Ras protein as a drug target. McCormick F. J. Mol. Med. 94 253-258 (2016)
  45. Computational allosteric ligand binding site identification on Ras proteins. McCarthy M, Prakash P, Gorfe AA. Acta Biochim. Biophys. Sin. (Shanghai) 48 3-10 (2016)
  46. Inducing Oncoprotein Degradation to Improve Targeted Cancer Therapy. Ray D, Cuneo KC, Rehemtulla A, Lawrence TS, Nyati MK. Neoplasia 17 697-703 (2015)
  47. Growth factor transduction pathways: paradigm of anti-neoplastic targeted therapy. Carlomagno F, Chiariello M. J. Mol. Med. 92 723-733 (2014)
  48. Drugging RAS: Know the enemy. Papke B, Der CJ. Science 355 1158-1163 (2017)
  49. K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives. Asati V, Mahapatra DK, Bharti SK. Eur J Med Chem 125 299-314 (2017)
  50. KRAS Mutant Pancreatic Cancer: No Lone Path to an Effective Treatment. Zeitouni D, Pylayeva-Gupta Y, Der CJ, Bryant KL. Cancers (Basel) 8 (2016)
  51. Targeting KRAS-mutant non-small cell lung cancer: challenges and opportunities. Zhang J, Park D, Shin DM, Deng X. Acta Biochim. Biophys. Sin. (Shanghai) 48 11-16 (2016)
  52. Switching off malignant pleural effusion formation-fantasy or future? Spella M, Giannou AD, Stathopoulos GT. J Thorac Dis 7 1009-1020 (2015)
  53. FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. De Los Santos C, Chang CW, Mycek MA, Cardullo RA. Mol. Reprod. Dev. 82 587-604 (2015)
  54. Activated K-RAS and its effect on morphological appearance. Kiyokawa E, Minato H. J. Biochem. 156 137-145 (2014)
  55. Targeting GTPases in Parkinson's disease: comparison to the historic path of kinase drug discovery and perspectives. Hong L, Sklar LA. Front Mol Neurosci 7 52 (2014)
  56. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization. Brock EJ, Ji K, Reiners JJ, Mattingly RR. Mini Rev Med Chem 16 358-369 (2016)
  57. [KRAS and bronchial adenocarcinoma. Between disappointments and hopes]. Guibert N, Ilie M, Léna H, Didier A, Hofman P, Mazieres J. Rev Mal Respir 33 156-164 (2016)
  58. Plasma membrane regulates Ras signaling networks. Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V. Cell Logist 5 e1136374 (2015)
  59. Recent advances in cancer drug discovery targeting RAS. Wilson CY, Tolias P. Drug Discov. Today 21 1915-1919 (2016)
  60. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer. Chuang HC, Huang PH, Kulp SK, Chen CS. Pharmacol. Res. 117 370-376 (2017)
  61. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Jonckheere N, Vasseur R, Van Seuningen I. Crit. Rev. Oncol. Hematol. 111 7-19 (2017)
  62. K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives. Asati V, Mahapatra DK, Bharti SK. Eur J Med Chem 125 299-314 (2017)
  63. Drugging RAS: Know the enemy. Papke B, Der CJ. Science 355 1158-1163 (2017)
  64. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Jonckheere N, Vasseur R, Van Seuningen I. Crit. Rev. Oncol. Hematol. 111 7-19 (2017)
  65. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer. Chuang HC, Huang PH, Kulp SK, Chen CS. Pharmacol. Res. 117 370-376 (2017)
  66. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Mandal R, Becker S, Strebhardt K. Oncogene 35 2547-2561 (2016)
  67. Recent advances in cancer drug discovery targeting RAS. Wilson CY, Tolias P. Drug Discov. Today 21 1915-1919 (2016)
  68. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. Polireddy K, Chen Q. J Cancer 7 1497-1514 (2016)
  69. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Ostrem JM, Shokat KM. Nat Rev Drug Discov 15 771-785 (2016)
  70. KRAS Mutant Pancreatic Cancer: No Lone Path to an Effective Treatment. Zeitouni D, Pylayeva-Gupta Y, Der CJ, Bryant KL. Cancers (Basel) 8 (2016)
  71. RAS isoforms and mutations in cancer at a glance. Hobbs GA, Der CJ, Rossman KL. J. Cell. Sci. 129 1287-1292 (2016)
  72. K-Ras protein as a drug target. McCormick F. J. Mol. Med. 94 253-258 (2016)
  73. Genetics and biology of pancreatic ductal adenocarcinoma. Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genes Dev. 30 355-385 (2016)
  74. The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding. Banerjee A, Jang H, Nussinov R, Gaponenko V. Curr. Opin. Struct. Biol. 36 10-17 (2016)
  75. Inhibitors of Ras-SOS Interactions. Lu S, Jang H, Zhang J, Nussinov R. ChemMedChem 11 814-821 (2016)
  76. Targeting KRAS-mutant non-small cell lung cancer: challenges and opportunities. Zhang J, Park D, Shin DM, Deng X. Acta Biochim. Biophys. Sin. (Shanghai) 48 11-16 (2016)
  77. [KRAS and bronchial adenocarcinoma. Between disappointments and hopes]. Guibert N, Ilie M, Léna H, Didier A, Hofman P, Mazieres J. Rev Mal Respir 33 156-164 (2016)
  78. Computational allosteric ligand binding site identification on Ras proteins. McCarthy M, Prakash P, Gorfe AA. Acta Biochim. Biophys. Sin. (Shanghai) 48 3-10 (2016)
  79. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization. Brock EJ, Ji K, Reiners JJ, Mattingly RR. Mini Rev Med Chem 16 358-369 (2016)
  80. Beyond BRAF: where next for melanoma therapy? Fedorenko IV, Gibney GT, Sondak VK, Smalley KS. Br. J. Cancer 112 217-226 (2015)
  81. Plasma membrane regulates Ras signaling networks. Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V. Cell Logist 5 e1136374 (2015)
  82. Genomic alterations in pancreatic cancer and their relevance to therapy. Takai E, Yachida S. World J Gastrointest Oncol 7 250-258 (2015)
  83. Inducing Oncoprotein Degradation to Improve Targeted Cancer Therapy. Ray D, Cuneo KC, Rehemtulla A, Lawrence TS, Nyati MK. Neoplasia 17 697-703 (2015)
  84. Direct Modulation of Small GTPase Activity and Function. Cromm PM, Spiegel J, Grossmann TN, Waldmann H. Angew. Chem. Int. Ed. Engl. 54 13516-13537 (2015)
  85. Improving Prospects for Targeting RAS. Singh H, Longo DL, Chabner BA. J. Clin. Oncol. 33 3650-3659 (2015)
  86. State of the art and future directions of pancreatic ductal adenocarcinoma therapy. Neuzillet C, Tijeras-Raballand A, Bourget P, Cros J, Couvelard A, Sauvanet A, Vullierme MP, Tournigand C, Hammel P. Pharmacol. Ther. 155 80-104 (2015)
  87. The dynamic control of signal transduction networks in cancer cells. Kolch W, Halasz M, Granovskaya M, Kholodenko BN. Nat. Rev. Cancer 15 515-527 (2015)
  88. Pharmacological Inhibition of Protein Lipidation. Ganesan L, Levental I. J. Membr. Biol. 248 929-941 (2015)
  89. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Sheng C, Dong G, Miao Z, Zhang W, Wang W. Chem Soc Rev 44 8238-8259 (2015)
  90. Switching off malignant pleural effusion formation-fantasy or future? Spella M, Giannou AD, Stathopoulos GT. J Thorac Dis 7 1009-1020 (2015)
  91. Current status of the development of Ras inhibitors. Shima F, Matsumoto S, Yoshikawa Y, Kawamura T, Isa M, Kataoka T. J. Biochem. 158 91-99 (2015)
  92. FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. De Los Santos C, Chang CW, Mycek MA, Cardullo RA. Mol. Reprod. Dev. 82 587-604 (2015)
  93. Alternative modulation of protein-protein interactions by small molecules. Fischer G, Rossmann M, Hyvönen M. Curr. Opin. Biotechnol. 35 78-85 (2015)
  94. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery? Cox AD, Der CJ, Philips MR. Clin. Cancer Res. 21 1819-1827 (2015)
  95. KRAS as a Therapeutic Target. McCormick F. Clin. Cancer Res. 21 1797-1801 (2015)
  96. Adaptive stress signaling in targeted cancer therapy resistance. Pazarentzos E, Bivona TG. Oncogene 34 5599-5606 (2015)
  97. KRAS: feeding pancreatic cancer proliferation. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. Trends Biochem. Sci. 39 91-100 (2014)
  98. Targeting RAS-ERK signalling in cancer: promises and challenges. Samatar AA, Poulikakos PI. Nat Rev Drug Discov 13 928-942 (2014)
  99. Protein-protein interaction modulator drug discovery: past efforts and future opportunities using a rich source of low- and high-throughput screening assays. Gul S, Hadian K. Expert Opin Drug Discov 9 1393-1404 (2014)
  100. Drugging the undruggable RAS: Mission possible? Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Nat Rev Drug Discov 13 828-851 (2014)
  101. Chemical biology approaches to target validation in cancer. Blagg J, Workman P. Curr Opin Pharmacol 17 87-100 (2014)
  102. Stabilization of protein-protein interactions by small molecules. Giordanetto F, Schäfer A, Ottmann C. Drug Discov. Today 19 1812-1821 (2014)
  103. Change or die: targeting adaptive signaling to kinase inhibition in cancer cells. Rebecca VW, Smalley KS. Biochem. Pharmacol. 91 417-425 (2014)
  104. Progress in the knowledge and treatment of advanced pancreatic cancer: from benchside to bedside. Oettle H. Cancer Treat. Rev. 40 1039-1047 (2014)
  105. Genetic, structural, and molecular insights into the function of ras of complex proteins domains. Civiero L, Dihanich S, Lewis PA, Greggio E. Chem. Biol. 21 809-818 (2014)
  106. Activated K-RAS and its effect on morphological appearance. Kiyokawa E, Minato H. J. Biochem. 156 137-145 (2014)
  107. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Shackelford RE, Vora M, Mayhall K, Cotelingam J. Genes Cancer 5 1-14 (2014)
  108. Small-molecule modulation of Ras signaling. Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H. Nat. Chem. Biol. 10 613-622 (2014)
  109. Targeting GTPases in Parkinson's disease: comparison to the historic path of kinase drug discovery and perspectives. Hong L, Sklar LA. Front Mol Neurosci 7 52 (2014)
  110. Growth factor transduction pathways: paradigm of anti-neoplastic targeted therapy. Carlomagno F, Chiariello M. J. Mol. Med. 92 723-733 (2014)
  111. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer. Vasan N, Boyer JL, Herbst RS. Clin. Cancer Res. 20 3921-3930 (2014)
  112. Oncogenic KRAS signalling in pancreatic cancer. Eser S, Schnieke A, Schneider G, Saur D. Br. J. Cancer 111 817-822 (2014)
  113. Molecular pathways and therapeutic targets in lung cancer. Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, Salgia R. Oncotarget 5 1392-1433 (2014)
  114. Dragging ras back in the ring. Stephen AG, Esposito D, Bagni RK, McCormick F. Cancer Cell 25 272-281 (2014)
  115. Smarter drugs emerging in pancreatic cancer therapy. Kleger A, Perkhofer L, Seufferlein T. Ann. Oncol. 25 1260-1270 (2014)
  116. The interdependence of membrane shape and cellular signal processing. Schmick M, Bastiaens PI. Cell 156 1132-1138 (2014)
  117. Oncogenic protein interfaces: small molecules, big challenges. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Nat. Rev. Cancer 14 248-262 (2014)
  118. Not just gRASping at flaws: finding vulnerabilities to develop novel therapies for treating KRAS mutant cancers. Ebi H, Faber AC, Engelman JA, Yano S. Cancer Sci. 105 499-505 (2014)
  119. Ras and autophagy in cancer development and therapy. Schmukler E, Kloog Y, Pinkas-Kramarski R. Oncotarget 5 577-586 (2014)
  120. The clinical relevance of KRAS gene mutation in non-small-cell lung cancer. Tímár J. Curr Opin Oncol 26 138-144 (2014)
  121. Lessons from computer simulations of Ras proteins in solution and in membrane. Prakash P, Gorfe AA. Biochim. Biophys. Acta 1830 5211-5218 (2013)
  122. Kras as a key oncogene and therapeutic target in pancreatic cancer. Collins MA, Pasca di Magliano M. Front Physiol 4 407 (2013)

Articles citing this publication (74)

  1. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Göktürk C, Sanjiv K, Strömberg K, Pham T, Berglund UW, Colinge J, Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G. Nature 508 222-227 (2014)
  2. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Lim SM, Westover KD, Ficarro SB, Harrison RA, Choi HG, Pacold ME, Carrasco M, Hunter J, Kim ND, Xie T, Sim T, Jänne PA, Meyerson M, Marto JA, Engen JR, Gray NS. Angew. Chem. Int. Ed. Engl. 53 199-204 (2014)
  3. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Wright AA, Howitt BE, Myers AP, Dahlberg SE, Palescandolo E, Van Hummelen P, MacConaill LE, Shoni M, Wagle N, Jones RT, Quick CM, Laury A, Katz IT, Hahn WC, Matulonis UA, Hirsch MS. Cancer 119 3776-3783 (2013)
  4. Mutant KRAS is a druggable target for pancreatic cancer. Zorde Khvalevsky E, Gabai R, Rachmut IH, Horwitz E, Brunschwig Z, Orbach A, Shemi A, Golan T, Domb AJ, Yavin E, Giladi H, Rivkin L, Simerzin A, Eliakim R, Khalaileh A, Hubert A, Lahav M, Kopelman Y, Goldin E, Dancour A, Hants Y, Arbel-Alon S, Abramovitch R, Shemi A, Galun E. Proc. Natl. Acad. Sci. U.S.A. 110 20723-20728 (2013)
  5. KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport. Schmick M, Vartak N, Papke B, Kovacevic M, Truxius DC, Rossmannek L, Bastiaens PI. Cell 157 459-471 (2014)
  6. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Del Re DP, Matsuda T, Zhai P, Maejima Y, Jain MR, Liu T, Li H, Hsu CP, Sadoshima J. Mol. Cell 54 639-650 (2014)
  7. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Hunter JC, Gurbani D, Ficarro SB, Carrasco MA, Lim SM, Choi HG, Xie T, Marto JA, Chen Z, Gray NS, Westover KD. Proc. Natl. Acad. Sci. U.S.A. 111 8895-8900 (2014)
  8. News US National Cancer Institute's new Ras project targets an old foe. Thompson H. Nat. Med. 19 949-950 (2013)
  9. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. Jang H, Abraham SJ, Chavan TS, Hitchinson B, Khavrutskii L, Tarasova NI, Nussinov R, Gaponenko V. J. Biol. Chem. 290 9465-9477 (2015)
  10. article-commentary Cancer: Drug for an 'undruggable' protein. Baker NM, Der CJ. Nature 497 577-578 (2013)
  11. Preclinical efficacy of MEK inhibition in Nras-mutant AML. Burgess MR, Hwang E, Firestone AJ, Huang T, Xu J, Zuber J, Bohin N, Wen T, Kogan SC, Haigis KM, Sampath D, Lowe S, Shannon K, Li Q. Blood 124 3947-3955 (2014)
  12. RAF suppression synergizes with MEK inhibition in KRAS mutant cancer cells. Lamba S, Russo M, Sun C, Lazzari L, Cancelliere C, Grernrum W, Lieftink C, Bernards R, Di Nicolantonio F, Bardelli A. Cell Rep 8 1475-1483 (2014)
  13. Inhibition of Ras signaling by blocking Ras-effector interactions with cyclic peptides. Upadhyaya P, Qian Z, Selner NG, Clippinger SR, Wu Z, Briesewitz R, Pei D. Angew. Chem. Int. Ed. Engl. 54 7602-7606 (2015)
  14. Direct targeting of Rab-GTPase-effector interactions. Spiegel J, Cromm PM, Itzen A, Goody RS, Grossmann TN, Waldmann H. Angew. Chem. Int. Ed. Engl. 53 2498-2503 (2014)
  15. Tumor suppressor role of phospholipase C epsilon in Ras-triggered cancers. Martins M, McCarthy A, Baxendale R, Guichard S, Magno L, Kessaris N, El-Bahrawy M, Yu P, Katan M. Proc. Natl. Acad. Sci. U.S.A. 111 4239-4244 (2014)
  16. Ras moves to stay in place. Schmick M, Kraemer A, Bastiaens PI. Trends Cell Biol. 25 190-197 (2015)
  17. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Chien W, Sun QY, Lee KL, Ding LW, Wuensche P, Torres-Fernandez LA, Tan SZ, Tokatly I, Zaiden N, Poellinger L, Mori S, Yang H, Tyner JW, Koeffler HP. Mol Oncol 9 889-905 (2015)
  18. Predicted incorporation of non-native substrates by a polyketide synthase yields bioactive natural product derivatives. Bravo-Rodriguez K, Ismail-Ali AF, Klopries S, Kushnir S, Ismail S, Fansa EK, Wittinghofer A, Schulz F, Sanchez-Garcia E. Chembiochem 15 1991-1997 (2014)
  19. Identification of an Atg8-Atg3 protein-protein interaction inhibitor from the medicines for Malaria Venture Malaria Box active in blood and liver stage Plasmodium falciparum parasites. Hain AU, Bartee D, Sanders NG, Miller AS, Sullivan DJ, Levitskaya J, Meyers CF, Bosch J. J. Med. Chem. 57 4521-4531 (2014)
  20. Genetic events that limit the efficacy of MEK and RTK inhibitor therapies in a mouse model of KRAS-driven pancreatic cancer. Pettazzoni P, Viale A, Shah P, Carugo A, Ying H, Wang H, Genovese G, Seth S, Minelli R, Green T, Huang-Hobbs E, Corti D, Sanchez N, Nezi L, Marchesini M, Kapoor A, Yao W, Francesco ME, Petrocchi A, Deem AK, Scott K, Colla S, Mills GB, Fleming JB, Heffernan TP, Jones P, Toniatti C, DePinho RA, Draetta GF. Cancer Res. 75 1091-1101 (2015)
  21. Identification of pyrazolopyridazinones as PDEδ inhibitors. Papke B, Murarka S, Vogel HA, Martín-Gago P, Kovacevic M, Truxius DC, Fansa EK, Ismail S, Zimmermann G, Heinelt K, Schultz-Fademrecht C, Al Saabi A, Baumann M, Nussbaumer P, Wittinghofer A, Waldmann H, Bastiaens PI. Nat Commun 7 11360 (2016)
  22. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Westphalen CB, Takemoto Y, Tanaka T, Macchini M, Jiang Z, Renz BW, Chen X, Ormanns S, Nagar K, Tailor Y, May R, Cho Y, Asfaha S, Worthley DL, Hayakawa Y, Urbanska AM, Quante M, Reichert M, Broyde J, Subramaniam PS, Remotti H, Su GH, Rustgi AK, Friedman RA, Honig B, Califano A, Houchen CW, Olive KP, Wang TC. Cell Stem Cell 18 441-455 (2016)
  23. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, Kang C, Chia CS, Luo X, Hong W, Poulsen A. Structure 23 2076-2086 (2015)
  24. Discovery of a Direct Ras Inhibitor by Screening a Combinatorial Library of Cell-Permeable Bicyclic Peptides. Trinh TB, Upadhyaya P, Qian Z, Pei D. ACS Comb Sci 18 75-85 (2016)
  25. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Stolze B, Reinhart S, Bulllinger L, Fröhling S, Scholl C. Sci Rep 5 8535 (2015)
  26. A combination therapy for KRAS-driven lung adenocarcinomas using lipophilic bisphosphonates and rapamycin. Xia Y, Liu YL, Xie Y, Zhu W, Guerra F, Shen S, Yeddula N, Fischer W, Low W, Zhou X, Zhang Y, Oldfield E, Verma IM. Sci Transl Med 6 263ra161 (2014)
  27. Comment Drug discovery: Pocket of opportunity. Bollag G, Zhang C. Nature 503 475-476 (2013)
  28. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis. Ito H, Tanaka S, Akiyama Y, Shimada S, Adikrisna R, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Arii S, Yamaoka S, Tanabe M. PLoS ONE 11 e0146564 (2016)
  29. Graded inhibition of oncogenic Ras-signaling by multivalent Ras-binding domains. Augsten M, Böttcher A, Spanbroek R, Rubio I, Friedrich K. Cell Commun. Signal 12 1 (2014)
  30. Molecular Simulations of Solved Co-crystallized X-Ray Structures Identify Action Mechanisms of PDEδ Inhibitors. Salmas RE, Mestanoglu M, Yurtsever M, Noskov SY, Durdagi S. Biophys. J. 109 1163-1168 (2015)
  31. Combined rational design and a high throughput screening platform for identifying chemical inhibitors of a Ras-activating enzyme. Evelyn CR, Biesiada J, Duan X, Tang H, Shang X, Papoian R, Seibel WL, Nelson S, Meller J, Zheng Y. J. Biol. Chem. 290 12879-12898 (2015)
  32. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Knickelbein K, Zhang L. Genes Dis 2 4-12 (2015)
  33. GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings. Gross E, Soltesz Z, Oda S, Zelmanovich V, Abergel Z, de Bono M. J. Neurosci. 34 16726-16738 (2014)
  34. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1. Evelyn CR, Duan X, Biesiada J, Seibel WL, Meller J, Zheng Y. Chem. Biol. 21 1618-1628 (2014)
  35. Novel oncogene and tumor suppressor mutations in KIT and PDGFRA wild type gastrointestinal stromal tumors revealed by next generation sequencing. Hechtman JF, Zehir A, Mitchell T, Borsu L, Singer S, Tap W, Oultache A, Ladanyi M, Nafa K. Genes Chromosomes Cancer 54 177-184 (2015)
  36. Targeting pathways downstream of KRAS in lung adenocarcinoma. Zhu Z, Golay HG, Barbie DA. Pharmacogenomics 15 1507-1518 (2014)
  37. RAS's cloak of invincibility slips at last? Downward J. Cancer Cell 25 5-6 (2014)
  38. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Lu S, Jang H, Gu S, Zhang J, Nussinov R. Chem Soc Rev 45 4929-4952 (2016)
  39. Letter The N- and C-terminal ends of RPGR can bind to PDE6δ. Fansa EK, O'Reilly NJ, Ismail S, Wittinghofer A. EMBO Rep. 16 1583-1585 (2015)
  40. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Gillette WK, Esposito D, Abreu Blanco M, Alexander P, Bindu L, Bittner C, Chertov O, Frank PH, Grose C, Jones JE, Meng Z, Perkins S, Van Q, Ghirlando R, Fivash M, Nissley DV, McCormick F, Holderfield M, Stephen AG. Sci Rep 5 15916 (2015)
  41. Selective Targeting of the KRAS Codon 12 Mutation Sequence by Pyrrole-Imidazole Polyamide seco-CBI Conjugates. Taylor RD, Chandran A, Kashiwazaki G, Hashiya K, Bando T, Nagase H, Sugiyama H. Chemistry 21 14996-15003 (2015)
  42. Precise Classification of Cervical Carcinomas Combined with Somatic Mutation Profiling Contributes to Predicting Disease Outcome. Spaans VM, Trietsch MD, Peters AA, Osse M, Ter Haar N, Fleuren GJ, Jordanova ES. PLoS ONE 10 e0133670 (2015)
  43. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities. Mondal S, Hsiao K, Goueli SA. Assay Drug Dev Technol 13 444-455 (2015)
  44. Editorial The potential of targeting Ras proteins in lung cancer. McCormick F. Expert Opin. Ther. Targets 19 451-454 (2015)
  45. Comparative proteomic profiling of pancreatic ductal adenocarcinoma cell lines. Kim Y, Han D, Min H, Jin J, Yi EC, Kim Y. Mol. Cells 37 888-898 (2014)
  46. RasG signaling is important for optimal folate chemotaxis in Dictyostelium. Chattwood A, Bolourani P, Weeks G. BMC Cell Biol. 15 13 (2014)
  47. Anticancer drugs: A new approach for blocking KRAS. Tse MT. Nat Rev Drug Discov 12 506 (2013)
  48. A Small Molecule Inhibitor of PDK1/PLCγ1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion. Raimondi C, Calleja V, Ferro R, Fantin A, Riley AM, Potter BV, Brennan CH, Maffucci T, Larijani B, Falasca M. Sci Rep 6 26142 (2016)
  49. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, Lu W, Liu J, Pang X, Liu M. Nat Commun 7 11363 (2016)
  50. Open pipelines for integrated tumor genome profiles reveal differences between pancreatic cancer tumors and cell lines. Goecks J, El-Rayes BF, Maithel SK, Khoury HJ, Taylor J, Rossi MR. Cancer Med 4 392-403 (2015)
  51. Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells. Barceló C, Etchin J, Mansour MR, Sanda T, Ginesta MM, Sanchez-Arévalo Lobo VJ, Real FX, Capellà G, Estanyol JM, Jaumot M, Look AT, Agell N. Gastroenterology 147 882-892.e8 (2014)
  52. Attacking cancer with molecularly targeted agents. Santoro M, Carlomagno F. Curr Opin Pharmacol 13 483-485 (2013)
  53. Specificity of Lipoprotein Chaperones for the Characteristic Lipidated Structural Motifs of their Cognate Lipoproteins. Mejuch T, van Hattum H, Triola G, Jaiswal M, Waldmann H. Chembiochem 16 2460-2465 (2015)
  54. Targeted therapies for pancreatic adenocarcinoma: Where do we stand, how far can we go? Grapsa D, Saif MW, Syrigos K. World J Gastrointest Oncol 7 172-177 (2015)
  55. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. F1000Res 4 14 (2015)
  56. A Pan-GTPase Inhibitor as a Molecular Probe. Hong L, Guo Y, BasuRay S, Agola JO, Romero E, Simpson DS, Schroeder CE, Simons P, Waller A, Garcia M, Carter M, Ursu O, Gouveia K, Golden JE, Aubé J, Wandinger-Ness A, Sklar LA. PLoS ONE 10 e0134317 (2015)
  57. Molecular docking and simulation of Curcumin with Geranylgeranyl Transferase1 (GGTase1) and Farnesyl Transferase (FTase). Subramani PA, Narala VR, Michael RD, Lomada D, Reddy MC. Bioinformation 11 248-253 (2015)
  58. EGF receptor family: twisting targets for improved cancer therapies. Burgess AW, Henis YI, Hynes NE, Jovin T, Levitzki A, Pinkas-Kramarski R, Yarden Y. Growth Factors 32 74-81 (2014)
  59. A Homology Based Model and Virtual Screening of Inhibitors for Human Geranylgeranyl Transferase 1 (GGTase1). Thippanna M, Subramani PA, Lomada D, Narala VR, Reddy MC. Bioinformation 9 973-977 (2013)
  60. Targeting the K-Ras/PDEδ protein-protein interaction: the solution for Ras-driven cancers or just another therapeutic mirage? Frett B, Wang Y, Li HY. ChemMedChem 8 1620-1622 (2013)
  61. Oncology scan--The concept of personalized medicine and the radiation response of tumors. Freeman ML. Int. J. Radiat. Oncol. Biol. Phys. 88 546-548 (2014)
  62. Research Support, Non-U.S. Gov't MAX-ing out MYC: a novel small molecule inhibitor against MYC-dependent tumors. Chio II, Yordanov G, Tuveson D. J. Natl. Cancer Inst. 106 (2014)
  63. Clinical outcome of epidermal growth factor receptor-tyrosine kinase inhibitors therapy for patients with overlapping kirsten rat sarcoma 2 viral oncogene homolog and epidermal growth factor receptor gene mutations. Zhang H, Bai H, Yang X, Zhong J, An T, Zhao J, Wang J. Thorac Cancer 7 24-31 (2016)
  64. Tumors topple when ERKs uncouple. Herrero A, Crespo P. Mol Cell Oncol 3 e1091875 (2016)
  65. Targeted therapies for lung cancer: how did the game begin? Kanellakis NI, Jacinto T, Psallidas I. Breathe (Sheff) 12 177-179 (2016)
  66. Biosynthesis-driven structure-activity relationship study of premonensin-derivatives. Ismail-Ali A, Fansa EK, Pryk N, Yahiaoui S, Kushnir S, Pflieger M, Wittinghofer A, Schulz F. Org. Biomol. Chem. 14 7671-7675 (2016)
  67. PubMedPortable: A Framework for Supporting the Development of Text Mining Applications. Döring K, Grüning BA, Telukunta KK, Thomas P, Günther S. PLoS ONE 11 e0163794 (2016)
  68. Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ. Dharmaiah S, Bindu L, Tran TH, Gillette WK, Frank PH, Ghirlando R, Nissley DV, Esposito D, McCormick F, Stephen AG, Simanshu DK. Proc. Natl. Acad. Sci. U.S.A. 113 E6766-E6775 (2016)
  69. Sorting of lipidated cargo by the Arl2/Arl3 system. Fansa EK, Wittinghofer A. Small GTPases 7 222-230 (2016)
  70. Development of Pyridazinone Chemotypes Targeting the PDEδ Prenyl Binding Site. Murarka S, Martín-Gago P, Schultz-Fademrecht C, Al Saabi A, Baumann M, Fansa EK, Ismail S, Nussbaumer P, Wittinghofer A, Waldmann H. Chemistry 23 6083-6093 (2017)
  71. A PDE6δ-KRas Inhibitor Chemotype with up to Seven H-Bonds and Picomolar Affinity that Prevents Efficient Inhibitor Release by Arl2. Martín-Gago P, Fansa EK, Klein CH, Murarka S, Janning P, Schürmann M, Metz M, Ismail S, Schultz-Fademrecht C, Baumann M, Bastiaens PI, Wittinghofer A, Waldmann H. Angew. Chem. Int. Ed. Engl. 56 2423-2428 (2017)
  72. Investigation of the mutagenic and genotoxic activities of LLL-3, a STAT3 inhibitor. Ferraz ER, Fernandes AS, Salviano I, Felzenszwalb I, Mencalha AL. Drug Chem Toxicol 40 30-35 (2017)
  73. Mutant KRAS promotes malignant pleural effusion formation. Agalioti T, Giannou AD, Krontira AC, Kanellakis NI, Kati D, Vreka M, Pepe M, Spella M, Lilis I, Zazara DE, Nikolouli E, Spiropoulou N, Papadakis A, Papadia K, Voulgaridis A, Harokopos V, Stamou P, Meiners S, Eickelberg O, Snyder LA, Antimisiaris SG, Kardamakis D, Psallidas I, Marazioti A, Stathopoulos GT. Nat Commun 8 15205 (2017)
  74. Nucleotide based covalent inhibitors of KRas can only be efficient in vivo if they bind reversibly with GTP-like affinity. Müller MP, Jeganathan S, Heidrich A, Campos J, Goody RS. Sci Rep 7 3687 (2017)