4j0j Citations

Crystal Structure of Tannase from Lactobacillusplantarum.

J. Mol. Biol. (2013)
Related entries: 4jui, 4j0c, 4j0g, 4j0d, 4j0k, 4j0h, 4j0i

Cited: 7 times
EuropePMC logo PMID: 23648840

Abstract

Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an α/β structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme.

Reviews citing this publication (1)

  1. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. Jana A, Halder SK, Banerjee A, Paul T, Pati BR, Mondal KC, Das Mohapatra PK. Bioresour. Technol. 157 327-340 (2014)

Articles citing this publication (6)

  1. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Jiménez N, Esteban-Torres M, Mancheño JM, de Las Rivas B, Muñoz R. Appl. Environ. Microbiol. 80 2991-2997 (2014)
  2. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Suzuki K, Hori A, Kawamoto K, Thangudu RR, Ishida T, Igarashi K, Samejima M, Yamada C, Arakawa T, Wakagi T, Koseki T, Fushinobu S. Proteins 82 2857-2867 (2014)
  3. Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus. Jiménez N, Reverón I, Esteban-Torres M, López de Felipe F, de Las Rivas B, Muñoz R. Microb. Cell Fact. 13 154 (2014)
  4. Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Jiménez N, Barcenilla JM, de Felipe FL, de Las Rivas B, Muñoz R. Appl. Microbiol. Biotechnol. 98 6329-6337 (2014)
  5. Characterization of a tannin acyl hydrolase from Streptomyces sviceus with substrate preference for digalloyl ester bonds. Wu M, Wang Q, McKinstry WJ, Ren B. Appl. Microbiol. Biotechnol. 99 2663-2672 (2015)
  6. The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9. Kelly WJ, Pacheco DM, Li D, Attwood GT, Altermann E, Leahy SC. Stand Genomic Sci 11 49 (2016)