4hhz Citations

Design, synthesis, and biological evaluation of a series of benzo[de][1,7]naphthyridin-7(8H)-ones bearing a functionalized longer chain appendage as novel PARP1 inhibitors.

J Med Chem 56 2885-903 (2013)
Cited: 36 times
EuropePMC logo PMID: 23473053

Abstract

A series of benzo[de][1,7]naphthyridin-7(8H)-ones possessing a functionalized long-chain appendage have been designed and evaluated as novel PARP1 inhibitors. The initial effort led to the first-generation PARP1 inhibitor 26 bearing a terminal phthalazin-1(2H)-one framework and showing remarkably high PARP1 inhibitory activity (0.31 nM) but only moderate potency in the cell. Further effort generated the second-generation lead 41, showing high potency against both the PARP1 enzyme and BRCA-deficient cells, especially for the BRCA1-deficient MDA-MB-436 cells (CC50 < 0.26 nM). Mechanistic studies revealed that the new PARP1 inhibitors significantly inhibited H2O2-triggered PARylation in SKOV3 cells, induced cellular accumulation of DNA double-strand breaks, and impaired cell-cycle progression in BRCA2-deficient cells. Significant potentiation on the cytotoxicity of Temozolomide was also observed. The unique structural character and exceptionally high potency of 41 made it stand out as a promising drug candidate worthy for further evaluation.

Articles - 4hhz mentioned but not cited (3)

  1. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Aoyagi-Scharber M, Gardberg AS, Yip BK, Wang B, Shen Y, Fitzpatrick PA. Acta Crystallogr F Struct Biol Commun 70 1143-1149 (2014)
  2. Structural basis of autoinhibition and activation of the DNA-targeting ADP-ribosyltransferase pierisin-1. Oda T, Hirabayashi H, Shikauchi G, Takamura R, Hiraga K, Minami H, Hashimoto H, Yamamoto M, Wakabayashi K, Shimizu T, Sato M. J Biol Chem 292 15445-15455 (2017)
  3. Discovery of novel anti-tumor compounds targeting PARP-1 with induction of autophagy through in silico and in vitro screening. Shi D, Pang Q, Qin Q, Yao X, Yao X, Yu Y. Front Pharmacol 13 1026306 (2022)


Reviews citing this publication (6)

  1. Tankyrases: structure, function and therapeutic implications in cancer. Haikarainen T, Krauss S, Lehtio L. Curr Pharm Des 20 6472-6488 (2014)
  2. Therapeutic Potential of Spirooxindoles as Antiviral Agents. Ye N, Chen H, Wold EA, Shi PY, Zhou J. ACS Infect Dis 2 382-392 (2016)
  3. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. Gironda-Martínez A, Donckele EJ, Samain F, Neri D. ACS Pharmacol Transl Sci 4 1265-1279 (2021)
  4. PARP1: Structural insights and pharmacological targets for inhibition. Spiegel JO, Van Houten B, Durrant JD. DNA Repair (Amst) 103 103125 (2021)
  5. PARP inhibitors as antitumor agents: a patent update (2013-2015). Yuan Z, Chen J, Li W, Li D, Chen C, Gao C, Jiang Y. Expert Opin Ther Pat 27 363-382 (2017)
  6. The therapeutic potential of targeting regulated non-apoptotic cell death. Hadian K, Stockwell BR. Nat Rev Drug Discov 22 723-742 (2023)

Articles citing this publication (27)

  1. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Zhao Q, Lan T, Su S, Rao Y. Chem Commun (Camb) 55 369-372 (2019)
  2. Enantioselective Rh-Catalyzed Carboacylation of C═N Bonds via C-C Activation of Benzocyclobutenones. Deng L, Xu T, Li H, Dong G. J Am Chem Soc 138 369-374 (2016)
  3. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. Spiegel JO, Durrant JD. J Cheminform 12 25 (2020)
  4. Combining 53BP1 with BRCA1 as a biomarker to predict the sensitivity of poly(ADP-ribose) polymerase (PARP) inhibitors. Yang ZM, Liao XM, Chen Y, Shen YY, Yang XY, Su Y, Sun YM, Gao YL, Ding J, Zhang A, He JX, Miao ZH. Acta Pharmacol Sin 38 1038-1047 (2017)
  5. 7-Azaindole-1-carboxamides as a new class of PARP-1 inhibitors. Cincinelli R, Musso L, Merlini L, Giannini G, Vesci L, Milazzo FM, Carenini N, Perego P, Penco S, Artali R, Zunino F, Pisano C, Dallavalle S. Bioorg Med Chem 22 1089-1103 (2014)
  6. Acquired resistance of phosphatase and tensin homolog-deficient cells to poly(ADP-ribose) polymerase inhibitor and Ara-C mediated by 53BP1 loss and SAMHD1 overexpression. Wang YT, Yuan B, Chen HD, Xu L, Tian YN, Zhang A, He JX, Miao ZH. Cancer Sci 109 821-831 (2018)
  7. Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors. Jeon W, Kim D. Sci Rep 10 22104 (2020)
  8. Novel PARP1/2 inhibitor mefuparib hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution. He JX, Wang M, Huan XJ, Chen CH, Song SS, Wang YQ, Liao XM, Tan C, He Q, Tong LJ, Wang YT, Li XH, Su Y, Shen YY, Sun YM, Yang XY, Chen Y, Gao ZW, Chen XY, Xiong B, Lu XL, Ding J, Yang CH, Miao ZH. Oncotarget 8 4156-4168 (2017)
  9. Increased PARP1-DNA binding due to autoPARylation inhibition of PARP1 on DNA rather than PARP1-DNA trapping is correlated with PARP1 inhibitor's cytotoxicity. Chen HD, Chen CH, Wang YT, Guo N, Tian YN, Huan XJ, Song SS, He JX, Miao ZH. Int J Cancer 145 714-727 (2019)
  10. Synthesis of isoquinolinone-based tricycles as novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Chen J, Peng H, He J, Huan X, Miao Z, Yang C. Bioorg Med Chem Lett 24 2669-2673 (2014)
  11. Discovery of 1-substituted benzyl-quinazoline-2,4(1H,3H)-dione derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors. Yao H, Ji M, Zhu Z, Zhou J, Cao R, Chen X, Xu B. Bioorg Med Chem 23 681-693 (2015)
  12. LigGrep: a tool for filtering docked poses to improve virtual-screening hit rates. Ha EJ, Lwin CT, Durrant JD. J Cheminform 12 69 (2020)
  13. Novel 2,4-Diarylaminopyrimidine Analogues (DAAPalogues) Showing Potent c-Met/ALK Multikinase Inhibitory Activities. Liu Z, Ai J, Peng X, Song Z, Wu K, Zhang J, Yao Q, Chen Y, Ji Y, Yang Y, Geng M, Zhang A. ACS Med Chem Lett 5 304-308 (2014)
  14. Novel mutations in BRCA2 intron 11 and overexpression of COX-2 and BIRC3 mediate cellular resistance to PARP inhibitors. Chen HD, Guo N, Song SS, Chen CH, Miao ZH, He JX. Am J Cancer Res 10 2813-2831 (2020)
  15. Active site fingerprinting and pharmacophore screening strategies for the identification of dual inhibitors of protein kinase C (ΡΚCβ) and poly (ADP-ribose) polymerase-1 (PARP-1). Chadha N, Silakari O. Mol Divers 20 747-761 (2016)
  16. Glycogen synthase kinase 3β inhibition synergizes with PARP inhibitors through the induction of homologous recombination deficiency in colorectal cancer. Zhang N, Tian YN, Zhou LN, Li MZ, Chen HD, Song SS, Huan XJ, Bao XB, Zhang A, Miao ZH, He JX. Cell Death Dis 12 183 (2021)
  17. In silico investigation of PARP-1 catalytic domains in holo and apo states for the design of high-affinity PARP-1 inhibitors. Salmas RE, Unlu A, Yurtsever M, Noskov SY, Durdagi S. J Enzyme Inhib Med Chem 31 112-120 (2016)
  18. Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation. Halder AK, Saha A, Saha KD, Jha T. J Biomol Struct Dyn 33 1756-1779 (2015)
  19. Discovery of potent 2,4-difluoro-linker poly(ADP-ribose) polymerase 1 inhibitors with enhanced water solubility and in vivo anticancer efficacy. Chen WH, Song SS, Qi MH, Huan XJ, Wang YQ, Jiang H, Ding J, Ren GB, Miao ZH, Li J. Acta Pharmacol Sin 38 1521-1532 (2017)
  20. Identification of novel 2-(benzo[d]isoxazol-3-yl)-2-oxo-N-phenylacetohydrazonoyl cyanide analoguesas potent EPAC antagonists. Ye N, Zhu Y, Liu Z, Mei FC, Chen H, Wang P, Cheng X, Zhou J. Eur J Med Chem 134 62-71 (2017)
  21. Polymerase independent repression of FoxO1 transcription by sequence-specific PARP1 binding to FoxO1 promoter. Tian YN, Chen HD, Tian CQ, Wang YQ, Miao ZH. Cell Death Dis 11 71 (2020)
  22. Contrasting sirtuin and poly(ADP-ribose)polymerase activities of selected 2,4,6-trisubstituted benzimidazoles. Yeong KY, Tan SC, Mai CW, Leong CO, Chung FF, Lee YK, Chee CF, Abdul Rahman N. Chem Biol Drug Des 91 213-219 (2018)
  23. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy. Chen W, Guo N, Qi M, Dai H, Hong M, Guan L, Huan X, Song S, He J, Wang Y, Xi Y, Yang X, Shen Y, Su Y, Sun Y, Gao Y, Chen Y, Ding J, Tang Y, Ren G, Miao Z, Li J. Eur J Med Chem 138 514-531 (2017)
  24. Design and Activity of Novel Oxadiazole Based Compounds That Target Poly(ADP-ribose) Polymerase. Vishwanath D, Girimanchanaika SS, Dukanya D, Rangappa S, Yang JR, Pandey V, Lobie PE, Basappa B. Molecules 27 703 (2022)
  25. Thioparib inhibits homologous recombination repair, activates the type I IFN response, and overcomes olaparib resistance. Wang LM, Wang P, Chen XM, Yang H, Song SS, Song Z, Jia L, Chen HD, Bao XB, Guo N, Huan XJ, Xi Y, Shen YY, Yang XY, Su Y, Sun YM, Gao YL, Chen Y, Ding J, Lang JY, Miao ZH, Zhang A, He JX. EMBO Mol Med 15 e16235 (2023)
  26. Repeated treatments of Capan-1 cells with PARP1 and Chk1 inhibitors promote drug resistance, migration and invasion. Guo N, Li MZ, Wang LM, Chen HD, Song SS, Miao ZH, He JX. Cancer Biol Ther 23 69-82 (2022)
  27. The impact of cycleanine in cancer research: a computational study. Nwaefulu ON, Al-Shar'i NA, Owolabi JO, Sagineedu SR, Woei LC, Wai LK, Islam MK, Jayanthi S, Stanslas J. J Mol Model 28 340 (2022)